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Abstract

Purpose: Automated synthetic CT (sCT) generation based on magnetic resonance imaging 

(MRI) images would allow for MRI-only based treatment planning in radiation therapy, 

eliminating the need for CT simulation and simplifying the patient treatment workflow. In this 

work, the authors propose a novel method for generation of sCT based on dense cycle-consistent 

generative adversarial networks (cycle GAN), a deep-learning based model that trains two 

transformation mappings (MRI to CT and CT to MRI) simultaneously.

Methods and materials: The cycle GAN-based model was developed to generate sCT images 

in a patch-based framework. Cycle GAN was applied to this problem because it includes an 

inverse transformation from CT to MRI, which helps constrain the model to learn a one-to-one 

mapping. Dense block-based networks were used to construct generator of cycle GAN. The 

network weights and variables were optimized via a gradient difference loss and a novel distance 

loss metric between sCT and original CT.

Results: Leave-one-out cross-validation was performed to validate the proposed model. The 

mean absolute error (MAE), peak signal-to-noise ratio (PSNR) and normalized cross correlation 

(NCC) indexes were used to quantify the differences between the sCT and original planning CT 

images. For the proposed method, the mean MAE between sCT and CT were 55.7 Hounsfield 

units (HU) for 24 brain cancer patients and 50.8 HU for 20 prostate cancer patients. The mean 

PSNR and NCC were 26.6 dB and 0.963 in the brain cases, and 24.5 dB and 0.929 in the pelvis.

Conclusion: We developed and validated a novel learning-based approach to generate CT 

images from routine MRIs based on dense cycle GAN model to effectively capture the relationship 

between the CT and MRIs. The proposed method can generate robust, high-quality sCT in 

minutes. The proposed method offers strong potential for supporting near real-time MRI-only 

treatment planning in the brain and pelvis.
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1. INTRODUCTION

Magnetic resonance imaging (MRI) has superior soft tissue contrast over computed 

tomography (CT), allowing for improved organ-at-risk segmentation and target delineation 

for radiation therapy treatment planning.1–3 Since dose calculation algorithms rely on 

electron density maps generated from CT images for calculating dose, MRIs are typically 

registered to CT images and used alongside the CT image for treatment planning.4,5 

However, the CT/MRI registration process has inherent errors, for example, a geometrical 

uncertainty of approximately 2 mm is present in cranial MRI.6–8 A potential treatment 

planning process with MRI as a sole imaging modality could eliminate systematic CT/MRI 

co-registration errors, reduce medical cost, minimize patient radiation exposure, and 

streamline clinical workflow.2,9 However, the main challenge in substituting CT with MRI is 

that MRI cannot provide the key electron density information that is needed for accurate 

dose calculation. Additionally, daily patient setup for radiotherapy is based on either cone-

beam CT or orthogonal planar x-ray images which are then compared to planning CTs or 

digitally reconstructed radiographs (DRRs) generated from the planning CT. This setup 

process inherently relies on a CT image taken at the beginning of the treatment planning 

process.

Since electron density information and CT images are vital to the treatment-planning 

workflow, methods which generate electron density and CT image from MRIs, called 

synthetic CT (sCT) generation, have been investigated recently.10–12. Atlas-based methods 

are typically used to generate sCT images. These rely on a deformable image registration to 

bring the sCT atlas to the current MRI.13–16 These methods are inherently limited by the 

performance of deformable registration. Another approach relies on specialized MRI 

sequences, such as ultra-short echo time (UTE) sequences, that allow for enhanced bony 

anatomy visualization.17,18 sCT images can then be generated via post-processing. However, 

the current image quality of UTE sequences is inadequate for accurate delineation of blood 

vessels from the bone.19,20 Moreover, the use of non-standard MRI sequences may introduce 

additional scanning time to the existing MRI scanning workflow and may increase the 

patient discomfort, leading to motion artifacts.

With the development of machine learning in the medical imaging field, more sophisticated 

methods for sCT generation have been proposed. The machine learning-based model relies 

on learning the relationship between MRI and CT images for several representative sets of 

CT/MRI pairs, called a training set. After training, sCT images can be generated by feeding 

new MRIs into the model. Such sCT images will share the same structural information with 

MRI, but the intensity values will be scaled to typical Hounsfield units (HU) seen on a CT 

scan. The electron density can then be derived from this sCT image. Based on different 

training models, these methods can be broadly classified into three categories: dictionary 
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learning-based methods,21–24 random forest-based methods,25–29 and deep learning-based 

methods.30–37 Dictionary learning-based methods rely on the similarity between different 

MRIs. When a new patient’s MRI is put into the model, the similarity between the new MRI 

and training MRIs in the dictionary is calculated. An sCT image is then synthesized from a 

linear combination of the most similar paired CT images, with the weights calculated based 

on the MRI similarity. These methods are sensitive to MRI intensities which can vary as a 

function of scanning parameters for a given tissue. They also rely on a large base dataset, 

and the accuracy of the method is inherently dependent on the representing accuracy of an 

overcomplete dictionary. Random forest-based methods train a set of decision trees. Each 

decision tree learns the optimal way to separate a set of training paired MRI and CT patches 

into smaller and smaller subsets to predict the CT intensity. When a new MRI patch is put 

into the model, the sCT intensity is estimated as the combination of the predicted results of 

all decision trees. However, these methods can lead to ambiguous results when the decision 

trees do not learn a one-to-one mapping from the source image to the target image.

Since deep learning-based methods can provide a more complex non-linear mapping from 

input to output image through a multi-layer and fully trainable model, these methods are 

becoming popular for the task of image synthesis.30–37 In contrast with dictionary learning-

based and random forest-based methods, whose accuracy and robustness are sensitive to 

hand-crafted features extracted from MRI patches, deep learning-based methods have 

potential to learn which features are the best representation of the MRI patch. Li et al first 

applied a convolutional neural network (CNN), a deep learning-based method to generate 

PET attenuation correction map from the MRI of the same subject.30 Nie et al. proposed to 

train a patch-to-patch relationship from an MRI to a CT image by using 3D fully 

convolutional neural network (FCN), a variation of the conventional CNN.31 Different from 

patch-based deep learning, Han apply the FCN to learn a direct image-to-image mapping 

between MRIs and their corresponding CTs.32 A limitation of the CNN-based methods is 

that slight voxel-wise misalignment of MRI and CT images may lead to blurred synthesis.34 

Generative adversarial networks (GAN) have been used in the generation of sCT by 

introducing an additional discriminator to distinguish the sCT from real CT, improving the 

final sCT imaging qualities in comparison to the previously deep learning-based methods.35 

These models incorporate an adversarial loss term in addition to the conventional synthesis 

error, with the objective of producing more realistic CT data.33,35,36 GAN-based methods 

still require the training pairs of MRI and CT images to be perfectly registered, which can be 

difficult to carry out with the high levels of accuracy needed for image synthesis.34 If the 

registration has some local mismatch between the MRI and CT training data, i.e. soft tissue 

misalignment after bone-based rigid registration, GAN-based methods would produce a 

degenerative network, decreasing their accuracy. Wolterink et al. show that training with 

pairs of spatially aligned MRI and CT images of the same patients is not necessary for cycle 

GAN-based sCT generation method.34 However, due to computational limitations, the cycle 

GAN-based method images in a slice-by-slice fashion, i.e., the cycle GAN-based method is 

applied to 2D images. This approach is limited because it relies on a 2D model to generate 

3D images, leading to discontinuous output signals over a continuous input space. To solve 

this challenge, we propose a dense cycle GAN-based method to train patch-to-patch 

translation CNNs. In this framework, a CNN is trained to translate an MRI patch to an sCT 
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patch. We also train an additional CNN to translate the sCT patch back to the MRI patch. 

The difference between this reconstructed sCT image and the original CT image is added to 

help regularize the training.

The purpose of this work is to develop a deep learning-based method to generate patient-

specific sCT from routine anatomical MRI for MRI-only radiotherapy treatment planning. 

The method is applied to both the brain and pelvic regions. The contributions of the paper 

are as follows: (1) In order to cope with local mismatches between MRI and CT after rigid 

registration as well as to capture more useful information for MRI patch representation, a 

dense cycle GAN is applied. Unlike traditional cycle GAN, where the generator is composed 

of residual blocks, dense blocks are used to capture multi-scale information to solve the 

significant differences in image property between the MRI and CT modalities. (2) A novel 

distance loss function is proposed to optimize the dense cycle GAN to overcome the blur 

and misclassification issues that occur when applying more commonly used distance 

functions, such as mean absolute distance and mean squared distance.

The paper is organized as follows: We first provide an overview of the proposed deep 

learning-based sCT generation framework, followed by a detailed description of the 3D 

cycle GAN, dense block, and then loss function. We evaluated the method’s sCT synthesis 

accuracy via comparison to random forest-based,27, GAN-based,35 and 2D cycle GAN-

based34 synthesis methods. Finally, we discuss the limitations and future applications of the 

proposed method.

2. MATERIALS AND METHODS

2.A. Overview

The proposed sCT generation algorithm consists of a training stage and a synthesizing stage. 

For a given pair of MRI and CT images, the CT image is used as a deep learning-based 

target of the MRI. Intra-subject registration is performed to align each image pair. Because 

local mismatches between MRI and CT remain even after rigid registration and the images 

have fundamentally different properties, training an MRI-to-CT transformation model is 

difficult. To cope with this challenge, a novel dense cycle GAN is introduced to capture the 

relationship between CT to MRIs while supervising an inverse MRI-to-CT transformation 

model. A 3D image patch (with voxel size [64, 64, 64]) is input to the proposed model to 

contain more spatial information. Unlike residual blocks used in Wolterink’s cycle GAN 

architecture34 dense blocks38 are used to construct our proposed dense cycle GAN (DCG) 

architecture. Fig. 1 outlines the workflow schematic of our proposed method.

In the training stage, extracted patches of training MRI are fed into the generator (MRI-to-

CT) to get equal-sized synthetic CT, which is called the sCT. The sCT is then fed into 

another generator (CT-to-MRI), creating a synthetic MRI which we term the cycle MRI. 

Similarly, in order to enforce forward-backward consistency, extracted patches of training 

CT are fed into the two generators in the opposite order first to create a synthetic MRI and 

cycle CT. Then two discriminators are used to judge the realistic of synthetic and cycle 

images.
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Typically, the l2-norm or l1-norm distance, i.e., the mean absolute distance (MAD) or mean 

squared distance (MSD), are used as generator loss function between the synthetic image 

and the original image. However, the use of an MSD loss function in the network tends to 

produce images with blurry regions.39 In order to solve this problem, we introduce a lp-norm 

(p = 15) distance, termed mean p distance (MPD), to measure the distance between synthetic 

and original images. We also integrate an image gradient difference (GD) loss term into the 

loss function, with the aim of retaining the sharpness in the synthetic images.35 A weighted 

summation of these two metrics forms the compound loss function for the proposed method. 

The generator loss is computed by the combination of compound loss between synthetic and 

real images, called adversarial loss, and compound loss between cycle and real images, 

called cycle loss. The discriminator loss is computed by MAD between the discriminator 

results of input synthetic and real images. To update all the hidden layers’ kernels, the Adam 

gradient descent method was applied to minimize both generator loss and discriminator loss.

In synthesizing stage, the patches of the new MRI are fed into the MRI-to-CT generator to 

obtain the sCT. Then, the final sCT was obtained by patch fusion.

2.B. Image acquisition and pre-process

We retrospectively analyzed the MRI and CT data acquired during treatment planning for 24 

brain patients and 20 pelvis patients who received radiation therapy. For the brain images, 

standard T1-weighted MRI was captured using a GE MRI scanner with Brain Volume 

Imaging sequence (BRAVO) and 1.0×1.0×1.4 mm3 voxel size (TR/TE: 950/13 ms, flip 

angle: 90°) and CT was captured with a Siemens CT scanner with 1.0×1.0×1.0 mm3 voxel 

size with 120 kVp and 220 mAs. For the pelvis images, MRI was acquired using a Siemens 

standard T2-weighted MRI scanner with 3D T2-SPACE sequence and 1.0×1.0×2.0 mm3 

voxel size (TR/TE: 1000/123 ms, flip angle: 95°) and CT was captured with a Siemens CT 

scanner with 1.0×1.0×2.0mm3 voxel size with 120 kVp and 299 mAs. MRI data were first 

resampled to match the resolution of CT data. For each patient, all training MRI and CT 

images were first rigidly registered by an intra-subject registration using a commercial 

software Velocity AI 3.2.1 (Varian Medical Systems, Palo Alto, CA).

2.C. Dense cycle GAN

MRI and CT images may have some local mismatches after the above registration process. 

Inspired by recent cycle GAN study,34 we introduced a dense cycle GAN in our sCT 

generation algorithm because of its ability to mimic target data distribution by incorporating 

an inverse transformation that converts CT to MRI (CT-to-MRI transformation). Traditional 

GAN-based methods use loss functions that depend solely on the quality of the synthesized 

image. In the context of image synthesis, this may lead to CT images that look real but do 

not reflect patient anatomy. The proposed method employs a cycle GAN which eliminates 

this problem by incorporating an inverse transformation to enforce a one-to-one mapping.34 

The sCT is generated by a network that maps from a source domain (MRI) to target domain 

(CT) such that the distribution of sCT is indistinguishable from the CT image using an 

adversarial loss (called an MRI-to-CT generator). Then, we couple the mapping network 

with an inverse mapping network (CT-to-MRI generator), and introduce a cycle consistency 

loss such that the distribution of the cycle MRI is indistinguishable from the original MRI 

Lei et al. Page 5

Med Phys. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(and vice versa). By introducing MRI- and CT-discriminators that work in opposition to the 

generators, the whole network’s performance is enhanced through additional evaluations of 

real and synthetic CT and MRI. Typically, the generator’s training objective is to increase 

the judgement error of the discriminative network (i.e., “fool” the discriminator network by 

generating synthetic or cycle image that was very similar to the input training images). The 

discriminator’s training objective is to decrease the judge error of the discriminator network 

and encourage generator to produce synthetic images that share similar features with real 

images. Back-propagation is applied in both networks so that the generator performs better, 

while the discriminator becomes more skilled at determining whether an image is synthetic 

or real.

The major difficulty in modeling the MRI-to-CT transformation is the location, structure, 

and shape of the MRI and CT image can vary significantly among different patients. In order 

to accurately predict each voxel in the anatomic region (air, bone, and soft-tissue), inspired 

by densely connected CNN,38 we introduced several dense blocks to capture multi-scale 

information (including low-frequency and high-frequency) by extracting features from 

previous hidden layers and deeper hidden layers. As is shown in generator architecture of 

Fig. 1, after two down-sampling convolutional layers to reduce the feature map sizes, the 

feature map goes through 9 dense blocks, and then two deconvolutional layers and a tanh 

layer to perform the end-to-end mapping. The end-to-end mapping denotes the mapping 

which has equal size input and output. The tanh layer works as a nonlinear activation 

function and makes it easy for the model to generalize or adapt to a variety of data and to 

differentiate between outputs, such as determining whether a voxel on a boundary is bony 

tissue or air. The dense block is implemented by 5 convolution layers, a concatenation 

operator, and a convolutional layer to shorten the feature map size.

2.D. MPD loss function

During training, all the networks are trained simultaneously with discriminators trying to 

correctly differentiate between real and synthetic data, while generators are trying to 

generate synthetic images that are very similar to real images to confuse discriminators. 

Supposing we use the discriminators DMR and DCT to discriminate the real and synthetic 

MRI and CT image patch, the discriminators should be optimized subjected to:

DMR, DCT = arg min
DMR, DCT

MAD DMRI GCT‐MRI(ICT) , 0 + MAD DMRI IMRI , 1
+MAD DCT GMRI‐CT(IMR) , 0 + MAD DCT ICT , 1

(1)

where GCT-MR and GMR-CT denotes the generator trained from CT to MRI domain and from 

MRI to CT domain, respectively, 0 is a same-shape patch with all elements set to zero, 1 is a 

same-shape patch with all elements set to one. MAD(·) denotes the MAD calculating 

operator.

The loss function of each generator is composed of 2 losses: 1) the adversarial loss used for 

distinguishing real images from synthetic images; 2) the distance loss measured between 

real images and synthesis image.35 The accuracy of the generator directly depends on how 
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suitable the loss function is designed. Supposing we use the generator G to obtain a 

synthetic image G(X) = Z from original image X to target image Y. The generator G is 

optimized subjected to G = arg min
G

λadvLadv(Z) + λdistanceLdistance(Z, Y) . λadv and λdistance 

are balancing parameter. Normally, the adversarial loss function is defined as Ladv(Z) = 

MAD(D(Z),1) in cycle GAN-based method.40

For distance loss Ldistance(Z,Y), in order to not only solve the blur and misclassification 

issues mentioned previously, but also maintain the sharpness of synthetic images, we use a 

compound loss function composed of MPD and GD. This GD loss function minimizes the 

difference of the magnitude of the gradient between the synthetic image and the original 

planning CT. In this way, the sCT will try to keep zones with strong gradients, such as edges, 

effectively compensating for the distance loss term. The generators are optimized as follows:

GCT‐MRI, GMRI‐CT = arg min
GCT‐MRI, GMRI‐CT

λadvMAD DMRI GCT‐MRI(ICT) , 1 + λMPD
cycle GMRI‐CT GCT‐MRI(ICT) , ICT p

p

+λGDL
cycleGD GMRI‐CT GCT‐MRI(ICT) , ICT

+λMPD
fake GCT‐MRI(ICT), IMRI p

p + λGDL
fake GD GCT‐MRI(ICT), IMR

+λadvMAD DCT GMRI‐CT(IMR) , 1 + λMPD
cycle GCT‐MRI GMR‐CT(IMR) , IMR p

p

+λGDL
cycleGD GCT‐MRI GMRI‐CT(IMR) , IMRI

+λMPD
fake GMRI‐CT(IMRI), ICT p

p + λGDL
fake GD GMRI‐CT(IMRI), ICT

(2)

GD Z, Y = ∑
i, j, k

Zi, j, k − Zi − 1, j, k − Y i, j, k − Y i − 1, j, k 2
2 + Zi, j, k − Zi, j − 1, k − Y i, j, k − Y i, j − 1, k 2

2

+ Zi, j, k − Zi, j, k − 1 − Y i, j, k − Y i, j, k − 1 2
2

(3)
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where ‖ ⋅ ‖p
p denotes the lp-norm, and GD(·) denotes the gradient difference loss function.35 

λMPD
cycle, λGD

cycle, λMPD
fake , λGD

fake, λMPD
cycle, λGD

cycle, λMPD
fake , λGD

fake are regularization parameters for different 

regularization.

As is known that the lp-norm regularization has fewer solutions than l2-norm optimization, 

which means some over-smoothing results (i.e. blur region in MSE loss optimization) are 

reduced. Going the other way, we can also see that the optimization solution under lp-norm 

regularization has more solutions than l1-norm optimization. This means some 

misclassification situations (the solution on ±1) are minimized by averaging several 

solutions obtained by similar MRI/CT patches (the solution around ±1).

2.E. Validation and evaluations

We performed leave-one-out cross validation to evaluate the proposed method. We chose one 

of the patients from the patient dataset as the test, or new arrival patient. The proposed 

method was trained on the other patients, and the test patient was used to generate an sCT. 

This procedure was repeated on all patients’ datasets. These sCT images were then 

compared with the original planning CT images, which served as ground truth for validation. 

The mean absolute error (MAE), peak signal-to-noise ratio (PSNR) and normalized cross 

correlation (NCC) indexes were used to quantify the absolute difference, relative difference, 

and image similarity within the body outline, respectively.

2.F. Comparison with existing methods

To demonstrate the advantages of the proposed method, we compare it to a random forest 

(RF)-based method previously published by our group.29 We also compare it to a GAN-

based method, a recent deep learning-based method proposed by Nie et al.,33 and a recent 

cycle GAN-based method.34 GAN-based methods incorporate an adversarial learning 

strategy into an end-to-end FCN to train nonlinear mapping from MRI patches to CT image 

patches. Considering the tradeoff between computational cost and spatial information, the 

patch size in the RF-based method was set to 15×15×15, the patch size in the GAN-based 

method was set to 32×32×32. All the comparing algorithms were performed using their 

optimal parameter settings. Paired two-tailed t-tests between the proposed method and 

comparison methods were performed to quantify the statistical difference between each of 

the evaluated metrics above. All the deep learning-based algorithms were implemented in 

Tensorflow with Adam optimizer, and were trained and tested on 2 NVIDIA Tesla V100 

with 32 GB of memory for each GPU. The RF-based method was implemented in python 

Scikit-learn toolbox and was trained and tested on Intel Xeon(R) CPU E5–2623 v3 @ 

3.00GHz × 8.

3. RESULTS

3.A. Comparison between the dense block and the residual block

In order to test the influence of the dense block, we compared sCT results generated by a 3D 

cycle GAN-based method with 9 residual blocks method as recommended in34 to the 

proposed method, in which 9 dense blocks are used. Fig. 2 shows axial views of MRI (a1-
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f1), corresponding CT (a2-f2), sCT (a3-f3) images generated by cycle GAN with 9 residual 

blocks, and sCT images generated by the proposed method. The inserts (b1-b4), (d1-d4), and 

(f1-f4) show zoomed-in views of the region of interests (ROIs) outlined in inserts (a1-a4). 

(c1-c4), and (e1-e4), respectively. These ROIs are highlighted because they contain large 

anatomic variations between air, soft tissue, and bone, and because there are some local 

mismatches between MRI and CT images within these ROIs. The cycle GAN with 9 residual 

blocks method captures the gross anatomy and preserves the structural details in soft tissue. 

However, it distorts structural details in regions with large anatomical variation, especially in 

the ROIs marked by the highlighted rectangles in Fig. 2 (a3, c3, e3). By introducing dense 

blocks, which combine both structural and textural information, the proposed method 

improves the estimation of sCT intensity and better preserves the tissue structural details. 

The zoomed-in views in Fig. 2 (b4, d4) demonstrate the superior accuracy of the proposed 

method with less bias around bony anatomy. The zoomed-in views in insert (f4) demonstrate 

the superior accuracy of the proposed method with less bias around soft tissue anatomy in 

nasal cavity, further shown by the line profiles in Fig. 3. It is important to note that bony 

anatomy has a larger effect on radiation dose calculations than other tissue types, so accurate 

bone intensity estimation in sCT images can have significant clinical impact.

3.B. Comparison of the loss function

MPD was added to the compound loss function Eq. (2) to deal with blur and 

misclassification issues. We demonstrate the benefit of incorporating this loss function into 

the proposed method by comparing with networks optimized using traditional loss functions 

such as MAD and MSD. Fig. 5 and 6 depict the brain and pelvis sCT images generated by 

applying MAD, MSD and the proposed MPD loss functions.

Fig. 5 shows axial views of brain MRI (a1), corresponding CT image (a2), and sCT (a3-a5) 

images generated by using MAD, MSD and MPD loss functions, respectively. The insets 

(b1-b5) show zoomed-in views of the ROIs outlined in insets (a1-a5). The ROI as shown in 

Fig. 4 (b1) was chosen at the site of rapid anatomic changes from soft tissue to air and then 

to the bone. Thus, the ROIs are challenging for sCT generation. By using the MAD loss 

function, some air voxels in the sCT image (b3) were misclassified as soft tissue voxels, 

some bone voxels were misclassified as soft tissue voxels. With the MSD loss function, 

some regions within the ROI in the sCT image (b4) were blurry and smooth. In contrast, the 

sCT image generated by the MPD loss function has more definitive tissue boundaries. The 

inset (c1) shows the line profile corresponding to the red lines in the CT images. As shown 

in (c1), the generated sCT intensities using MPD loss function outperform the intensities 

estimated by using other comparing loss functions.

Fig. 5 depicts axial views of pelvis MRI (a1), corresponding CT image (a2), and sCT (a3-a5) 

images generated by using MAD, MSD and MPD loss functions, respectively. The insets 

(b1-b5) show zoomed-in views of the ROIs outlined in insets (a1-a5), where bony structure 

varies in CT and MRIs. For sCT images generated by using MAD loss function (b3), the soft 

tissue voxels were misclassified as air as marked by yellow arrows. In inset (b4), the sCT 

image within the ROI was smooth and the bone intensity appears to lower as compared to 

the original CT. In contrast, the sCT generation based on MPD loss function (b5) 

Lei et al. Page 9

Med Phys. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



outperforms the results from MAD (b3) and MSD (b4) by more accurately predicting bony 

intensities. Inset (c1) shows the line profile drawn on each CT image. The MPD-generated 

sCT nearly reflects the original CT along the entire profile, while the other two methods 

produce more intensity errors.

We also perform numerical comparisons of sCT images generated by using MAD, MSD, 

and the proposed MPD on both sites. The quantitative results are listed in Table 1, indicating 

that the proposed MPD significantly outperforms other comparing loss functions on MAE 

metric. Specifically, our MPD gives an average MAE of 57.5 and 49.4 HU on the brain and 

pelvic site, which are smaller than the MAE obtained by MAD and MSD loss functions.

3.C. Comparison with state-of-art methods

Fig. 6–8 show the axial, sagittal, and coronal views of an exemplary patient for comparing 

different methods of generating sCT images. These specific slices were selected because 

they represent some of the most challenging sites of accurate sCT generation in the brain.

Fig.6 shows the axial plane containing the mandible, which can have large geometric 

variation and HU variation between patients. Inset (a1) shows an original CT image in the 

axial plane, (b1) shows the highlighted region in greater detail CT image, (c1) is the 

corresponding MRI, and (d1) shows the highlighted region of the MRI in greater detail. 

Insets (a2-a5) are sCT images generated by RF-, GAN-, and cycle GAN-based methods, and 

the proposed method, respectively, (b2-b5) show the highlighted ROIs in greater detail. 

Insets (c2-c5) are difference images between original CT images and sCT images, and (d2-

d5) show the highlighted ROIs in greater detail. This specific region is challenging for 

generation of accurate sCT images owing to the local misalignment between MRI and CT 

images. In addition, many patients have dental fillings which create artifacts in the training 

CT images. The presence of image artifacts will degenerate sCT estimation performance in 

this region. As is shown in inset (b3-b5), the image quality of the sCT generated by our 

method is better than the other techniques in terms of fine structural details and contrast. 

Specifically, while the RF-based method (b3) has good contrast between the teeth and the 

surrounding soft tissue, it fails to predict the fine structures within the teeth. The GAN-based 

method (b4) has limited prediction capability in dental regions. The cycle GAN-based 

method underestimates the dental intensities. The insets in row (d) show that within the ROI, 

the proposed method generates the most accurate sCT image, both in terms of HU number 

and in structural shape. For further evaluation, the line profiles corresponding to the red lines 

drawn on insets (a1)-(a5) are shown in inset (e1). Although no methods perfectly match the 

original CT, the proposed method most closely reflects the shape and magnitude of the 

original CT.

Fig. 7 shows a sagittal view of the same patient shown in Fig. 6, containing various complex 

head and neck structures of the nasopharynx and oropharynx. The layout of Fig. 8 is the 

same as Fig. 6, with the first row showing CT or sCT images, the second row showing their 

corresponding ROIs, the third row showing the MRI and error images, and the fourth row 

showing their ROIs. Finally, the line profile corresponding to the red line on the CT or sCT 

images is shown in (e1). As is shown by the insets (b2-b5), the zoomed-in sCT image 

generated by RF-based method has some noisy regions. Fig. 8 shows a coronal view of the 
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same patient shown in Fig. 6. The sCT images generated by GAN-, and cycle GAN-based 

method is closer to the original CT image, but still are blurry. The image quality of the sCT 

generated by the proposed method is superior to the other techniques in terms of fine 

structural details and contrast.

Fig. 9 shows a comparison between the proposed method with the RF-based, GAN-based, 

and cycle GAN-based methods in the pelvis. Inserts (a1-b1) show MRIs shown in axial and 

coronal planes. Inserts (a2-b2) show the corresponding CT image. Inserts (a3-b3), (a4-b4), 

and (a5-b5) show the generated sCT images of RF-based, GAN-based, and cycle GAN-

based methods, and the proposed method, respectively. As can be seen from this figure, the 

proposed method shows sharper tissue boundaries than the comparing methods. In addition, 

the bone shape is closest to the original CT image.

We also conduct a numerical comparison of sCT image generated by all methods described 

above for each brain and pelvis case. The quantitative results are listed in Table 2, indicating 

that the proposed method outperforms the other methods. Specifically, our method gives an 

average MAE of 55.7 and 50.8 HU on the brain and pelvic site, which is lower than the 

average MAE of 69.8 and 69.7 HU, 66.9 and 74.7 HU, and 59.0 and 65.4 HU obtained by 

RF-based method, GAN-based method, and cycle GAN-based method, respectively. We 

further performed two-tail paired t-test to validate whether the improvement of our proposed 

method compared to the previous methods is significant or not. The experimental results in 

Table 3 show the statistically significant improvement (p-value <0.05).

We also used the other 10 brain and 10 pelvic data as independent testing data to evaluate 

the performance. The training data for the 10 brain MRIs was the previous 24 brain patient 

images. The training data for the 10 pelvic MRIs was the previous 20 pelvic MRIs. The 

MAE, PSNR, and NCC of our proposed method on the additional 10 brain images were 

57.7±8.4 HU, 27.00±2.77 dB, and 0.963±0.007, respectively. The MAE, PSRN, and NCC of 

our proposed method on the additional 10 pelvic images were 42.3±8.4 HU, 23.89±2.01 dB, 

and 0.930±0.026, respectively. These metrics demonstrate the consistent performance on 

other data. For all test data, we also evaluated the Dice similarity coefficient (DSC) for air 

and bone region. The air and bone regions were defined within body outline and were 

dictated by CT HU values: [−∞, −400) corresponds to air and [300, +∞] is bone. The DSC 

of air region was 0.90±0.12 for brain site and 0.75±0.06 for pelvic site, respectively. The 

DSC of bony structure was 0.83±0.06 for brain site and 0.81±0.05 for pelvic site, 

respectively.

We evaluated the surface distance of body outline and bone for all test brain and pelvic data. 

For body outline, we first used threshold −500 HU to get the binary mask of CT and sCT 

images, and then we used dilate, fill holes and erode operation to get the CT and sCT body 

outlines. For bony structure, we regarded intensities of CT and sCT which are larger than 

300 as bone intensities. For body outline, the 95% Hausdoff distance, mean surface distance 

and residual mean-square error were 3.55±1.38 mm, 0.28±0.07 mm and 1.71±0.93 mm for 

brain site and were 5.64±3.92 mm, 0.72±0.37 mm and 1.78±1.36 mm for pelvic site, 

respectively. For bony structure, the 95% Hausdoff distance, mean surface distance and 

residual mean-square error were 2.43±1.69 mm, 0.25±0.11 mm and 1.35±0.65 mm for brain 
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site and were 5.74±4.35 mm, 0.74±0.42 mm and 2.65±1.81 mm for pelvic site, respectively. 

The mainly impact of local misalignment on accuracy of sCT is it enlarge the MAE around 

bone region. We evaluated the MAE within intersection set of sCT and CT bone region, and 

the union set of sCT and CT bone region. It is shown that the MAE within intersection set of 

sCT and CT bone region was 97.1±38.3 HU for brain site and 85.6±36.8 HU for pelvic site. 

However, the MAE within union set of sCT and CT bone region reached 259.9±68.7 HU for 

brain site and 268.1±73.2 HU for pelvic site. This means even if our sCT bone intensity can 

reach the similar level with CT bone intensity, the misregistration can enhance the MAE.

4. DISCUSSION

The proposed dense cycle GAN-based method is novel in two aspects. First and foremost, 

several dense blocks are engaged in constructing the network architecture of the generator of 

cycle GAN. Training the mapping between two different image modalities relies on the deep 

feature’s capability to not only capture the structural information but also to capture the 

textural information. The more informative and multi-scale features the generator acquires, 

the better one-to-one mapping the cycle GAN-based model learns. This significantly 

enhances the proposed method’s ability to generate distinctive tissue boundaries when local 

mismatches and misalignment occur. Second, MAD loss functions have the potential to 

misclassify image tissues, prediction bone as air or vice versa. This is especially problematic 

in the task of MRI-only based radiation treatment planning because local dose calculation is 

sensitive at tissue boundaries.41 An MPD loss function is used to overcome the blur and 

misclassification issues that occur when using traditional distance loss functions.

The whole image is first divided into multiple small patches, each of which has overlap with 

neighboring patches. Most of the patch pairs between MRI and CT match very well. 

Moreover, any mismatched pairs are not likely to be in the similar anatomic regions from 

patient to patient, meaning that each erroneous contribution can be effectively averaged out. 

Additionally, the dense blocks implemented by the proposed method can capture both 

structural information and textural information, which more tightly enforces the network to 

learn a one-to-one mapping.

Traditional cycle GAN methods use residual blocks to capture image features.42 A residual 

block is a fundamental network block that merges feature maps by adding previous layers to 

future layers. Incorporating these additive features forces the network to learn the residuals, 

i.e., the difference between previous convolutional layers and the current one. This approach 

can be easily applied for the synthesis of images between similar modalities, such as image 

quality enhancement for low-dose CT,43 and image quality improvement for cone beam CT.
44 In contrast, dense block concatenate outputs from the previous layers instead of using the 

summation, connecting each layer to every other layer in a feed-forward fashion.38 The 

dense block approach has several compelling advantages: they alleviate the vanishing-

gradient problem, strengthen feature propagation, encourage feature reuse, and substantially 

reduce the number of parameters.38 In our work, the dense blocks aim to combine the low 

frequency and high frequency information together to well represent the image patch and 

then map them to produce a synthetic image patch. The low frequency data, which often 

contains textural information, is obtained from previous convolutional layers. The high 
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frequency data, which often contains structural information, is obtained from the current 

layer. Since the shape of the source image (MRI) varies significantly among different 

patients, the dense-block, which captures multi-scale information (low frequency and high 

frequency) better captures the relationship between MRI and CT images, and thus increases 

the accuracy of the generator. Even if there are some mismatches in pair-wise MRI and CT 

patches, the one-to-one mapping can avoid most potential bias. However, even though these 

effects will not affect image quality, they will affect our MAE, PSNR and NCC accuracy. 

Large mismatches may happen around the rectum and bladder due to different filling 

between CT and MR, which may confuse the training model. For clinical use, it is essential 

to establish the training database with standard clinical workflow to acquire CT and MR on 

the same day.

The MRI imaging acquisition parameters as well as magnetic field inhomogeneity and 

patient-specific distortion may influence the performance of the proposed method, with 

implications on dosimetry calculations and patient setup. In our study, all MRIs were pre-

processed using an N3 Algorithm45 to correct bias field before training or synthesis. The 

intensity normalization for these MRIs was also needed to bring the intensities to a common 

scale across patients.46 Other novel methods such as a real-time image distortion correction 

method47 have been reported to have excellent performance, and combining these 

preprocessing methods with our method could increase the accuracy of the sCTs. Due to the 

high volume of air, large motion, and distortion, the lung with poor resolution and low 

intensity in MRI is a very unique and difficult site for our MRI-based radiotherapy. Future 

research will include applying the proposed method to the lung.

In this study, we demonstrated the accuracy of sCT in HU numbers because dose calculation 

in MRI-only radiation therapy treatment planning relies solely on HU.41 In MRIs, bony 

tissues pose a significant susceptibility artifact, which can lead to an ambiguous boundary 

with air, introducing shifting errors in sCT images. Such an effect on dose calculation 

accuracy especially for surrounding tissues needs further evaluation. A combination of T1 

MRI with ultrashort echo time (UTE) sequence provides much better signal for bones, 

which would help differentiate the bone-air boundary in sCT.

Our previous studies show that even an RF-based sCT, which has inferior image quality to 

our results, has very good dose calculation accuracy (<1% error) for brain stereotactic 

radiosurgery and pelvis radiation therapy for photon.41,48 It is because that photon dose 

calculation are quite forgiving to pixel intensity errors, and dose calculation errors tend to be 

averaged and cancelled each other in a rapid arc plan. However, proton plans may benefit 

more from image quality improvement since the calculation on proton energy deposition is 

more sensitive to HU errors, especially the pixels along the beam path of limited beam 

angles. Moreover, better image quality of our results would still help patient setup in 

providing better DRR images. In the future, we plan to conduct studies to investigate the 

effects that various MRI artifacts and sCT errors will have on both photon and proton dose 

calculation and patient setup during MRI-only based radiotherapy.

Different scanners may have different intensity range and image quality. It is unclear how it 

would affect the results if the training datasets from one scanner and testing datasets from 
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another one. Future study would involve a comprehensive evaluation with a larger cohort of 

patients acquired on different scanners with different protocols. These studies are necessary 

for testing the clinical utility of the proposed method.

As an emerging field in radiation therapy, currently there is no task group report or 

consensus of recommendation on quality assurance/commissioning on synthetic CT. 

However, we think it reasonable to refer to the current guidance of CT simulator QA (TG 

66) and treatment planning system QA (TG 53) for both nondosimetric and dosimetric 

accuracy.49,50 For machine learning-based method, special attention should be given to 

patient specific error because training datasets would not include all possible features and 

may produce unpredictable results when untrained features are presented in MR images. 

Possible solutions can be a CBCT scan as an independent verification.11,51

Recently, Han proposed a deep CNN method for sCT synthesis.32 The MAE was 84.8±17.3 

HU for all test brain data. Nie et al. reported that the MAE was 92.5±13.9 HU for the brain 

data by using GAN-based method.35 Emami et al. also used GAN for brain cancer patients’ 

sCT synthesis.52 The mean MAE between sCT and CT were 89.3 HU across the entire field 

of view. Chen et al. applied U-net to generate sCT images for MRI-only prostate intensity-

modulated radiation therapy treatment planning.53 They reported the MAE value within 

body outline was 29.96±4.87 HU. The MAE from our proposed method was 54.2 HU for the 

brain data. Compared with the deep learning-based method proposed by Han, Emami et al. 
and Nie et al., our method obtained a much smaller MAE for the brain sites, which further 

demonstrates the performance of our sCT synthesis method. In comparison with state-of-

the-art methods in the brain and pelvis, our method significantly outperforms the 

comparison methods. As is shown in Fig. 6–9, the sCT images generated by using RF-based 

method are often noisy. This may be caused by the RF-based method training a collection of 

weak learners by using handcrafted texture features.29 However, structural features are also 

needed to train a one-to-one mapping from MRI to CT. The sCT image generated by using 

GAN-based method has some misclassification of tissue and some blurry estimation regions. 

This is because the GAN-based method uses deep features only from MRI and loses the 

information of CT during training.35 In addition, the 3D patch size of GAN-based method is 

limited to 32×32×32 due to memory limitations, possibly contributing to a loss of global 

information, and making the GAN-based method more susceptible to local mismatches 

between the MRI and CT. The cycle GAN-based method34 outperforms RF- and GAN-

based methods by adding an additional generator. However, its performance may be limited 

by two reasons. First, its network consists of several residual blocks. The residual blocks 

focus on the difference between two images. If the MRI and CT images are accurately 

registered, and the ROIs of these two images are well registered, the residual blocks can 

learn the accurate mapping from MRI to CT within these ROIs. But if the two images have 

some local mismatches within these ROIs, the difference or residual between MRI and CT 

images modality will not only contain the voxel value difference between the two image 

modalities, but also contain the difference caused by the mismatch. This ambiguous 

difference will disturb the learning process for sCT generation, as is shown in the 

comparison of sCT images in Fig. 2. Second, cycle GAN-based methods used MSE loss as 

distance loss function to optimize the training model. However, the MSE loss often leads to 

Lei et al. Page 14

Med Phys. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



blurring and over-smoothing as is shown in Fig. 4 and 5. Additionally, the cycle GAN-based 

method does not use the loss of GD, which can sharpen the tissue boundaries in the sCT.

One limitation of the proposed method is our MAE metric is affected by the misalignment 

between MRI and CT. Another limitation of this study is the small data set. However, rather 

than using whole image as training and testing data, we used 3D patch extracted by sliding 

with a window from MRI and CT images. By setting overlap between the two neighboring 

patches, for each patient’s image, we can get more than 6000 patches. Data augmentation 

such as image rotation, flipping, and as well as random elastic deformation were used to 

introduce more such training data diversity. Thus, although we trained on small data set, the 

diversity of training patches may be sufficient to train a robust sCT generation model.

Additionally, we did not use robust pre-processing methods, especially with regards to 

geometric artifact correction. However, the majority of the examples shown in this work are 

from the regions most affected by geometric artifacts, e.g., Fig. 2, 4, 6, 7. Wang et al. 
investigated the nature and magnitude of the subject-induced susceptibility effect on 

geometric distortions in clinical brain MRI, which are unneglectable, and showed the 

feasibility of in vivo quality control using field inhomogeneity mapping.54 Therefore, 

without correcting geometric distortion around the nasal cavity region, contour plots in the 

paper are less robust. Effectively correcting these artifacts with additional short-scan 

sequences, for example, field-map based correction,55 will be our future work.

Although we have tested our algorithm on 24 brain patients and 20 pelvis patients and added 

other 10 cases each from the brain and pelvis for separate testing. In the future, we plan to 

enroll more patients to further study the robustness of our algorithm. In addition, in this 

study we only used routine T1-weighted (brain) or T2-weighted (pelvis) MRIs to synthesize 

our sCTs. However, it is possible for our method to generate sCTs using other sequence-

based MRIs. In future studies, we plan to combine several types of MRIs based on widely-

used sequences into our training database to generate sCTs using multi-sequence MRIs.

5. CONCLUSIONS

We propose a novel deep learning-based approach to synthesize an sCT image from a 

routine MRI for potential MRI-based treatment planning in radiation therapy. The proposed 

method incorporates dense blocks into a cycle GAN-based framework using a novel MPD 

loss function. We demonstrated that the proposed method is capable of reliably generating a 

CT image from its MRI counterpart on brain and pelvis image data. This sCT synthesis 

technique could be a useful tool for MRI-based radiation treatment planning.
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Fig.1. 
Schematic flow chart of the proposed algorithm for MRI-based sCT generation. The upper 

part of this figure shows the training stage of our proposed method, which consists of 4 

generators and 2 discriminators. The middle part (yellow) shows the synthesizing stage. In 

synthesizing stage, a new MRI is fed into the well-trained DCG model to get an sCT image. 

The lower part shows the detailed structures for each network.
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Fig.2. 
A comparison between the cycle GAN with residual blocks and the proposed method. (a1, 

c1, e1) are MRI shown in axial planes, the zoomed in insets below each image (b1, d1, f1) 

highlight regions of interest. (a2, c2, e2) are corresponding original CT images, and (b2, d2, 

f2) show the highlighted regions in greater detail. (a3, c3, e3) are sCT images generated by 

cycle GAN with 9 residual blocks method. (b3, d3, f3) show the highlighted region in 

greater detail. (a4, c4, e4) are sCT images generated by the proposed method. (b4, d4, f4) 

show the highlighted region in greater detail. The red lines on each image correspond to the 

line profiles shown in Fig. 3. The display windows are [0, 500] for MRI and [−1000 1000] 

for CT images.
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Fig.3. 
Line profile comparison between cycle-GAN with residual blocks and the proposed method. 

(a) and (b) are plot profiles of red lines in Fig. 4 (b2-b4) and (d2-d4).
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Fig.4. 
A comparison of different loss functions in brain images. (a1) is MRI shown in axial plane, 

(b1) shows the highlighted region in greater detail. (a2) is the corresponding original CT 

image, (b2) shows the highlighted region in greater detail. (a3-a5) are sCT images generated 

by using MAD, MSD, and MPD loss functions, respectively, and (b3-b5) show the 

highlighted region in greater detail. The line profile corresponding to the red line drawn on 

the CT images is shown in (c1). The display windows are [0, 500] for MRIs and [−1000 

1000] for CT images.
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Fig.5. 
A comparison of different loss functions for a pelvis case. (a1) is MRI shown in the axial 

plane and (b1) shows the highlighted region in greater detail. (a2) is the corresponding 

original CT image and (b2) shows the highlighted region in greater detail. (a3-a5) are sCT 

images generated by using MAD, MSD, and MPD loss functions, respectively, and (b3-b5) 

are their corresponding zoomed-in insets. (c1) shows the line profile drawn in red on each 

CT image. The display windows for (a1-b1) are [0, 500]. The display windows are [0, 500] 

for MRIs and [−500 500] for CT images.
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Fig.6. 
A comparison of different sCT generation methods in the brain in the axial plane. The first 

row shows the original CT (a1) and the sCT images produced by the RF-method (a2), the 

GAN method (a3), the cycle GAN method (a4), and the proposed method (a5). The second 

row (b1-b5) highlights the region of interest outlined by the green box on each 

corresponding CT. The corresponding MRI and ROI are shown in (c1) and (d1), 

respectively. Insets (c2-c5) show the error image, with the planning CT taken as the ground 

truth, for each sCT, and their ROIs are shown below (d2-d5). The line profile corresponding 

to the red line drawn on the CT images is plotted in (e1). The display windows are [0, 500] 

for MRIs and [−1000 1000] for CT images.
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Fig.7. 
A comparison of different sCT generation methods in the brain in the sagittal plane. The first 

row shows the original CT (a1) and the sCT images produced by the RF-method (a2), the 

GAN method (a3), the cycle GAN method (a4), and the proposed method (a5). The second 

row (b1-b5) highlights the region of interest outlined by the green box on each 

corresponding CT. The corresponding MRI and ROI are shown in (c1) and (d1), 

respectively. Insets (c2-c5) show the error image, with the planning CT taken as the ground 

truth, for each sCT, and their ROIs are shown below (d2-d5). The line profile corresponding 

to the red line drawn on the CT images is plotted in (e1). The display windows are [0, 500] 

for MRIs and [−1000 1000] for CT images.
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Fig.8. 
A comparison of different sCT generation methods in the brain in the coronal plane. The 

first row shows the original CT (a1) and the sCT images produced by the RF-method (a2), 

the GAN method (a3), the cycle GAN method (a4), and the proposed method (a5). The 

second row (b1-b5) highlights the region of interest outlined by the green box on each 

corresponding CT. The corresponding MRI and ROI are shown in (c1) and (d1), 

respectively. Insets (c2-c5) show the error image, with the planning CT taken as the ground 

truth, for each sCT, and their ROIs are shown below (d2-d5). The line profile corresponding 

to the red line drawn on the CT images is plotted in (e1). The display windows are [0, 500] 

for MRIs and [−1000 1000] for CT images.
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Fig.9. 
A comparison of different methods on pelvic site. (a1-b1) are MRIs shown in axial and 

coronal planes. (a2-b2) are corresponding CT image. (a3-b3) show the corresponding sCT 

images generated by RF-based method. (a4-b4) show the corresponding sCT images 

generated by GAN-based method. (a5-b5) show the corresponding sCT images generated by 

2D cycle GAN-based method. (a6-b6) show the corresponding sCT images generated by the 

proposed method. The display windows are [0, 500] for MRIs and [−1000 1000] for CT 

images.
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Table 1

Numerical results of using the three loss functions on brain and pelvic sCT images.

Loss function
Brain Pelvis

MAE (HU) PSNR (dB) NCC MAE (HU) PSNR (dB) NCC

MAD 59.3±4.7 25.05±1.13 0.959±0.005 55.1±7.8 24.31±1.32 0.919±0.014

MSD 64.8±5.0 24.77±1.17 0.946±0.005 65.0±8.1 24.34±1.33 0.899±0.015

MPD 57.5±4.6 25.79±1.11 0.965±0.05 49.4±7.4 24.49±1.31 0.926±0.013

P-value
MPD vs. MAD 0.048 0.633 0.812 0.05 0.243 0.713

P-value
MPD vs. MSD 0.036 0.338 0.766 <0.001 0.598 0.301
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Table 2

Numerical results of different methods on brain and pelvis sCT images.

Method
Brain Pelvis

MAE (HU) PSNR (dB) NCC MAE (HU) PSNR (dB) NCC

RF-based 69.8±15.2 24.41±1.71 0.955±0.002 69.7±19.7 24.25±2.20 0.893±0.026

GAN-based 66.9±15.6 25.10±2.02 0.937±0.021 74.7±20.0 22.08±2.7 0.877±0.053

2D Cycle GAN-based 59.0±11.9 25.75±1.81 0.953±0.009 65.4±18.6 23.45±2.97 0.903±0.037

The proposed 55.7±9.4 26.59±2.27 0.963±0.008 50.8±15.5 24.45±2.64 0.929±0.028
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Table 3

P-values by performing T-test between our proposed method and all the comparing methods for MAE, PSNR, 

and NCC on the brain and pelvic data.

Method
Brain Pelvis

MAE PSNR NCC MAE PSNR NCC

RF-based 0.008 <0.001 0.011 0.008 0.009 0.014

GAN-based 0.002 0.009 <0.001 <0.001 0.002 0.002

2D Cycle GAN-based 0.009 0.011 0.001 0.002 0.005 0.007
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