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Abstract

Interferon (IFN)-mediated antiviral responses are central to host defence against viral infection. 

Despite the existence of at least 20 IFNs, there are only three known cell surface receptors. IFN 

signalling and viral evasion mechanisms form an immensely complex network that differs across 

species. In this Review, we begin by highlighting some of the advances that have been made 

towards understanding the complexity of differential IFN signalling inputs and outputs that 

contribute to antiviral defences. Next, we explore some of the ways viruses can interfere with, or 

circumvent, these defences. Lastly, we address the largely under-reviewed impact of IFN 

signalling on host tropism, and we offer perspectives on the future of research into IFN signalling 

complexity and viral evasion across species.

Across species, the innate immune response serves as the first line of defence against viral 

infection. Pattern recognition receptors (PRRs) within the host cell sense pathogen-

associated molecular patterns, triggering a range of signalling cascades and subsequent gene 

activation1. For many viral infections, this results in the production and secretion of 

interferons (IFNs), which are critical for innate immunity and also have profound impacts on 

adaptive immune responses. IFN signalling in turn induces transcription of hundreds of IFN-

stimulated genes (ISGs) that further the immune response against the viral infection.

Many viruses have evolved to avoid, subvert or directly interfere with the IFN signalling of 

their hosts. This is accomplished through numerous mechanisms extensively reviewed 

elsewhere2–7; however, some new discoveries are highlighted later in this Review. A given 

virus’ ability to antagonize and prevent the inputs and outputs of IFN signalling not only 

dictates the success of the infection, but is also a direct factor that contributes to the host and 

tissue range of a given virus.

Reprints and permissions information is available at www.nature.com/reprints.
*Correspondence should be addressed to A.P. aploss@princeton.edu.
Author contributions
E.V.M., R.A.L. and A.P. conceived and wrote this Review.

Competing interests
The authors declare no competing interests.

Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

HHS Public Access
Author manuscript
Nat Microbiol. Author manuscript; available in PMC 2019 June 06.

Published in final edited form as:
Nat Microbiol. 2019 June ; 4(6): 914–924. doi:10.1038/s41564-019-0421-x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints


Originally discovered in the 1950s and named for their ability to ‘interfere’ with viral 

replication, IFNs form a diverse family of cytokines8. Each class of IFN—type I, II and III

— signals through a distinct heterodimeric receptor and induces gene expression through the 

Janus kinase–signal transducer and activator of transcription (JAK–STAT) signalling 

pathway (Fig. 1). In humans, type I IFNs are comprised of IFN-β, 13 subtypes of IFN-α, as 

well as IFN-ε and IFN-ω. A number of distantly related genes and pseudogenes have been 

identified in other species and are included in the type I classification. Three type III IFNs 

(IFN-λ1, IFN-λ2 and IFN-λ3) were simultaneously discovered by two groups in 2003 and 

shown to be structurally related to interleukin-10 (IL-10) (refs. 9,10). A fourth type III IFN, 

IFN-λ4, was identified in 2013 and was associated with impaired clearance of hepatitis C 

virus (HCV) infection11. The type II IFN class has only one member: IFN-γ. Given that type 

II fits the classic model of one ligand for one receptor, this Review will focus only on type I 

and III IFNs.

IFNs vary considerably with regards to structure, receptor distribution and tissue-specific 

biological activities12, but are all capable of inducing an antiviral state. Type I IFN 

signalling within humans antagonizes innumerable viruses, such as influenza virus, West 

Nile virus (WNV), yellow fever virus (YFV), vesicular stomatitis virus (VSV), dengue virus 

(DENV), herpes simplex virus (HSV) and several hepatitis viruses13. As such, evading type 

I IFN signalling is crucial for viruses to successfully replicate within their hosts, as is 

demonstrated by many flaviviruses; Zika virus (ZIKV), Japanese encephalitis virus (JEV), 

WNV and DENV are all able to antagonize type I IFN signalling in human cells to promote 

replication of their genomes14. Deleting individual type I IFNs in vivo has revealed some of 

their specific roles during viral infection: within its extensive repertoire of immune 

functions, IFN-β is required for the production of IFN-α during vaccinia virus infection15 

and IFN-ε protects the female reproductive tract against HSV (ref. 16). Less is known about 

type III IFNs, although studies have shown they are critical for antagonism of many viruses, 

particularly at epithelial surfaces17. However, across type I and III IFNs, there are vast 

differences with respect to their regulation and signalling outputs, which can dictate viral 

evasion strategies and ultimately impact host and tissue tropism.

Much remains unknown about how antiviral defences are encoded by IFN receptors, how 

viruses navigate these defences, and how differences in both of these areas contribute to 

viral susceptibility and permissivity across species. While many aspects of IFNs have been 

reviewed extensively elsewhere12,13,18, this Review will attempt to construct a holistic 

picture of the complicated relationship between IFN signalling and viral infection. To this 

end, we will progressively expand in scope with each section. We will begin at the level of 

individual IFN receptors, then broaden out to a discussion of IFN-mediated antiviral 

defences. We will then tackle some of the ways viruses can modulate or evade these 

defences. Lastly, we will consider how this intricate relationship between viruses and IFNs 

impacts host tropism.

Complex inputs

Despite the existence of approximately 20 IFNs, there are only three cell surface IFN 

receptors. The type I IFN receptor (IFNAR) is composed of subunits IFNAR1 and IFNAR2; 
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the type II IFN receptor (IFNGR) is made up of subunits IFNGR1 and IFNGR2; and the 

type III IFN receptor (IFNLR) consists of subunits IFNLR1 and IL-10Rβ, the latter of which 

is shared by the IL-10 receptor. Of the three receptors, only IFNGR has one ligand: IFN-γ 
(ref. 19). In contrast, the type I and III receptors are shared by many IFNs. While the type I 

receptor is present on all nucleated cell types, the type III receptor is restricted mainly to 

epithelial cells, although some studies have observed that other cell types—such as epithelial 

cells20 and neutrophils21—are responsive to type III IFNs. Evidence suggests that type I and 

III IFNs can differentially engage their receptor to produce different signalling 

outcomes22,23.

How shared IFN receptors decipher the complexity of IFN signalling inputs remains elusive, 

yet it could be influenced by a variety of factors, such as ligand binding affinities, negative 

regulation, positive regulation and signal amplification, receptor expression and assembly, 

and biomolecular condensation (Fig. 2). These will be explored in detail in this section. 

Other factors that could not be extensively addressed here include post-translational 

modifications, epigenetics and epitranscriptomic regulation of IFN signalling 

components24,25. Among epigenetic modifications are STAT-mediated acetylation of histone 

H3 (ref. 26) and IFN-stimulated ubiquitination of histone 2B (ref. 27), both of which are 

associated with elevated expression of ISGs. Epitranscriptomic regulation includes RNA 

modifications by adenosine deaminases acting on RNA that inhibit IFN signalling28. 

Combinations of all of these factors may allow the type I and type III IFN receptors to 

process a dynamic range of signalling inputs during viral infection. Since many aspects of 

IFN signalling regulation have been reviewed elsewhere12,22,29–31, we will mainly highlight 

some of the emerging themes and new insights from the past few years.

An overarching model that has gained favourability is that many signalling differences result 

from changes in the stability of the ternary receptor complexes. This stability can be 

influenced by numerous factors, among which is ligand binding strength. Across type I 

IFNs, ligand binding affinities for IFNAR vary significantly, with IFN-β displaying the 

strongest affinity32. Differences in binding affinities appear to arise from the specific 

interactions each IFN makes with its receptor in addition to conserved ligand anchor 

points33. Type I IFNs that bind more strongly form a more stable ternary complex with the 

two receptor subunits, potentially resulting in increased binding duration34,35. Binding of 

type III IFNs with IFNLR forms a similar ternary complex, the stability of which increases 

when ligands are engineered to bind more strongly36. These studies suggest that stronger 

ligand binding affinities can stabilize the type I and type III receptors by increasing the 

duration of binding between the receptor subunits and ligand.

In contrast, negative regulatory mechanisms can obstruct the stability of the ternary receptor 

complexes and interfere with various stages of the IFN signalling cascade. For example, type 

I and type III IFN signalling induces expression of ubiquitin-specific protease 18 (USP18) 

(ref. 37), rendering the type I IFN receptor insensitive to IFN-α but not to IFN-β, thus 

implicating USP18 in the differential signalling activities of type I IFNs (ref. 38). Since 

overall IFN receptor expression remains unaltered, USP18 may participate in regulating 

receptor plasticity by preventing IFN-α (but not IFN-β) subtypes from recruiting IFNAR1 

to the type I receptor complex39. Other well-characterized negative feedback mechanisms 
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involve suppressor of cytokine signalling (SOCS) proteins, namely SOCS1 and SOCS3, 

whose targets include JAK1 (ref. 40) and tyrosine kinase 2 (TYK2) (ref. 41), which otherwise 

cross-phosphorylate to propagate the IFN signal relay and stabilize the receptor subunits. 

STAT proteins 1–6 have complicated roles in either propagating IFN signals or fine-tuning 

the cascade. For example, IFN-α/β-induced expression of STAT3 negatively regulates type I 

IFN signalling by sequestering STAT1 monomers42 or targeting transcription of IFN 

signalling components43. Strikingly, type III IFN signalling is negatively regulated by 

SOCS1, but not by SOCS3 or USP18 (ref. 44). These data indicate that negative regulatory 

mechanisms contribute to different signalling outcomes for type I IFNs, as well as the 

observed signalling differences between type I and III IFNs.

Conversely, positive regulatory mechanisms augment the IFN signalling cascade to maintain 

or amplify expression of ISGs or IFNs (refs. 30,45). Cascade components involved in 

amplifying IFN signals include STAT1 and IFN regulatory factor 9 (IRF9), which associate 

with STAT2 to form the ISGF3 transcription factor that binds to ISG promoter elements. 

Increased expression of these components in response to IFN-β prolongs expression of 

ISGs, resulting in enhanced viral resistance46. In addition to promoting the secretion of 

cytokines, positive feedback mechanisms can lock cells into an autocrine signalling loop that 

sustains IFN signal transduction47. Many positive regulatory mechanisms are cell type-

specific, but certain factors such as IRF7 are thought to be common across many tissues48. 

Many details of positive regulation and signal amplification still need to be uncovered, as do 

the nuances of negative and positive regulation that keep IFN-mediated inflammation in 

check.

Upstream of many of these mechanisms, IFN receptors can decode signalling inputs through 

adjustments to receptor expression levels or assembly. It has been proposed that receptor 

expression levels contribute to the differential signalling observed by certain type I IFNs. For 

example, the potency of IFN-α surpasses that of IFN-β when human cells are engineered to 

overexpress IFNAR subunits49; however, the potency of IFN-β barely changes in response to 

receptor expression levels50. Beyond this, some models suggest that dynamic alterations to 

IFN receptor assembly may account for signalling differences. After formation of the ternary 

complex, receptor subunits are endocytosed. The kinetics of subunit endocytosis may factor 

into how signalling inputs are propagated22. Homodimerization of the IFNAR2 subunit may 

even be sufficient to induce certain signalling events51. However, to what extent receptor 

subunits can homodimerize and the role this plays in physiological conditions is still 

unknown. In all, it appears that adjusting the factors involved in receptor plasticity—

expression, assembly and dimerization patterns—may fine-tune the signalling inputs of 

different IFNs.

Although somewhat distant from the other factors discussed, biomolecular condensates have 

been gaining attention as novel signalling structures that may guide the host response to viral 

infection. These are cellular compartments that lack a cell membrane and are typically 

formed by phase separation of polymeric biomolecules52. It was recently demonstrated that 

liquid phase separation of cyclic guanosine monophosphate (GMP)–adenosine 

monophosphate synthase (AMP) synthase (cGAS) plays a role in sensing pathogenic DNA 

upstream of IFN production53 (Fig. 2). Additionally, IFN-α signalling can prompt 
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myxovirus resistance protein A (MxA) to form cytoplasmic, organelle-like structures 

adjacent to the cytoskeleton54. Since oligomerization of MxA is necessary for its antiviral 

activity against influenza virus55 and expression of MxA positively regulates IFN signalling 

in response to HCV infection56, biomolecular condensation of this ISG may facilitate IFN 

signalling during viral infection. Further studies should address the extent to which 

biomolecular condensation of ISGs and immune proteins in general influences IFN 

signalling dynamics.

Complex outputs

Complex IFN signalling inputs correspond with distinct transcriptional outputs and cellular 

responses during viral infection. Activation of type I and type III receptors triggers the 

transcription of hundreds of different ISGs as well as genes encoding other proteins, such as 

STATs 1–6. Signalling through IFN receptors also leads to the production of multiple other 

IFNs, which may vary in response to different viral infections57, although this phenomenon 

requires more study and characterization. Overall, the magnitude, kinetics and composition 

of IFN-stimulated transcriptional profiles appear to vary depending on which IFN initiated 

the signalling cascade58 (Fig. 3). As a result of these varied transcriptional profiles, IFNs 

induce different cellular responses, such as those associated with antiviral immunity, 

proliferation, apoptosis and clinical outcomes12. Often, differences in these transcriptional 

and biological outputs are both cell type- and IFN-specific. Understanding these outputs is 

imperative to relate differential IFN signalling to the antiviral responses of a cell.

As a group, ISGs can target most steps of viral replication, amplify IFN signalling cascades 

to strengthen the host response and exert combinatorial antiviral activities59. Mice deficient 

in certain ISG pathways still mount antiviral responses via other ISGs; such redundancy 

highlights the crucial role for ISG transcription during host defence60. The first ISGs 

discovered (now considered ‘classical ISGs’) were shown to induce potent antiviral 

responses by themselves (for example, Mx proteins61 or Protein kinase R (ref. 62)). Over 

time, however, the identification of less-potent ISGs indicates that weaker ISGs work 

together to temper the immune response depending on the type and magnitude of 

infection59. While much remains unknown about the roles of ISGs during viral infection and 

pathogenesis, large-scale ISG screens have identified and characterized hundreds of ISGs 

present during viral infection63,64, many with virus-, cell- and species-specific effects.

Unique ISG panels are induced in response to different viral infections57, resulting in 

specific antiviral responses. Some viruses are targeted primarily at a specific point during 

infection; for example, many ISGs that target HCV do so during translation of the entering 

genome63. Other viruses, such as DENV and WNV, are targeted by a number of ISGs at 

multiple stages of the viral replication cycle65. ISGs can exert virus-specific activities; for 

example, IFN-α-inducible protein 6 was found to selectively inhibit replication of certain 

flaviviridae family viruses by interfering with the formation of endoplasmic reticulum (ER) 

microenvironments66. Combinations of ISGs frequently increase defences against viruses. 

Additive effects were observed when pairs of ISGs were tested against viruses from different 

families, such as HCV, HIV-1 and YFV (ref. 63). ISG feedback loops also enhance or fine-

tune antiviral effects by regulating expression of other ISGs or IFNs (ref. 45). In particularly 
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striking cases, ISGs act in a manner that appears pro-viral on first glance. While some ISGs 

may indeed be co-opted by viruses to facilitate viral infection, others with curiously ‘pro-

viral’ functions may in fact be working to fine-tune the IFN response against viral infection. 

For example, in humans (but not mice), ISG15 interacts with and stabilizes USP18, allowing 

for appropriate downregulation of IFN signalling67. Since ISG15 possesses well-

documented antiviral properties68, these findings point to a species-specific ability of ISG15 

to adjust the IFN signalling cascade during the later stages of viral infection in humans. 

Such studies indicate that ISGs can modulate the host’s antiviral response to fit the type of 

virus or stage of infection.

In early studies aiming to understand IFN signalling outputs, differential ISG outputs and 

cellular responses were linked with variations in the receptor-binding affinities of IFNs. 

Type I IFNs that bind more strongly to IFNAR, such as IFN-β, induce a subset of ISGs that 

are not expressed by the binding of weaker IFNs; furthermore, universally expressed ISGs 

are induced to a greater extent by IFN-β (refs. 64,69). A linear correlation exists between the 

binding affinities of type I IFNs and their anti-proliferative potency; however, the 

relationship between receptor-binding affinity and antiviral activity is less straightforward32. 

Although the signalling outputs of type III IFNs have been less thoroughly explored, an 

engineered IFN-λ that binds IFNLR with increased affinity leads to a corresponding 

increase in antiviral activity36. In contrast, increasing the binding affinity of a synthetic type 

I IFN does not increase antiviral activity compared with wild-type IFN, which may suggest 

that type I IFNs already exert their maximal antiviral potency36. Future studies should 

continue to explore how other factors contribute to the complexity of IFN-mediated 

transcriptional and antiviral signalling outputs.

An increasing number of reports have revealed instances where type I and III IFNs function 

together to coordinate viral clearance. Genetic disruption of type I and III signalling in mice 

results in pronounced viral neuroinvasion and overall hyper-susceptibility to infection by 

attenuated YFV (ref. 70). Hyper-susceptibility is also observed during influenza infection of 

mice deficient in type I and III IFN signalling; deficiency of either type alone does not 

abolish transcription of ISGs, which allows the type I and III IFN systems to compensate for 

the loss of the other71. Further research suggests that type III IFN signalling acts as the first 

line of defence in the lung epithelium during early influenza virus infection, and subsequent 

signalling by type I IFNs may offer enhanced protection during the later stages of viral 

spread72. Additionally, a comprehensive analysis of the antiviral landscape in mice infected 

with influenza virus found diverse antiviral gene signatures, indicating that the magnitude or 

number of rounds of influenza infection dictates the nature of IFN protection73. It thus 

appears that integration of the type I and III IFN systems, especially at barrier surfaces, can 

modulate or heighten a host’S antiviral response during infection by certain viruses.

While the antiviral activities of type I IFNs have been thoroughly explored13, those of type 

III are still being elucidated. Type III IFNs may hold therapeutic potential against viruses 

that preferentially infect cells of epithelial origin. Research in mice has demonstrated that 

IFN-λ signalling at the blood–brain barrier prevents neuroinvasion by WNV, and treatment 

with pegylated IFN-λ2 improves survival against viral challenge20. Similarly, intestinal 

epithelial cells infected with rotavirus respond more strongly to treatment with IFN-λ than 
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type I IFNs in vivo74, and type III IFN signalling appears sufficient to restrict the spread of 

influenza virus in the respiratory tract75. IFN-λ also displays potent antiviral action against 

hepatitis viruses76, and promising clinical studies have tested pegylated IFN-λ against 

chronic HBV or HCV infection77,78. Counterintuitively, IFN-λ4 has been associated with 

lower viral clearance of HCV in humans79, possibly due to its ability to accentuate negative 

feedback mechanisms such as SOCS1 (ref. 80). However, certain IFN-λ4 genotypes may 

influence the efficacy of IFN therapy, as shown for HCV (refs. 81,82). Since IFNLR is 

expressed on fewer cell types than IFNAR, side effects from IFN-λ treatment may be more 

limited than those induced by treatment with type I IFNs (ref. 83). These studies and others 

indicate that type III IFNs can launch significant antiviral responses against a number of 

viruses and may be seriously considered as a clinical treatment; as such, type III IFNs will 

be an important area for future research.

Viral evasion of IFN-mediated defences

Viruses have evolved along with their hosts to evade these IFN systems, allowing them to 

propagate within their hosts and spread to neighbouring cells. Disruption of innate immune 

signalling both upstream (Table 1 and Fig. 4) and downstream (Table 2 and Fig. 5) of IFN 

induction is quite common among viruses. Many mechanisms behind such evasion have 

been extensively reviewed elsewhere2–7, but a few are briefly mentioned here: viruses can 

evade IFN-dependent innate immunity by hiding their genomes from detection, inhibit 

interactions with host inducers of the IFN response, regulate phosphorylation, ubiquitinylate 

related pathways of the host’s cellular machinery, cleave/ mark for degradation proteins vital 

to stimulating the IFN response, regulate host gene transcription and translation, regulate 

RNA processing and trafficking, and employ protein decoys. Rather than reiterate these 

evasion strategies, this section aims to highlight more recent discoveries relating to novel 

roles for organelle stress responses during viral infection and viral antagonism, both up- and 

downstream of host IFN signalling. These new discoveries broaden our understanding of 

host antagonism and, specifically, host tropism of RNA viruses.

The ER and mitochondria are two organelles that play important roles in detecting and 

responding to viral infection upstream of IFN induction. The organelle-damaging effects of 

certain viral infections signal to the host cell that something is amiss, prompting the cell to 

trigger antiviral responses through IFN signalling. In a healthy cell, ER stress induced by the 

unfolded protein response leads to ER-associated protein degradation84. Conversely, in a cell 

infected with influenza A virus (IAV), a potent antiviral response is triggered by the 

overproduction of viral haemagglutinin glycoproteins which stimulate the unfolded protein 

response85, offering a new perspective on the role of the ER during viral infection. Further, 

the homocysteine-induced ER protein (HERP), induced by the unfolded protein response 

and by ER stress, is implicated in antiviral immunity against IAV and several other RNA 

viruses. Mitochondrial antiviral signalling protein (MAVS), a vital host protein involved in 

the retinoic acid-inducible gene I (RIG-I) like receptor (RLR)–IFN signalling cascade, was 

shown to enhance HERP expression following viral infection86. HERP then binds TANK-

binding kinase 1 (TBK1) to amplify the MAVS signalling cascade86, which, in turn, 

represses the replication of several RNA viruses, including Sendai virus (SeV), IAV, VSV 

and enterovirus 71 (EV71) (ref. 86) (Fig. 4). Similarly, viruses such as DENV and ZIKV can 
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cause mitochondrial damage through elongation induced by viral non-structural proteins 

during infection87, but, in the past few years, several studies have come to conflicting 

conclusions regarding cellular defences against RNA virus-induced damage to this vital 

organelle, as outlined below.

It has been shown that IFNs can be induced in healthy cells when mitochondrial DNA 

(mtDNA) stress is induced by a deficiency in mtDNA binding protein88. This points to a role 

played by the fidelity and/or decompartmentalization of mtDNA in antiviral signalling. On 

the one hand, viruses from different viral families can prompt leakage of mtDNA into the 

cytosol, stimulating the DNA sensor cGAS, thereby elevating ISG expression through 

stimulator of IFN genes (STING)–IRF3 dependent signalling88,89. DENV (an RNA virus) 

has evolved to disrupt this canonical DNA sensing pathway by virally encoded, protease-

mediated cleavage of STING (refs. 89–91). Additionally, the DENV non-structural protein 

NS4B causes mitochondrial elongation, compromising the integrity of ER-mitochondrial 

interfaces that are critical for RIG-I-mediated innate immune signalling87. Similarly, it was 

shown that other RNA viruses of diverse families, such as VSV, Sindbis virus, SeV, IAV and 

reovirus type 3 Dearing strain, all replicate at higher levels in cells expressing short-hairpin 

RNAs targeting STING (ref. 92). On the other hand, however, it is argued that STING 

exhibits an antiviral response through translational inhibition in an RLR-dependent manner 

and is not required for the sensing of leaked mtDNA due to organelle damage. This 

conclusion was drawn from findings that cells depleted of mtDNA are able to retain their 

ability to diminish viral RNA replication in a STING-dependent manner, and that STING-

dependent translational inhibition does not depend on MAVS (ref. 92). These findings argue 

that RLR responses to RNA viral infections mediate IFN induction through MAVS and 

restrict viral translation through STING. Regardless of mechanism, RNA viruses must 

bypass these innate IFN signalling pathways to successfully and robustly replicate. More 

research is needed to understand the exact, and likely multifaceted, functions of STING 

during viral infection.

Similarly, it was recently discovered that like DNA sensors affecting RNA viral replication, 

the opposite is also true; several groups are now studying the mechanisms by which RIG-I is 

able to bind host RNA as a means to stimulate the innate immune response during viral 

infection. HSV-1, a DNA alphaherpes virus, was shown to induce the relocalization of host-

derived 5S ribosomal RNA pseudogene 141 (RNA5SP141) from the nucleus to the 

cytoplasm, where it binds RIG-I and induces the type I IFN response93. This occurs due to 

viral induced shutoff of RNA5SP141-interacting proteins, thus freeing RNA5SP141 for 

interaction with RIG-I; silencing of RNA5SP141 was shown to dampen the antiviral 

response to not only HSV-1, but also to Epstein–Barr virus and IAV (ref. 93). Further, host 

RNAs were shown to facilitate the host immune response to Kaposi’s sarcoma-associated 

herpesvirus (KSHV), a gammaherpes-virus, which is capable of establishing latent and 

lysogenic infections. It was discovered that KSHV lytic reactivation from latency is 

restricted by RLRs through recognition of host-derived RNAs (ref. 94); this is accomplished 

by an infection-induced reduction in a cellular triphosphatase, leading to the accumulation of 

misprocessed, noncoding RNAs that are detected by RIG-I. These results, taken together 

with the above findings regarding cGAS–STING, demonstrate our recent advances in 

understanding the surprising interplay between the virus and host prior to IFN induction.
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How RNA viruses antagonize antiviral responses downstream of IFN signalling appears to 

be largely restricted to a small subset of host proteins, albeit through a variety of viral 

proteins and mechanisms (Table 2 and Fig. 5). For example, STAT proteins serve as a key 

point of convergence within host defences. STAT2 is antagonized by the non-structural viral 

protein NS5 of numerous viruses, including DENV (refs. 95–98), ZIKV (refs. 99,100), WNV 

(refs. 101,102), JEV (refs. 103–105) and tick-borne encephalitis virus102. Notably, YFV also 

uses its NS5 protein to antagonize STAT2 and the STAT-signalling pathway, but this requires 

events upstream of IFN signalling to take place (specifically, phosphorylation of STAT1 and 

polyubiquitination of YFV NS5) (ref. 106). Less closely related viruses, such as human 

parainfluenza virus types 1 and 3 (hPIV1 and hPIV3) and SeV, also antagonize the STAT-

signalling pathway by inhibiting STAT protein phosphorylation and/or STAT nuclear 

translocation, thereby blunting ISG induction107–110. Similarly, by mutating the critical 

residues of the STAT binding domain of rabies virus P protein, mice do not progress to a 

lethal neurological disease state, even following direct cranial inoculation by the mutant 

virus111, demonstrating that STAT inhibition is required for the lethality of the virus. 

Discoveries such as these highlight how certain viruses have evolved to counter IFN-

mediated host defences, and allow us to look at how host and tissue tropism is dictated by 

differential regulation and antagonism of these host innate immune pathways.

Impact of IFN signalling complexity on host tropism

Determining the impact of IFN signalling on host tropism is vital to the pursuit of clinical 

interventions. However, gaining these insights comes with its fair share of challenges. 

Research conducted using different methods and bioinformatics analyses can be difficult to 

compare holistically and are typically carried out on a single-species level. This usually 

results in studies without sufficient power to understand and identify key evolutionary 

features, leaving it hard to draw meaningful conclusions from expanding data sets. The first 

piece of the puzzle is to understand how other species respond, or are immune to, varying 

infections that plague humans. Genomic- or transcriptomic-based studies are useful to 

investigate these differences, but require a well-annotated reference genome for the species 

in question as well as an ample number of samples from different donors to ensure the data 

represents the larger population. Identifying gene orthologues between species can be 

fruitless without a complete or near-complete reference genome for each species of interest. 

However, these complications pale in comparison to what we can learn about host–pathogen 

interactions from analysing other species, and we can be continually surprised by how other 

hosts combat, or even tolerate, viral infections.

Studies that analyse viral infection in multiple species using a single method are able to 

avoid the challenge of comparing results gathered from differing methods and 

bioinformatics analysis pipelines. One such study compared the type I ‘interferome’ of 10 

species (human, rat, cow, sheep, pig, horse, dog, microbat, fruit bat and chicken), revealing a 

conserved core of 62 genes, some of which were not previously associated with response to 

type I IFN stimulation112. These conserved ISGs highlight the longstanding role of the 

innate immune system in responding to different pathogens. Additionally, ISG expression 

patterns were more similar in more closely related species than distant ones, while 14 

conserved IFN repressing genes were upregulated in all species that target different points in 
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the type I IFN pathway, demonstrating the importance of avoiding excess stimulation of 

these pathways112. While studies of this kind are necessary to draw comparisons across 

multiple species simultaneously, studies restricted to fewer species also have the potential to 

illuminate specific differences that confer resistance to, or tolerance of, different pathogens 

that already cross the species barrier.

Bats are a known reservoir for many pathogenic viruses that plague humans, such as Nipah 

virus, Hendra virus, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle 

Eastern respiratory syndrome coronavirus and Marburg virus113,114. Originally, it was 

thought that certain species of bats become asymptomatically infected with these viruses due 

to enhanced potency of their antiviral response. A new hypothesis has recently emerged that 

immune responses in bats are differentially regulated compared to other species, leading to 

tolerance rather than clearance of infection. This differential immune regulation may occur 

because the metabolic demands of flight cause DNA damage, which releases host mtDNA 

into the cytoplasm. This is exemplified by Egyptian Rousette bats (Rousette aegyptiacus), in 

which the type I IFN subfamily IFN-ω is expanded to almost two dozen subtypes, whereas 

humans only have one115. Some bat species constitutively express type I IFNs (namely IFN-

α) (ref. 116), but IFN-ω subfamily genes are only highly induced in R. aegyptiacus following 

infection with VSV. Additionally, bats have a high occurrence of point mutations in the 

innate immune signalling protein, STING. The Ser 358 residue of STING is conserved 

across all non-bat mammals117 and is a critical phosphorylation site for downstream IFN 

activation in these species. In bats, however, this residue can be mutated to asparagine, 

histidine or aspartic acid, preventing activation of cGAS–STING and thus resulting in a 

dampened innate immune response117. Taken together, these studies shed light on how bats 

evolved to differentially regulate innate immune signalling pathways, leading to infection 

tolerance and allowing them to be a reservoir for zoonotic pathogens. Notably, in other 

species such as mice, mutations in STING don’t impart a tolerance of viral infection, but 

rather prevent infection by some viruses altogether.

Mice do not support productive infection of many flaviviruses that affect humans, and one 

key mechanism behind this was recently elucidated. The viral protease NS2B3 in ZIKV, 

WNV and JEV, but not YFV, was found to mediate cleavage of human STING, increasing 

the permissiveness of mouse cells expressing human STING to ZIKV infection (including 

higher production of infectious particles and greater ZIKV RNA copy numbers)14; 

strikingly, murine STING is not cleavable by viral proteases in DENV (ref. 118) or ZIKV 

(ref. 14), thereby restricting the ability of these viruses to infect mice. Notably, STING-

deficient mice are not more susceptible to ZIKV infection, pointing to other redundant 

antiviral pathways controlling ZIKV infection in vivo14. However, cGAS- or STING-

deficient mice are more likely to progress to lethal infection by several DNA viruses119, 

demonstrating the vital role of this IFN signalling pathway’s ability to hinder viral 

replication following infection. Further, mouse STAT2, but not human STAT2, is known to 

restrict early DENV replication96, conferring additional resistance against DENV to mice. 

Similarly, the NS5 protein of ZIKV is able to bind and degrade human STAT2, but not 

mouse STAT2, preventing ZIKV from evading the innate immune response in mice99,100,120, 

and subsequently establishing a successful infection. Due to differing immune responses to 

differing infections, it can be hard to relevantly study these pathogens using mammalian 
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model organisms. Recently, however, a large step forward for ZIKV was made by the 

generation of an immunocompetent mouse model for ZIKV infection. By garnering a key 

mutation in the NS4B gene of ZIKV to enhance replication in neuronal stem cells and the 

brain in mice, and replacing mouse STAT2 with human STAT2, an immunocompetent mouse 

model with which to study ZIKV was generated121, allowing for further research of this 

important human pathogen.

Future perspectives

Much remains to be learned about the complexity of IFN signalling during viral infection. 

Many factors have been proposed to explain how type I IFNs signal differently through their 

shared receptor. However, it is still unclear how many of these factors function individually 

as well as together. It is still relatively unknown as to what extent type III IFNs produce 

different signalling outputs and whether these outputs result from the same mechanisms that 

impact type I signalling. Further, given the complexity and vastness of ISG outputs 

uncovered by large-scale screening efforts, more work is needed to fully understand the 

transcriptional profiles associated with IFN signalling and their effect on viral antagonism. 

Future studies should continue to investigate the roles of upregulated ISGs and the antiviral 

consequences of downregulated genes in response to IFN signalling, which have been 

understudied so far.

As for viral evasion of host signalling pathways, new concepts and convergence points are 

starting to emerge. Fully elucidating the role of cGAS and STING in the detection of, and 

antagonism by, RNA viruses is a currently unfolding story. Likewise, the involvement of 

RNA sensors for fighting DNA viral infections is an intriguing new area of investigation. A 

better understanding of how certain species resist infection by pathogens that affect humans 

will further our efforts to develop interventions and treatments.

There is still much work to be done to understand viral species and tissue tropism. Ongoing 

difficulties associated with comparing genomic and transcriptomic studies across different 

species still pose a barrier to the field. Additional difficulties arise when developing 

appropriate models to study viral infections. Working with certain species may not be 

possible due to ethical or practical reasons, and cell models may not give us a biologically 

relevant picture of virus–host interactions. The use of induced pluripotent stem cells 

generated from naturally susceptible and permissive species may shed light on questions that 

cannot be answered using other models.

Efforts to understand host tropism, tissue tropism and viral pathogenicity may be aided by 

considering the evolution of host and viral factors. For example, in non-human primates, a 

conserved mutation in MAVS imparts an escape from hepaciviral protease antagonism, 

severely enhancing IFN response in the presence of HCV and other flaviviruses that infect 

primates, as demonstrated in cells expressing primate MAVS (ref. 122). Additionally, for 

duck Tembusu virus, a single point mutation in the envelope protein confers airborne 

transmissibility to the virus in the absence of its natural vector, the mosquito; this expands 

its tropism and ability to replicate in the lung tissue of its host123. Altogether, studies such as 

these demonstrate how small evolutionary changes can have drastic impacts on the viability 
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of both the virus and host, and illustrate an important knowledge gap in the field that has yet 

to be filled.
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Fig. 1. Simplified schematic of type I and III IFN signalling cascades.
Within type I and III, there are multiple IFNs; within type II, there is only a single IFN. Each 

type has a distinct heterodimeric cell surface receptor: type I IFNs bind to the IFNAR 

receptor complex (composed of IFNAR1 and IFNAR2); type III IFNs bind to the IFNLR 

receptor complex (composed of INFLR1 and IL-10Rβ). Binding of an IFN to either receptor 

complex results in cross-phosphorylation of JAK1 and TYK2 on the cytoplasmic domains of 

the receptor subunits. This triggers phosphorylation of STAT1 and STAT2. Following 

phosphorylation, these STATs form various complexes that translocate into the nucleus, 
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where they bind IFN-stimulated response elements (ISREs) or gamma-activated sequences 

(GASs) on the promoters of ISGs. Binding to these promoter elements results in the 

transcription of hundreds of genes involved in antiviral response, including ISGs, IFNs, IRFs 

and STATs. P, phosphate; OASs, oligoadenylate synthases; GBPs, guanylate-binding 

proteins; NOS2, nitric oxide synthase 2; IFITMs, IFN-induced transmembrane proteins; 

TRIMs, tripartate motif proteins.
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Fig. 2. Factors that influence the decoding of IFN signalling inputs.
Various factors influence the decoding of IFN signalling inputs. (1) Receptor-binding 

affinities: each type I IFN binds to the IFNAR complex with varied affinities. These 

affinities correspond with differences in certain signalling outputs. As of yet, the binding 

affinities of type III IFNs have not been calculated. (2) Negative regulation: gene products 

induced by IFN signalling have the ability to negatively regulate the cascade at various 

stages; for example, SOCS1 and SOCS3, which interfere with TYK2 and JAK1, and STAT3, 

which can suppress STAT1 monomers, preventing homodimerization. (3) Positive regulation 
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and signal amplification: factors such as STAT1, IRF9 and IRF7 can enhance IFN signal 

transduction. This leads to prolonged expression and secretion of antiviral cytokines and 

IFNs that can adjust the IFN cascade or lock the cell into an autocrine signaling loop. (4) 

Receptor expression and assembly: levels of receptor expression at the cell membrane 

contribute to differential signalling abilities of IFNs across cell types. Further, alterations to 

receptor assembly, such as the kinetics of subunit endocytosis, can influence signalling. (5) 

Biomolecular condensation: formation of cellular compartments caused by phase separation 

of biomolecules appears to influence various stages of IFN signalling; for example, phase 

separation of cGAS facilitates sensing of viral genetic material to induce expression of IFNs. 

Kd, dissociation constant.
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Fig. 3. Hypothetical models of different transcriptional outputs in response to viral infection.
During viral infection, differential IFN signalling inputs may manifest as differences in the 

magnitude of induced ISGs (a), kinetics of ISG transcription and degradation (b) or 

composition of ISGs expressed in the transcriptional profile (c). These variations, or a 

combination thereof, appear to play a significant role in cell-, virus- and species-specific 

antiviral responses.
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Fig. 4. Examples of RNA viral antagonism upstream of IFN induction.
After entering a cell, viral genetic material may be recognized by one or more of the host’s 

PRRs. These include RLRs, Toll-like receptors (TLRs) and cGAS. Recognition by one or 

more of these PRRs triggers a signalling cascade that culminates in the transcription and 

subsequent generation of IFNs. Different viruses have evolved to antagonize these pathways 

at virtually all stages, indicated by blunt end arrows. Solid arrows indicate direct pathway 

connections. Dashed arrows indicate signal cascade components present in vivo but not 

shown for space concerns. Asterisks indicate viral antagonism by an unknown mechanism. 
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See Table 1 for specific mechanisms at each stage. LGP2, laboratory of genetics and 

physiology protein 2; MDA-5, melanoma differentiation-associated protein 5; TRIF, TIR 

domain-containing adapter-inducing IFN-β; IKK-ε, IκB kinase-ε; HAV, hepatitis A virus; 

hCoV-NL63, human coronavirus NL63; PEDV, porcine epidemic diarrhea virus; GTOV, 

Guanarito virus; JUNV, Junin virus; MAVC, Machupo virus; SABV, Sabia virus; BDV, 

Borna disease virus; SFTSV, severe fever with thrombocytopenia syndrome virus; JEV, 

Japanese encephalitis virus; ANDV, Andes virus; SNV, Sin Nombre virus.
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Fig. 5. Examples of RNA viral antagonism downstream of IFN induction.
Following IFN binding to their receptor in an autocrine or paracrine manner, a signalling 

cascade takes place that results in the transcription and expression of ISGs. These ISGs are 

critical for establishing an antiviral state in the host and bystander cells. Different viruses 

have evolved to antagonize this pathway at virtually all stages, indicated by blunt end 

arrows. Solid arrows indicate direct pathway connections. The asterisk indicates viral 

antagonism by an unknown mechanism. See Table 2 for specific mechanisms at each stage.
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