
Ultra-low-dose PET reconstruction using generative adversarial 
network with feature matching and task-specific perceptual loss

Jiahong Ouyang,
Department of Radiology, Stanford University, Stanford, CA 94305, USA

Kevin T. Chen,
Department of Radiology, Stanford University, Stanford, CA 94305, USA

Enhao Gong,
Subtle Medical, Menlo Park, CA 94025, USA

John Pauly,
Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA

Greg Zaharchuka)

Department of Radiology, Stanford University, Stanford, CA 94305, USA, Subtle Medical, Menlo 
Park, CA 94025, USA

Abstract

Purpose: Our goal was to use a generative adversarial network (GAN) with feature matching and 

task-specific perceptual loss to synthesize standard-dose amyloid Positron emission tomography 

(PET) images of high quality and including accurate pathological features from ultra-low-dose 

PET images only.

Methods: Forty PET datasets from 39 participants were acquired with a simultaneous PET/MRI 

scanner following injection of 330 ± 30 MBq of the amyloid radiotracer 18F-florbetaben. The raw 

list-mode PET data were reconstructed as the standard-dose ground truth and were randomly 

under-sampled by a factor of 100 to reconstruct 1% low-dose PET scans. A 2D encoder-decoder 

network was implemented as the generator to synthesize a standard-dose image and a 

discriminator was used to evaluate them. The two networks contested with each other to achieve 

high-visual quality PET from the ultra-low-dose PET. Multi-slice inputs were used to reduce noise 

by providing the network with 2.5D information. Feature matching was applied to reduce 

hallucinated structures. Task-specific perceptual loss was designed to maintain the correct 

pathological features. The image quality was evaluated by peak signal-to-noise ratio (PSNR), 

structural similarity (SSIM), and root mean square error (RMSE) metrics with and without each of 

a) Author to whom correspondence should be addressed Electronic gregz@stanford.edu. . 

CONFLICT OF INTEREST
The authors declare that there are no conflicts of interest related to this article.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Supinfo. Analysis of supplementary figures and tables. Contribution of each component, weight selection for L1 loss, inter-reader 
agreement.

HHS Public Access
Author manuscript
Med Phys. Author manuscript; available in PMC 2020 August 01.

Published in final edited form as:
Med Phys. 2019 August ; 46(8): 3555–3564. doi:10.1002/mp.13626.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



these modules. Two expert radiologists were asked to score image quality on a 5-point scale and 

identified the amyloid status (positive or negative).

Results: With only low-dose PET as input, the proposed method significantly outperformed 

Chen et al.’s method (Chen et al. Radiology. 2018;290:649–656) (which shows the best 

performance in this task) with the same input (PET-only model) by 1.87 dB in PSNR, 2.04% in 

SSIM, and 24.75% in RMSE. It also achieved comparable results to Chen et al.’s method which 

used additional magnetic resonance imaging (MRI) inputs (PET-MR model). Experts’ reading 

results showed that the proposed method could achieve better overall image quality and maintain 

better pathological features indicating amyloid status than both PET-only and PET-MR models 

proposed by Chen et al.

Conclusion: Standard-dose amyloid PET images can be synthesized from ultra-low-dose images 

using GAN. Applying adversarial learning, feature matching, and task-specific perceptual loss are 

essential to ensure image quality and the preservation of pathological features.
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1. INTRODUCTION

Positron emission tomography (PET) is a widely used imaging technique in many clinical 

applications including tumor detection1 and neurological disorder diagnosis.2 In particular, 

amyloid PET plays a significant role in dementia diagnosis. The amyloid plaque buildup is 

an important biomarker for Alzheimer’s disease (AD) diagnosis, where AD patients usually 

show tracer retention in the cerebral cortex area (amyloid status positive) with amyloid 

imaging.3,4 The interpretability of the amyloid status from the PET scans largely decides the 

diagnosis accuracy.

To obtain high-quality images, the amount of injected radiotracer in current protocols leads 

to the risk of radiation exposure in scanned subjects. As AD trials begin to focus on younger, 

cognitively intact subjects, reduced dosage is especially desirable.5 Decreasing this injected 

dose can lower radiation exposure risk6 as well as imaging costs,7,8 though at the expense of 

lowering the PET image signal-to-noise ratio and structural similarity, further affecting the 

disease diagnosis. To solve this problem, an algorithm9 was proposed to synthesize high 

quality and accurate PET images either with only ultra-low-dose PET images as input (PET-

only model) or with additional magnetic resonance imaging (MRI) inputs (PET-MR model). 

A deep convolutional neural network with L1 loss was used for image reconstruction. To the 

best of our knowledge, this method holds the best performance on ultra-low-dose amyloid 

PET reconstruction. However, this method could only generate high-quality images with 

additional MRI contrast images while generating blurry images when only low-dose PET 

inputs were available. This limited the utility of the method to data acquired on PET/MRI 

machines only; however, most clinical trials still use PET/CT scanners where no 

simultaneous MRI data are available.
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In Chen et al.’s method8,9 where only an encoder-decoder structure was used for image 

synthesis, blurriness and missing details could be noticed in some key structures. It is 

inevitable as only an “unstructured” loss function is used, which means each output pixel is 

considered conditionally independent from others given the input image. To address the 

issues of blurriness and missing details, structured loss,10 which penalizes the joint 

configuration of the output, and adversarial learning enables the network proposed in this 

work to synthesize images with more realistic features.

Recently, generative adversarial networks (GANs) have attracted a lot of attention in 

computer vision applications, yielding superior performance on image translation and 

generation, and have been gaining more interest from the medical field. Introduced by Ian 

Goodfellow,11 Generative adversarial networks are generative models with the objective of 

learning the underlying distribution of training data in order to generate new realistic data 

samples. Pix2pix conditional GAN10 was proposed to solve supervised image-to-image 

translation problems. Medical image translation tasks have been explored on computed 

tomography (CT) to PET,12 CT to MRI, MRI to CT,13 and fourfold low-dose PET to 

standard-dose PET.14 Other work14,15 also incorporated non-adversarial losses from recent 

image style transfer techniques16 which transferred the style of an input image onto the 

output image, matching their textures and details in the process. Most of these applications 

were based on the pix2pix architecture. The performance on these tasks shows the potential 

of reconstructing images with detailed structures. In this study, we aimed to train a GAN-

based deep network to synthesize diagnostic-quality standard-dose-like images with ultra-

low-dose PET (99% dose reduction) as input.

2. MATERIALS AND METHODS

2.A. Data acquisition and preprocessing

Using a simultaneous time-of-flight enabled PET/MRI scanner (Signa, GE Healthcare, 

Waukesha, WI, USA), 40 sets of PET data were acquired from 39 participants at 90–110 

min after the injection of 330 ± 30 MBq of the amyloid radiotracer 18F-florbetaben. The 

raw list-mode PET data were reconstructed as the standard-dose ground truth and were 

randomly undersampled by a factor of 100 to reconstruct 1% low-dose PET scans. Positron 

emission tomography reconstruction was performed using the standard Ordered Subsets 

Expectation Maximization (OSEM) method with two iterations and 28 subsets, with 

correction for randoms17, scatter,18 dead time, and attenuation.19 Attenuation correction was 

performed using the vendor’s default algorithm, which uses an atlas created from 2-point 

Dixon MR imaging. Each PET volume consists of 89 2.78 mm-thick slices with 256 mm2 × 

256 mm2 1.17 mm2 × 1.17 mm2 pixels. Each volume was normalized by the mean value of 

the nonzero region. The top and bottom 20 slices, which usually did not cover the brain, 

were removed. To avoid overfitting, data augmentation of flipping along the X and Y axes 

was adopted. Fourfold validation was adopted to obtain synthesized results for each dataset. 

Figure 1 represents the pipeline for data preprocessing from the standard-dose raw list-mode 

PET to the paired standard-dose and low-dose images for training and testing. We used the 

FreeSurfer to obtain the segmentation masks of temporal cortex for the region-specific 

evaluation in experiments.
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2.B. Network structure and objective function

The architecture of the proposed method is shown in Fig. 2, consisting of the following three 

blocks: the generator G, the discriminator D, and a pretrained amyloid status classifier T. 

The input of the network is the stack of nine neighboring slices from the low-dose PET 

images, as using only a single low-dose image as input may not provide enough information 

to reconstruct some detailed structures and may also cause noise and generate hallucinated 

structures. As shown in Xu et al,8 using multi-slice inputs instead of a single-slice input can 

help to improve the image quality. The proposed method stacks neighboring slices together 

as different channels of the input to provide the network with 2.5D structural information 

between different slices, helping the network distinguish random noise from actual 

morphology of the subject.

The generator is an encoder-decoder U-Net structure, in which each stage consists of either 

convolution or de-convolution layers with kernel size of 4 × 4 and stride size of 2 × 2 

(Conv), a leaky rectified linear unit with leaky ratio of 0.2 (Leaky ReLU), and batch 

normalization (BN). Concatenate connections are linked between the corresponding layers 

of the encoder and decoder. SoftPlus activation function is used for the output layer to match 

the value range of the target image. The discriminator is a classifier that consists of four 

stages of Conv-Leaky ReLU-BN. The network is trained by the Adam optimizer with a 

learning rate of 0.0002 and a batch size of 4 over 100 epochs. The generator is trained twice 

while the discriminator is trained once to keep the balance between the two components. 

The pretrained T network is a classifier with ResNet-18 structure20 that is trained for the 

amyloid status regression on the standard-dose images with an early stop strategy. In training 

and testing of the GAN, T acts merely as a feature extractor without updating the 

parameters.

The optimization loss consists of three parts, namely: pixel-wise L1 loss, structured 

adversarial loss LcGAN by feature matching, and the task-specific perceptual loss Lperceptual 

including content loss Lcontent and style loss Lstyle. Thus, the objective function G* for 

training the generator can be written as:

G* = argminGmaxDLcGAN(G, D) + λ1L1(G)
+ λcLcontent(G, T) + λsLstyle(G, T)

1

The appropriate λ for each type of loss and each layer needs to be chosen. λgi, λcj, and λsj 

were selected to allow each layer in the discriminator or the task-specific network to have 

relatively the same scale of influence on the loss. Here, we chose λgi for i = 1,2,3 and λg4 = 
0.1, λcj = λsj = 1. The weight of each type of loss was chosen as: λ1 = 102, λc = 103, and λs 

= 104.

3. THEORY

3.A. Adversarial learning

As proposed in Isola et al,10 adversarial learning can be used for transferring images 

between two domains with the compensation of structured loss. Here, GAN is introduced to 
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transfer the input low-dose PET image x ~ plow–dose with a random noise vector z to the 

corresponding target standarddose PET y ~ pstandard–dose. Comparing with Chen et al.’s 

method, which only used a encoder-decoder structure as Generator G for image synthesis, a 

discriminator D is added to serve as a classifier to judge the output image from the generator 

of whether it is real or fake. To ensure that D also evaluates whether G synthesizes images 

with corresponding features from the input, the input low-dose images are stacked with the 

output or target to feed into D. To make the generator and the discriminator compete with 

each other and improve simultaneously, the adversarial loss representing the loss of the 

discriminator’s output can be written as:

LcGAN(G, D) = Ex, y[logD(x, y)] + Ex, z[log(1 − D(x, G(x, z))] 2

Here, G(x, z) represents the synthesized image from G, D(x, z) and D(x, G(x, z)) stand for 

the digit outputs of D for real and fake images, respectively, and E indicates the mathe-

matical expectation. The adversarial learning enables the network to synthesize images with 

more realistic features.

However, using only the adversarial loss cannot ensure that the synthesized image shares a 

similar global structure with the standard-dose image, thus a pixel-wise loss is included:

L1 = Ex, y, z y − G(x, z) 1 3

The final objective that the training process optimizes is the combination of the two losses:

G* = argminGmaxDLcGAN(G, D) + λ1L1(G) 4

One thing of note is that, in image-to-image conditional GAN, whether adding the noise 

vector z or not will not explicitly effect the results, because the input image itself already 

contains enough variance.10 Hence, we did not explicitly add z in our implementation.

3.B. Feature-matching technique

As stated in Salimans et al,21 GANs generally face the problem of instability in training, as 

simply providing the true or fake label by the discriminator is not enough for the generator 

to improve. In addition, hallucinated structures are produced during the oscillating training 

process.

Feature matching was introduced here to address the problems by specifying a new objective 

for the generator, requiring the generator to synthesize images that match the expected value 

of the features on the intermediate layers of the discriminator, instead of directly maximizing 

the output of the discriminator. The new adversarial loss can be written as:

Ouyang et al. Page 5

Med Phys. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LcGAN(G, D) = ∑
i

λdi
1

hiwici

Ey Di(y) − Ex, z Di(G(x, z)) 2
2

5

Di denotes the activation on an intermediate layer of the discriminator and hiwici represents 

the size of the layer. The feature matching adversarial loss is used as the substitute of the 

original adversarial loss in training the generator. The discriminator is trained in the usual 

way.

3.C. Task-specific perceptual loss

With the learning strategies above, the network can synthesize images of high-visual quality 

that are consistent with the realistic distribution of the standard-dose PET, but not 

necessarily with matched clinical interpretations, which in our case would be either a 

positive or negative amyloid uptake status.

Combining perceptual loss16 into the GAN architecture was shown to be useful in improving 

the synthesized image quality.14,15 However, the widely used pretrained VGG22 on 

ImageNet will not solve the problem as stated above, as it merely captures the features of 

natural images. Here, we first trained an extra network for amyloid status regression and 

then use the pretrained network to extract the task-specific perceptual loss.

3.C.1. Amyloid status classifier—In this work, we trained a network (T) to accurately 

predict the amyloid status as positive (1) or negative (0). For the ground-truth label, two 

expert radiologists were asked to read the amyloid status on the standard-dose PET images 

for all 40 datasets. For the cases that were ambiguous (disagreement between the two 

radiologists), an amyloid status value of 0.5 was assigned. Subsequently, the network was 

trained using a regression strategy, optimizing L2 loss, instead of the simple binary cross 

entropy, for classification. Data augmentation including flipping along the X and Y axes was 

implemented. The top and bottom 20 slices were also removed as they did not include the 

supratentorial brain, and thus contained less information on amyloid status.

For the task-specific network, we implemented ResNet-18 and trained it from scratch, as 

residual learning had been shown to have superior performance on computer vision tasks 

such as classification and detection.20 Fourfold cross-validation was also adopted here with 

the corresponding training and testing splits in GAN.

3.C.2. Extracting task-specific perceptual loss—Perceptual loss is usually 

combined with GAN for better image synthesis quality, to ensure that images are generated 

with the correct features.14,15

The perceptual loss has the following two parts: content loss and style loss. Similar to 

feature matching, we encourage the synthesized image to match the target image by forcing 
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them to have similar feature representations. The content loss can be represented by the 

Euclidean distance between feature representations:

Lcontent(G, T) = ∑
j

λc j
1

h jw jc j
T j(y) − T j(G(x, z)) 2

2 (6)

Tj(y) and Tj(G(x, z)) stand for the feature maps from the jth layer in the network T for the 

ground-truth image and the synthesized image, respectively. hjwjcj stands for its size. With 

the content loss, we encouraged the synthesized image G(x, z) to be perceptually similar on 

the pathological features to the ground-truth standard-dose image y, but did not force them 

to match exactly.

Aside from the content loss, differences in style (image textures and pathological patterns) 

would still have to be penalized. Here, the style loss is introduced. We first define the Gram 

matrix for jth layer in the network T; m and n denote the index for a specific channel in that 

layer:

Gram j(y)m, n = 1
h jw jc j

∑
h = 1

h j
∑

w = 1

w j
T j(y)h, w, mT j(y)h, w, n (7)

According to Johnson et al,16 the Gram matrix for a layer can be computed efficiently by 

reshaping Tj(y) into a matrix ψ of shape cj × hjwj:

Gram j(y) = 1
h jw jc j

ψψT 8

Then, the style loss can be represented by the difference between the Gram matrix of the 

synthesized image and the ground-truth image:

Lstyle(G, T) = ∑
j

λs j Gram j(y) − Gram j(G(x, z)) 2
2 9

We can interpret it this way: each layer of the network extracts different levels of features 

and each channel in a layer extracts different types of features from the same level. The 

Gram matrix learns the style of the image by projecting the feature maps from the same 

layer to a higher dimensional space, so that the stylistic features are preserved rather than the 

spatial structure. Then the style loss is computed by comparing the difference between the 

synthesized image and the ground-truth image in this space.

A pretrained VGG16 or VGG19 on ImageNet is usually used as the feature extractor for 

content loss and style loss. However, the pretrained model on a natural dataset like ImageNet 

with no prior knowledge on the task does not meet the requirement of extracting the right 
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pathological features. By using the pretrained amyloid status classifier, we get a task-specific 

feature extractor that specifically focuses on extracting amyloid status-related features.

3.D. Evaluation method

The synthesized image quality was assessed by three metrics, namely: peak signal-to-noise 

ratio (PSNR), structural similarity (SSIM), and root mean square error (RMSE). These 

metrics were also measured in the temporal cortex for region-specific analysis. Frequency-

based blurring measurement (FBM)23 and edge-based blurring measurement (EBM)24 were 

used to measure the sharpness of the image structures. The statistics for each slice (with the 

top and bottom 20 slices removed) were averaged to obtain the metrics for each dataset.

Readings of image quality and amyloid status diagnosis were included for clinical 

assessment. The low-dose PET, standard-dose PET, and the synthesized PET images of each 

subject were anonymized and read in random order by two certified clinicians (one 

radiologist and one nuclear medicine physician), who also performed the same readings on 

images generated from Chen et al.’s method9 to make the results comparable. The readers 

gave each volume a score from 1 to 5 for the image quality. We considered 1–3 as low 

quality and 4–5 as high quality. The readers also gave amyloid status diagnoses (positive or 

negative) for each volume. The consistency between their diagnosis on the standard-dose 

ground-truth and the synthesized images shows how well the method can maintain the 

pathological features. For both tasks, the readers were asked to read the standard-dose PET 

twice to determine intra-reader reproducibility.

4. RESULTS

In the experiments, we took Chen et al.’s 2D U-Net PET-only model9 as the baseline model, 

gradually adding each module/technique introduced above and comparing the results. Here 

we also show specifically the contribution of the task-specific perceptual loss; results for the 

contribution from other components and the weight selection for L1 loss can be seen in the 

supplementary file and Figs. S1–S8. Finally, we compared the best version of the proposed 

method with Chen et al.’s models.

4.A. Contribution of task-specific perceptual loss

Task-specific perceptual loss was computed by the feature maps extracted from the task-

specific network to ensure the consistency of the pathological features shown in the 

synthesized and standard-dose images. To evaluate the contribution of the task-specific 

perceptual loss, on the top of the model with nine-slice input, L1 loss, and feature matching 

loss, we compared the results of no perceptual loss, adding perceptual loss computed by the 

widely used pretrained VGG16 on ImageNet, and adding perceptual loss computed by the 

pre-trained amyloid status classifier. Results are shown in Figs. 3 and 4.

4.B. Comparing with Chen et al.’s method

We compared our proposed best model (nine-slices input with L1 loss, feature matching 

adversarial loss, and perceptual loss extracted by pretrained amyloid status classifier) against 

Chen et al.’s method9 using single-slice input and L1 loss. The proposed method and Chen 
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et al.’s PET-only model used only the ultra-low-dose PET as input, while Chen et al.’s PET-

MR model also incorporated MRI inputs (T1-, T2-, and T2 FLAIR-weighted images).

To examine the perceptual image quality, two representative slices were selected from 

different subjects. As shown in Figs. 5 and 6., comparing to Chen et al.’s PET-only model, 

the synthesized images from the proposed method maintained more structural details and 

were visually more similar to the ground-truth standard-dose PET.

Quantitatively, Fig. 7 shows the average performance in terms of PSNR, SSIM, and RMSE. 

The proposed method on average increased 4.14 dB in PSNR, 7.63% in SSIM, and 

decreased 33.55% in RMSE from low-dose PET images and outperformed Chen et al.’s 

PET-only model by 1.87 dB in PSNR, 2.04% in SSIM, and 24.75% in RMSE. Among all 40 

cases, the proposed method achieved better performance than Chen et al.’s PET-only model 

in all three metrics. The proposed method also achieved comparable performance with Chen 

et al.’s PET-MR model. Region-specific measurements are shown in Fig. 8.

For the image quality readings, Fig. 9 shows the distribution of image quality scores for the 

low-dose, standard-dose, and the synthesized images from Chen et al.’s PET-only model, 

PET-MR model, and the proposed method. Scores for all the low-dose PET images were 

either 1 or 2 (average score 1.30). The standard-dose ground-truth images had an average 

score of 4.41 with only four cases out of all 80 evaluations (40 cases read independently by 

two radiologists) considered as low-image quality. The results from the proposed method 

had an average of 4.27 with only five low-quality scores, comparable to the ground-truth and 

far outperforming Chen et al.’s method PET-only model (average score 3.22 with 56 low-

quality scores) and PET-MR model (average score 4.02 with 12 low-quality scores). The 

confusion matrix for inter-reader agreement of the image quality score is shown in Table S1.

For the amyloid status diagnosis, Tables I–III show the confusion matrices for the 

radiologists’ reading results, comparing readings from the synthesized images to the 

readings from the standard-dose ground-truth images. The proposed method achieved an 

error rate of only 10%, in contrast to Chen et al.’s PET-only model (20%) and PET-MR 

model (11.25%). We can see that with Chen et al.’s PET-only model, the clinicians tended to 

classify amyloid negative as positive because in the synthesized images, features were 

smeared out among the cerebral cortex area, misleading them on whether there is true 

cortical tracer deposition, while the proposed method significantly increased the diagnosis 

specificity. An example is shown in Fig. 5, where the upper image is a representative slice 

from a negative case, which was read as positive based on Chen et al.’s PET-only model but 

read correctly based on the proposed method. The confusion matrix for inter-reader 

agreement of the amyloid status is shown in Table S2.

Here, we also compared the diagnosis accuracy between the clinical readers and the amyloid 

status classifier (the pre-trained task-specific network T), which is shown in Table IV. The 

error rate of the clinicians is subject-wise, as they decided the amyloid status based on the 

whole 3D volume. The error of the classifier is measured slice-wise, as it is a 2D network. 

The classifier will give each slice a score from 0 to 1 as its amyloid status prediction. The 

error for each slice is the mean absolute error (MAE) between the prediction and the average 
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status label given by the two clinicians. Based on the classification results on the middle 20 

slices of the volume, the subject-wise error rate is computed by voting and following the 

majority rule. Considering the subject-wise accuracy, the classifier makes no mistakes on 

standard-dose and both sets of results from the proposed and Chen et al.’s methods, largely 

outperforming the human experts’ error rate of 8 and 16 over 80 judgements, respectively.

5. DISCUSSION

We trained a GAN-based network with feature matching, and a task-specific network to 

synthesize the standard-dose amyloid PET images with only 1% dose images. We obtained 

results that were superior than Chen et al.’s model both quantitatively and based on clinical 

interpretation.

5.A. Benefits of each component

The adversarial learning generates less blurry image with more details. Feature matching 

suppresses the possible hallucinated structures caused by the adversarial learning to ensure 

the high image quality. Stacking neighboring slices provides the network with 2.5D 

information to suppress the random noise and artifacts while keeping the detailed structures. 

The task-specific network ensured the consistency in pathological features (amyloid status). 

Specific benefits of this task-specific network with its perceptual loss are discussed in the 

following; detailed analyses of other components can be found in the supplementary file.

As indicated on Figs. 3 and 4. adding perceptual loss based on the ImageNet pretrained 

VGG16 did not have an obvious contribution to the image quality, as the features extracted 

by the VGG16 are related to natural image properties but with no specific emphasis on the 

pathological imaging features. On the contrary, the pretrained task-specific network learned 

features that were most salient to amyloid status, thus adding the perceptual loss through this 

network could ensure the consistency of the amyloid status between the standard-dose 

ground-truth and the synthesized images. From visual results shown in Fig. 3, the 

enhancement of features related to the amyloid status can be noticed in the cerebral cortex 

area.

5.B. Comparison with Chen et al.’s method

The proposed method shows superior performance on all evaluation methods, including the 

image metrics and clinical readings on image quality score and amyloid status. Figure 7 

indicates that based on the low-dose input, with its inferior signal-to-noise ratio and 

structural similarity, the proposed method can synthesize images that are most similar to the 

ground-truth. Region-specific measurements illustrate the same results in Fig. 8. As the 

amyloid retention in cerebral cortex area is a biomarker required for a diagnosis of AD3,4 

and the temporal lobe is most related with memory,25 we conducted the regional 

experiments in the temporal cortex area. The synthesized images also demonstrated 

comparable image quality with the standard-dose PET based on the quality scores. In 

addition, the diagnostic value shows high accuracy, sensitivity, and specificity for amyloid 

status compared to Chen et al.’s method. Chen et al.’s results had a significantly higher false 

positive rate possibly due to the smoothing effect from activity originally in the white matter 
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bleeding into the adjacent cortical regions; this is mitigated by the proposed method with 

less blurry images and more detailed structures.

5.C. Clinical value

Ultra-low-dose PET acquisitions would be advantageous for many reasons. They would 

allow for more frequent scanning under current radiation safety standards. They would also 

reduce the cost of radiotracers and extend the geographical range over which radiotracers 

could be provided. On the other hand, reducing the scan time (also reducing the amount of 

counts collected in a scan) can allow for increasing the throughput of subjects scanned at an 

institution, alleviating wait-times for scans at busy centers. Moreover, certain patient 

populations who may be more susceptible to radiation risk (e.g., pediatric patients) can also 

be scanned under a low-dose PET acquisition protocol, expanding use cases. Finally, 

PET/CT scanners are much more common than PET/MRI scanners. The proposed method is 

compatible with these scanners, broadening the potential application of ultra-low-dose 

imaging.

5.D. Limitation and future work

There are several limitations to our study. First, the low-dose data we used were randomly 

undersampled from the standard-dose PET, instead of using data with true injected 1% dose. 

The method should be further evaluated with the actual ultra-low-dose acquisition, and these 

studies are ongoing. Second, the normalization method we used was dividing the volume 

with its mean in the nonzero area, which ignored the absolute value of the original PET 

images. It might be improved by using physiologically relevant values such as the standard 

uptake value (SUV) for normalization, although clinical interpretation is often based on 

relative values (such as the SUV ratio compared to a region-of-interest in the cerebellum) 

rather than relying on the absolute quantitative value. Third, the model we implemented is 

2.5D due to the limited number of datasets available. The results are likely to be improved 

by using a 3D CNN model, though this will increase the computational requirements.

For future work, MR contrasts can be added as input to the model to see whether the 

additional structural information can help further improve the reconstruction.

6. CONCLUSION

In this paper, we proposed a GAN-based deep network with task-specific perceptual loss to 

synthesize high quality and diagnostic amyloid PET images using only 1% low-dose PET as 

input. Based on Chen et al.’s method using U-Net with L1 loss, adversarial learning is added 

to mitigate the blurring and maintain more morphological detail. Feature matching is used to 

suppress the hallucinated structures from the adversarial learning. Task-specific perceptual 

loss is computed from the pretrained amyloid status classifier to ensure the consistency of 

the pathological features between the standard-dose ground-truth and the synthesized 

images. Results showed significant improvement on image quality and diagnosis consistency 

compared to Chen et al.’s method.
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FIG. 1. 
Pipeline for data preprocessing.

Ouyang et al. Page 14

Med Phys. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 2. 
Architecture of the proposed method.
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FIG. 3. 
Qualitative results of the model without perceptual loss and with perceptual loss computed 

from either VGG16 or a task-specific network. (a) low-dose PET, (b) standard-dose PET, (c) 

no perceptual loss, (d) perceptual loss from VGG16, (e) perceptual loss from pretrained 

amyloid status classifier (task-specific). PET, Positron emission tomography.
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FIG. 4. 
Image quality metrics: PSNR, SSIM, RMSE of models without perceptual loss and with 

perceptual loss computed from either VGG16 or a task-specific network. PSNR, peak 

signal-to-noise ratio; RMSE, root mean square error; SSIM, structural similarity.
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FIG. 5. 
Qualitative results comparing Chen et al.’s and the proposed method. (a) low-dose PET, (b) 

standard-dose PET, (c) Chen et al.’s PET-only model, (d) Chen et al.’s PET-MR model, (e) 

proposed method (PET-only). PET, Positron emission tomography.
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FIG. 6. 
Error maps of figure 5. (a) low-dose PET, (b) Chen et al.’s PET-only model, (c) Chen et al.’s 

PET-MR model, (d) proposed method (PET-only). PET, Positron emission tomography.
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FIG. 7. 
Image metrics comparing Chen et al.’s and the proposed method.
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FIG. 8. 
Image metrics comparing Chen et al.’s and the proposed method on temporal cortex area.
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FIG. 9. 
Image quality score given by two physicians comparing Chen et al.’s and the proposed 

method. 1 = uninterpretable, 5 = excellent. Mean scores and the standard deviations shown 

at the top of each bar.
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Table I.

Confusion matrix between the standard-dose and the synthesized images from the proposed method.

Confusion Matrix

Proposed Method

N P total

Standard-dose PET

 N 50   7 57

 P   1 22 23

 total 51 29 80

PET, Positron emission tomography.
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Table II.

Confusion matrix between the standard-dose and the synthesized images from the Chen et al. ‘s PET-only 

model.

Confusion Matrix

Chen et al.’s PET-only model

N P total

Standard-dose PET

 N 46 11 57

 P   3 20 23

 total 49 33 80

PET, Positron emission tomography.
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Table III.

Confusion matrix between the standard-dose and the synthesized images from the Chen et al.’s PET-MR 

model.

Confusion Matrix

Chen et al.’s PET-MR model

N P total

Standard-dose PET

 N 49   8 57

 P   1 22 23

 total 50 30 80

PET, Positron emission tomography.
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