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Abstract

Cancer biology involves complex, dynamic interactions between cancer cells and their tissue 

microenvironments. Single-cell effects are critical drivers of clinical progression. Chemical and 

mechanical communication between tumor and stromal cells can co-opt normal physiologic 

processes to promote growth and invasion. Cancer cell heterogeneity increases cancer’s ability to 

test strategies to adapt to microenvironmental stresses. Hypoxia and treatment can select for 

cancer stem cells and drive invasion and resistance. Cell-based computational models (also known 

as discrete models, agent-based models, or individual-based models) simulate individual cells as 

they interact in virtual tissues, which allows us to explore how single-cell behaviors lead to the 

dynamics we observe and work to control in cancer systems. In this review, we introduce the broad 

range of techniques available for cell-based computational modeling. The approaches can range 

from highly detailed models of just a few cells and their morphologies to millions of simpler cells 

in three-dimensional tissues. Modeling individual cells allows us to directly translate biologic 

observations into simulation rules. In many cases, individual cell agents include molecular-scale 

models. Most models also simulate the transport of oxygen, drugs, and growth factors, which 

allow us to link cancer development to microenvironmental conditions. We illustrate these 

methods with examples drawn from cancer hypoxia, angiogenesis, invasion, stem cells, and 

immuno-surveillance. An ecosystem of interoperable cell-based simulation tools is emerging at a 

time when cloud computing resources make software easier to access and supercomputing 

resources make large-scale simulation studies possible. As the field develops, we anticipate that 

high-throughput simulation studies will allow us to rapidly explore the space of biologic 
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possibilities, prescreen new therapeutic strategies, and even re-engineer tumor and stromal cells to 

bring cancer systems under control.

INTRODUCTION

Cancer is a complex systems problem that involves interactions between cancer cells and 

their tissue microenvironments.1–3 Therapeutic approaches that narrowly focus on cancer 

cells frequently lead to disappointing outcomes, including resistance, tissue invasion, and 

treatment failure. Such failures are partly due to the unexpected behaviors that emerge from 

the dynamical systems of cancer tissues. Therapies act as selective pressures, even while 

cancer cells use increased genetic variability to broadly sample survival strategies and adapt.
3,4 Chronic hypoxia, another selective pressure, leads to metabolic changes, selection for 

cancer stem cells that resist treatment, invasion, and angiogenesis.4–6 Tumor cells 

communicate biochemically and biomechanically with stromal cells, which allows them to 

co-opt normal physiologic processes.1–3,7,8 Mathematical models can serve as “virtual 

laboratories” with fully controlled conditions where scientists and clinicians can investigate 

the emergent clinical behaviors that result from basic cell hypotheses and can evaluate new 

therapeutic strategies.1,9

This review surveys cell-based methods for simulating cancer. Also known as discrete 

models, agent-based models, or individual-based models, cell-based models simulate 

individual cell behaviors within tissue environments. These models have several advantages. 

Each cell agent can track a fully independent state with individual parameters that reflect 

heterogeneity in cancer. Modelers can directly implement cell rules that reflect observations 

of single-cell behavior and cell-cell interactions, which allow us to translate biologic 

hypotheses to mathematical rules quickly; run simulation experiments that explore the 

emergent behaviors of these hypotheses; and compare against new data to confirm, reject, or 

iteratively improve the underlying hypotheses.1,9,10

A SURVEY OF CELL-BASED MODELING METHODS

Cell-based models represent individual cells with two main paradigms—lattice-based 

models that track cells along a rigid grid and off-lattice models that have no such restriction. 

Figure 1 classifies most cell-based modeling approaches. Table 1 lists major open source 

modeling packages.

Lattice-Based Methods

Lattice-based models can use regular structured meshes (eg, Cartesian11 [two- or three-

dimensional [2D/3D], dodecahedral [3D])12 or unstructured meshes.13 Structured meshes 

are simpler to implement, visualize, and combine with partial differential equation (PDE) 

solvers, but their structure can lead to grid biases.13 Unstructured meshes can avoid these 

issues13 but with greater complexity.

We can further categorize lattice-based methods by their spatial resolution. In cellular 

automaton (CA) models, each lattice site can hold a single cell.14–17 At each time step, each 

cell is updated with discrete lattice-based rules: remain, move to a neighboring lattice site, 
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die (free a lattice site), or divide to place a daughter cell in a nearby site.14–17 These methods 

usually update the lattice sites in a random order to reduce grid artifacts.14,15

In lattice gas CA (LGCA) models, a single lattice site can contain multiple cells.14,15,17,18 

LGCA models track the number of cells that move through channels between individual 

lattice sites rather than the motion of each individual cell. They can simulate very large 

numbers of cells efficiently over long periods while also connecting to statistical mechanics 

theory; this facilitates analysis and provides a bridge to continuum methods that model cell 

densities or populations instead of single cells.17,18

Some problems may require resolution of individual cell morphologies. Cellular Potts 

models (CPMs) use multiple lattice sites to represent each cell.14,15,19 At each time step, 

CPMs visit each pixel (2D) or voxel (3D), test a random swap with a neighboring pixel/

voxel, and accept or reject the swap (probabilistically) on the basis of whether it would 

reduce a global energy. Although CPMs can model cell morphologies and mechanics that 

cannot be incorporated in CA models, they are much more computationally intensive. Also, 

the calibration of Monte Carlo steps to physical time can be challenging.20

Off-Lattice Methods

We can divide off-lattice models into center-based models (CBMs) that focus on cell 

volumes (or masses) and models that focus on cell boundaries. We can further classify these 

approaches by level of morphologic detail.

CBMs.—CBMs track each cell’s center of mass or volume, typically by using a single 

software agent per cell.13–15,21 Some CBMs represent cells as points, whereas others 

explicitly model cell volumes. CBMs typically update the cells’ positions by explicitly 

formulating the adhesive, repulsive, locomotive, and drag-like forces exchanged between 

cell centers.13–15,21 Most CBMs approximate cells as spheres; however, some approximate 

cells as deformable ellipsoids to better represent their morphologies.22,23

CBMs can model cell morphology in greater detail by breaking cells into subcellular 

elements24,25: Each cell is represented by multiple center-based agents that interact with 

adhesive and repulsive forces. These models better approximate cell biomechanics but at 

increased computational cost. Conversely, cells can be organized into clusters or functional 

units (eg, breast glands or colon crypts) that are simulated as agents that interact by 

mechanical forces or other rule-based motions26,27; this allows modelers to incorporate 

heterogeneous details into individual clusters of cells but with greater computational 

efficiency than traditional CBMs.

Boundary-tracking models.—Vertex-based methods (eg, Fletcher et al28) model cells as 

polygons (2D) or polyhedra (3D) and compute the forces that act on their vertices; they are 

particularly useful for modeling confluent tissues.29 For greater spatial resolution, front-

tracking methods, such as the immersed boundary method (IBM), solve PDEs for fluid flow 

inside and between cells and then advect boundary points along the cells’ membranes in this 

flow.30 Level set methods have been applied to implicitly track the movement of cell 

boundaries,31 and VCell (see Connecting to Molecular Effects) recently added front-tracking 
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capabilities.32,33 These are among the most computationally intensive cell-based methods, 

but they are useful for coupling detailed cell mechanics to fluid and solid tissue mechanics.

Connecting to Molecular Effects

Most cell-based models are hybrid discrete-continuum; they couple a discrete cell model to 

continuum models of the microenvironment.1,14,15 In general, these models use reaction-

diffusion PDEs to simulate biotransport of oxygen, growth factors, and drugs. Ghaffarizadeh 

et al34 developed BioFVM to solve diffusive transport of tens to hundreds of chemical 

substrates in 3D tissues; it is the underlying PDE solver for PhysiCell (a center-based 

simulation framework).21 In this framework, modelers write rules to relate individual cell 

phenotypes to local chemical substrate conditions.21

Many discrete models include systems of ordinary differential equations (ODEs) to model 

molecular processes in individual cells.35,36 VCell can simulate reacting flows of many 

proteins within a single detailed cell,32,33 and many modeling packages (eg, Chaste,37 

CompuCell3D,38 and EPISIM39) support systems biology markup language (SBML) to 

include systems of ODEs that simulate molecular effects in individual cells. Others use 

discrete models within individual agents: Gerlee and Anderson40 used small neural networks 

to simulate individual cell phenotypic “decisions” on the basis of microenvironmental 

inputs, whereas PhysiBoSS41 combines the Boolean network modeling approach of 

MaBoSS42,43 with PhysiCell21 to simulate molecular processes in individual cells.

EXAMPLES OF CELL-BASED MODELING IN CANCER BIOLOGY

We now explore a series of modeling themes that illustrate the use of cell-based modeling in 

cancer biology. Although we cannot comprehensively review all cell-based modeling in 

cancer (or even sample all major use cases for cell-based modeling), these themes are drawn 

from across the field to demonstrate scientific problems with significant cell-scale effects 

where cell-based models can yield new insights.

Hypoxia in Breast Cancer

Many groups have used cell-based models to investigate tumor growth in hypoxic tissues 

and more generally, the effect of diffusive transport limits. Gatenby et al44 and Smallbone et 

al45 used CAs to examine hypoxia-driven switching to invasive phenotypes in ductal 

carcinoma in situ (DCIS). They incorporated cellular metabolic adaptations to hypoxia, 

which allowed them to study early tumor invasion (Fig 2A). Anderson and colleagues46,47 

extended earlier CA results by adapting IBCell30 (an IBM) to mouse mammary (EMT6/Ro) 

tumor cell proliferation in hypoxic tissues. As before, they found that hypoxic gradients 

could drive tissue invasion, but IBCell’s improved modeling of cell adhesion and 

biomechanics predicted more rounded invasive tips47 (Fig 2B).

Macklin et al50 and Hyun and Macklin51 applied a CBM to study oxygen-driven 

proliferation and necrosis in solid-type DCIS with comedonecrosis. After calibrating to 

individual patient pathology data (tissue specimens immunostained for the Ki67 protein to 

detect cycling cells, cleaved caspase 3 to detect apoptosis, and annotated with viable rim 

sizes and cell density50), they were able to simulate comedonecrosis and microcalcifications 

Metzcar et al. Page 4

JCO Clin Cancer Inform. Author manuscript; available in PMC 2019 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as emergent properties of the simulations along with realistic, constant rates of tumor 

advancement along the breast ducts. Ghaffarizadeh et al21 refined the DCIS model and 

extended it to 3D as well as simulated the hypoxic interiors of hanging drop spheroids 

calibrated to match MCF-10A birth and death kinetics in culture (Figs 2C and D). As in 

early 3D work by Drasdo and Höhme48 on EMT6/Ro cells (Fig 2E), they predicted a layered 

structure—an outer proliferative rim surrounding a quiescent perinecrotic region and an 

interior necrotic core. They were the first to predict networks of fluid-filled pores in the 

necrotic cores that emerge from the competing effects of necrotic cell shrinking and 

adhesion; these structures are observed in experimental models (Fig 2D inset). Szymańska et 

al49 used a CBM of EMT6 cells to simulate a growing tumor cord—a solid tumor that grows 

around a blood vessel. They predicted a similar three-layer structure but in reverse order—a 

proliferating core nearest the blood vessel, quiescent interior, and necrotic exterior (Fig 2F).

Tumor-Induced Angiogenesis and Drug Delivery

Tumor-induced angiogenesis allows lesions to grow to clinically detectable sizes.3 

McDougall and colleagues52,53 modeled sprouting angiogenesis with a CA model of vessel 

tip migration: Sprout tip agents followed chemotactic and haptotactic signals to migrate 

toward hypoxic tumor regions and left a trail of functional vessels. They incorporated a 

detailed vascular network flow model, including dynamic wall shear stress rules for vessel 

branching and anastomosis (vessel looping), and used this framework to explore therapeutic 

delivery from tumor-associated vasculatures (Fig 3A). Bauer et al54 used a CPM to simulate 

tumor-induced angiogenesis, by adding a detailed microenvironment, including extracellular 

matrix (ECM) and multiple vascular endothelial growth factor isoforms; they concluded that 

variations in the spatial distributions of proangiogenic factors greatly affect capillary 

morphology and that inhomogeneities in nonvascular tissue naturally lead to capillary 

anastomosis. Boas and Merks55 used a CPM to investigate novel hypotheses on cell 

overtaking: Cell-cell biomechanical and chemical communication can cause endothelial 

cells in the stalk to assume the role of migrating tip cells by migrating to the front of an 

advancing vessel (Fig 3B). Shirinifard et al56 used a CPM to investigate tumor growth with 

angiogenesis and showed that tumor size increases with increasing angiogenesis and that the 

tumors grow along the vasculature (Fig 3C).

Cai et al57 used a CA model of tumor cells in a continuous ECM coupled with a discrete 

angiogenesis model that included flow effects and substrate perfusion from the vasculature 

(Fig 3D). They showed that the final vessel configuration depends on emergent, dynamic 

feedback mechanisms in vascular remodeling rather than on initial conditions. Wu et al59 

extended an earlier hybrid discrete-continuum model58 (that was based on that of 

McDougall and colleagues52,53) to investigate the influence of interstitial fluid pressure, 

interstitial fluid flow, and lymphatic drainage on drug delivery in growing tumors.59 They 

found that elevated interstitial hydraulic conductivity and high interstitial fluid pressure limit 

the transvascular delivery of nutrients and therapeutics (Fig 3E).

Cancer Stem Cells

Models of cancer stem cells (CSCs) offer valuable insights into the driving forces of cancer 

biology. Fletcher and colleagues37,60,61 developed a 3D CBM of colonic crypts to explore 
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the role of stem cells (in the bottom of the crypt) in colorectal carcinogenesis. Neighboring 

cells were connected by linear springs, and stem-cell division and differentiation were driven 

by Wnt gradients along the crypt axis. The geometry of the stem-cell hierarchy (proliferation 

at the crypt base, expansion and differentiation along the middle and top) created an overall 

base-to-top proliferative cell flux. This flux has an anticancer protective effect wherein it 

pushes any mutated cell and its progeny out of a crypt before they can spread throughout a 

crypt, unless the mutation occurs in a stem-cell niche (Fig 4A).

Norton et al62 built a 3D CA model to examine the interaction between triple-negative breast 

cancer and stromal cells. Stem cells proliferated and differentiated into progenitor cells, and 

cancer cells exchanged chemical signals with fibroblasts and infiltrating macrophages. 

Among their results, they found that increasing the stromal effect on cancer cell proliferation 

decreased overall tumor size, whereas increasing the stromal effect on cancer cell migration 

increased tumor size (Fig 4B).

Poleszczuk et al66 developed a 2D CA model of CSCs and nonstem cancer cells, which 

tracked four traits in each individual cell: migration rate, apoptosis, symmetric CSC division, 

and cancer cell proliferation potential. They found that increasing the cancer cell 

proliferation potential could reduce tumor growth because the increased cancer cell 

population competed with CSCs for space and inhibited CSC division. They also found that 

traits propagated radially from the centers of growing tumors; this has implications for 

biopsies of tumor heterogeneity (Fig 4C). Gao et al63 used a CPM to investigate the role of 

glioma stem cells (GSCs) in glioblastoma growth and radiation therapy response (Fig 4D). 

They found that switching from asymmetric to symmetric division or fast GSC cycling was 

necessary to explain clinical observations of glioma repopulation after radiotherapy and that 

the expanded GSC fraction could reduce radiosensitivity.

Alfonso et al67 also explored radiotherapy treatment paradigms with respect to a 

heterogeneous population of CSCs and cancer cells using a 3D CA model. They found that 

CSCs, which are typically more radioresistant, segregated to the center of the tumor across a 

range of proliferation and death parameters. This emergent phenomenon is due to the faster 

cycling time of the cancer cells compared with CSCs. When these cell arrangements were 

subjected to radiotherapy, they found that radiotherapy is more effective at tumor control 

when it is concentrated on the tumor center where CSCs are located rather than when it is 

spread homogeneously across the entire tumor.

The “Go or Grow” Hypothesis for Glioblastoma Multiforme

Tektonidis et al68 examined the “go or grow” (GoG) hypothesis in gliomas, where tumor 

cells must make a “decision” between migration (go) or proliferation (grow). They modeled 

data from 3D spheroid cell cultures with a 2D LCGA model and attempted to recapitulate 

three experimental observations: nonidentical spreading rates of the invasive rim and central 

core, radially persistent and symmetric cell motion, and a highly proliferative central core 

compared with the remaining tumor. Tektonidis et al evaluated the emergent model behavior 

under a variety of cell phenotype rule sets to determine which rules were required to predict 

the three observations. They found that a proliferative-motility dichotomy (the GoG 

hypothesis), cell-cell repulsion, and density-dependent switching between the proliferative 
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and motile states were required to match experimental observations. They concluded that 

disruption of the GoG mechanism to favor proliferation could limit the required tumor 

resection volume in surgical interventions.

Hatzikirou et al64 investigated the GoG hypothesis in glioblastoma multiforme (GBM) using 

a 2D LGCA model. In their work, cells could divide, re-orient, migrate, or apoptose on the 

basis of local oxygenation conditions. They modeled the GoG hypothesis by switching 

hypoxic cells to a motile phenotype and reverting to a proliferative phenotype after escaping 

hypoxia. They found that increasing the cell bias toward proliferation increases overall 

tumor growth, but crossing a threshold could decrease overall tumor growth when motility is 

insufficient to open new space for cell division (Fig 4E). Comparable results were obtained 

by Gerlee and Nelander69 using stochastic switching between the two phenotypes (migrate 

or proliferate). From their CA model, they derived a system of coupled PDEs to investigate 

further the relationships between cell-level parameters and tumor-scale dynamics.

In related work, Böttger et al70 explored a 2D LGCA GoG model for GBM to provide a 

more quantitative parameter space analysis of a tumor’s invasive dynamics. Systematically 

varying model parameters for proliferation and motility led to counterintuitive results about 

invasion. Specifically, invasion speed depended on two competing processes: emptying 

space as a result of cell migration and filling space as a result of cell proliferation. In later 

work, Böttger et al71 used similar techniques to find that if cell motility decreases with 

increased cell density, then small tumors self-extinguish. On the other hand, increasing cell 

motility with increasing cell density leads to self-sustaining growth, similar to the Allee 

effect frequently observed in ecology.

Kim et al65 used a CBM to explore GBM using miR-451 as an intracellular detector of 

glucose, with an ODE model of miR-451 as the effector for selecting migration versus 

proliferation for glioma cells (Fig 4F). They found that cell migration depended not only on 

glucose, but also on mechanical spacing between cells. They also predicted that the 

placement of chemoattractants at the edges of a resected tumor could reduce GBM cell 

migration from the resection site. These GoG examples highlight the key role played in 

single-cell decisions in GBM and the potential for cell-based models that explore the clinical 

behaviors that emerge from single-cell effects.72

Cancer Invasion and Epithelial-Mesenchymal Transition

Cancer invasion is essential to metastatic progression.3,72–74 Cancer cells acquire a motile 

phenotype to escape primary tumors and invade nearby tissues (as conceptually modeled in 

epithelial-to-mesenchymal transition [EMT]75), invade and travel within blood and 

lymphatic vessels,76,77 and finally colonize distant metastatic niches.78 Because single-cell 

effects are critical, many cell-based models have investigated cancer invasion with or 

without explicit modeling of EMT.

Reher et al79 developed a 2D LGCA model to simulate the effects of a heterogeneous cell-

cell adhesion in an epithelial layer, with decreased cell-cell adhesion representing one of the 

effects of EMT. Cell-cell adhesion was modeled by varying the initial and maximum number 

of adhesion receptors for each virtual cell. They found that increased adhesion heterogeneity 
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as well as decoupling receptor number from environmental signals (cell-cell contact) lead to 

increased dissemination.

Kim and Othmer80 developed a center-based model with a continuous ECM description to 

investigate the interactions of tumor cells, signal-secreting stromal cells, and the ECM. 

Stromal levels of fibroblast-secreted protein initiated EMT, which switches cells to an 

invasive, motile phenotype. Invasive cells also secreted a tumor-associated protease, which 

degrades the basement membrane and ECM. Degradation of the basement membrane results 

in more cell exposure to fibroblast-secreted protein, which results in more phenotypic 

switching; more invasion; more ECM degradation; and ultimately, collective cell invasion 

(Fig 5A). These results suggest that inhibiting fibroblast secretions could affect invasive 

potential.

Zhang et al81 used a 3D CA model to investigate tissue invasion and tumor cell 

heterogeneity in glioma. Using a subcellular signaling network, cells divide and move on the 

basis of external concentrations of nutrients and signaling molecules. They acquire 

oncogenic mutations upon division to produce new clones. Each successive clone is more 

proliferative and nutrient seeking, which increases overall invasive potential. By starting 

with a sphere of the least oncogenic cells in the center of the simulation, Zhang et al found 

that heterogeneity increased in all regions of the simulation followed by a decrease in 

heterogeneity in the regions that contain the nutrient source and eventual recovery of 

heterogeneity. The decrease was attributed to an outgrowth of the most oncogenic subclone, 

which potentially explains the asymmetric invasive growth seen in experimental and clinical 

reports (Fig 5B).

Anderson et al82 used an IBM to investigate morphologic changes in breast acini as a result 

of variation in cell polarization and anoikis behaviors in response to cell contact with other 

cells and the basement membrane. In this, and additional work by Rejniak et al,83 Anderson 

et al showed that atypical behavior in a single cell can lead to eventual intraductal and 

stromal invasion (Fig 5C).

In a sophisticated investigation of metastatic colonization, Araujo et al86 developed a hybrid 

CA model of prostate cancer (PCa) bone metastasis. In their work, mesenchymal stromal 

cells differentiated into osteoblasts that created bone material, whereas osteoclasts degraded 

bone. In the absence of tumor cells, these cell populations coordinated through transforming 

growth factor-β and receptor activator of nuclear factor kappa beta ligand (RANKL) 

signaling to maintain healthy bone tissue. When PCa cell agents were introduced into the 

bone, tumor-secreted transforming growth factor-β promoted osteoblast activity, but 

osteoblast feedbacks simultaneously degraded bone to release new growth factors that could 

drive additional PCa proliferation and invasion. Araujo et al studied the model to compare 

potential improvements of RANKL inhibitors and bisphosphonates (two standard-of-care 

treatments for bone metastases). They found that additional refinements to bisphosphonates 

would yield little clinical improvement over current treatments, whereas improvement of 

RANKL inhibitors from the current (model-estimated) 40% inhibition closer to a theoretical 

maximum 100% inhibition could dramatically improve outcome.
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Tumor Immunosurveillance

Individual interactions between tumor cells and immune cells are critical to 

immunosurveillance.3,7,87 Cell-based models are uniquely capable of examining these while 

considering the roles of stochasticity and heterogeneity.

Kather et al84 developed a CA model to study complex interactions between tumor cells and 

immune cells. In their model, immune cells could randomly appear (an influx model), 

migrate toward tumor cells, and kill them. Immune cells were assumed to be exhausted after 

killing a maximum number of times and would induce tissue fibrosis that impaired cell 

migration. Tumor cells could proliferate, die, remain stationary, or migrate on the basis of 

the number of open neighboring lattice sites and their distance to the nearest open lattice site 

(a phenomenologic model of necrosis). Depending on the relative migration and 

proliferation parameters for tumor and immune cells, this model could exhibit diverse 

tumor-immune interactions, including successful immunosurveillance (eradicated), tumor 

encapsulation by fibrotic tissue (immune excluded), and ongoing immune responses (Fig 

5D). Gong et al85 recently developed a 3D CA model to investigate the tumor-immune 

responses to programmed cell death-1 and programmed death-ligand 1 inhibition (Fig 5E).

Ghaffarizadeh et al21 developed a 3D off-lattice model of an immune attack on a tumor with 

a heterogeneous oncoprotein (mutations increased both proliferation and immunogenicity). 

After simulating initial growth, they added simulated immune cells that chemotaxed toward 

tumorreleased immunostimulatory factors. Each immune cell tested for mechanical collision 

with cells, formed an (Hookean) adhesion, tested for immunogenicity, and stochastically 

attempted to induce tumor cell apoptosis. Attached immune cells eventually would succeed 

in killing the tumor cell and detach or continue the attempt before detaching and continuing 

their search for new targets. Their simulations showed initial tumor regression but eventual 

tumor regrowth when immune cells passed some tumor cells and formed large clumps near 

maxima of the immunostimulatory factor (Fig 5F). The authors have expanded their 

investigation to supercomputers to explore further the effect of stochastic migration on the 

overall efficacy of the immune response10; this work showcases the potential for using 

supercomputers to explore large therapeutic design spaces in high throughput.

ADDITIONAL RESOURCES

As companions to this review, we maintain three online curated collections:

1. Cloud-hosted examples of cell-based cancer models: https://

www.scienceopen.com/collection/online-cancer-simulators

2. Open source cell-based simulation frameworks: https://www.scienceopen.com/

collection/open-source-agent-frameworks-biology

3. Additional reviews of mathematical modeling in cancer: https://

www.scienceopen.com/collection/math-modeling-in-cancer-reviews
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DISCUSSION

Cell-based methods can track single-cell traits and individual behaviors, which make them 

well suited for problems where single-cell effects are important, such as stem-cell 

hierarchies, heterogeneity, invasion, and tumor-immune interactions. They are ideal for 

hypothesis-driven computational experiments because biologic observations of single-cell 

behavior can be directly translated to agent rules.

Lattice-based methods are straightforward to implement and fast, which makes them useful 

for quickly testing new ideas. We show how lattice-based methods have yielded insights on 

cancer metabolism, cancer stem cells, angiogenesis, the GoG hypothesis, invasion, and 

cancer immunosurveillance. CA methods remain the most common method for modeling 

vascular networks, whereas CPMs have investigated the finer details of angiogenesis.

Lattice-based methods are at risk for grid-based artifacts, and their biomechanical realism is 

limited; off-lattice models can readily incorporate biomechanics and off-lattice cell-cell 

interactions. As the hypoxia and immunosurveillance examples show, novel structures can 

arise from the interplay of stochasticity, transport limitations, mechanics, and single-cell 

characteristics. However, off-lattice models often are computationally demanding, and they 

generally have many parameters to calibrate. Ultimately, no single method is best for all 

problems. Modelers should reproduce findings with multiple approaches to avoid algorithm-

dependent biases.88

This is an exciting time to apply cell-based modeling to cancer. Increases in computational 

power are allowing larger simulation studies with greater sophistication, and high-

throughput computing is enabling exploration of high-dimensional parameter spaces.10 

Open source platforms have lowered the barrier to entry for using sophisticated techniques 

(Table 1). In the future, we envision that cell-based modeling software will be increasingly 

user friendly, cloud hosted, and open to modular contributions from the community,88 which 

would potentiate a community-driven ecosystem of interoperable tools that together exceed 

the sum of their parts.1 We are excited to imagine the new insights that are on the horizon.
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FIG 1. 
A schematic classification of cell-based modeling approaches.
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FIG 2. 
Cell-based models of hypoxia in breast cancer. (A) A cellular automaton model of breast 

cancer that explores cellular metabolic changes and early development of invasion. 

Reprinted with permission from Gatenby et al.44 (B) An immersed boundary model to 

simulate cancer invasion under hypoxic gradients. Adapted with permission from Anderson 

et al.47 (C) PhysiCell (a center-based model [CBM]) simulation of ductal carcinoma in situ 

as it advances in breast ducts under diffusive growth limits. Note the brown necrotic core. 

Adapted with permission from Ghaffarizadeh et al.21 (D) Adapted PhysiCell simulation of 

hanging-drop tumor spheroids. Oxygen diffusive limits lead to hypoxic gradients, greatest 

proliferation on the outer edge, an interior quiescent region, and an central necrotic core 

(brown). Note the network of fluid-filled pores that emerges from the necrotic core 

mechanics. These are observed in experiments. The inset shows a fluorescent image of a 

hanging-drop tumor spheroid. Adapted with permission from Ghaffarizadeh et al.21 (E) 

CBMs of tumor spheroids pioneered by Drasdo and Höhme produced similarly layered 

structures. Reprinted with permission from Drasdo and Höhme.48 (F) A CBM of tumor 

cords growing around a blood vessel and showing a reversed structure with viable tissue in 

the interior. Adapted with permission from Szymańska et al.49
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FIG 3. 
Tumor-associated angiogenesis and vascular flow. (A) A two-dimensional (2D) cellular 

automaton model of sprouting angiogenesis used to study drug delivery from tumor 

vasculatures. Reprinted with permission from McDougall et al.53 (B) A 2D cellular Potts 

model of angiogenesis. Stalk cells can overtake tip cells to become new tip cells. The arrows 

show these role swaps. Reprinted with permission from Boas and Merks.55 (C) A 3D 

cellular Potts model of sprouting angiogenesis driven by vascular endothelial growth factor 

released by hypoxic tumor cells. Adapted with permission from Shirinifard et al.56 (D) A 2D 

cellular automaton model (left) to investigate drug delivery to simulated tumors (right). 

Adapted with permission from Cai et al.57 (E) A discrete angiogenesis model of McDougall 

et al53 combined with a continuum tumor growth model58 used to investigate the effect of 

interstitial fluid pressure and lymphatic drainage on therapeutic delivery. Shown are tumor 

and the discrete vasculature (left); fluid extravasation from blood and lymphatic vessels 

(middle); and interstitial fluid velocity (right), which hinders drug delivery. Adapted with 

permission from Wu et al.59
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FIG 4. 
Cancer stem cells, invasion, and the “go or grow” hypothesis. (A) Top view of a three-

dimensional (3D) center-based model of colon crypts (left plots) where the stem-cell niche is 

in the center. A nonstem mutation (blue cells) is swept out of the crypt by the proliferative 

cell flux. On the right, is a 3D view of four such ducts that feed cells to a central villus, 

which is based on the same simulation model. Adapted with permission from Fletcher et al61 

(left) and Mirams et al37 (right). (B) A 3D cellular automaton (CA) model (with stem-cell 

effects) of how chemical signaling with fibroblasts and macrophages can drive triple-
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negative breast cancer. Among these findings, if stromal cells can promote increased cancer 

cell migration, the overall tumor grows. Reprinted with permission from Norton et al.62 (C) 

A 2D CA model to investigate the spread of traits in growing tumors, when cancer cells and 

their progeny could carry four tumor traits. Traits disseminate largely radially, with clear 

implications for tumor needle biopsies. Adapted from Poleszczuk and Enderling.11 (D) A 

2D cellular Potts model of stem cells in glioblastoma that shows their role in building 

resistance to radiotherapy. Reprinted with permission from Gao et al.63 (E) Lattice gas CA 

models of the “go or grow” hypothesis in glioblastoma multiforme. As cells spend more 

time proliferating, they contribute to better growth up to a critical transition point; beyond 

this point, decreased migration is insufficient to open space for cell division. Adapted with 

permission from Hatzikirou et al.64 (F) A center-based model to explore the “go or grow” 

hypothesis in glioblastoma multiforme. Here, G0 is the models’ growth rate parameter. 

Adapted with permission from Kim et al.65
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FIG 5. 
Cancer invasion and immunosurveillance. (A) In a center-based model, signals secreted by 

stromal cells (red) induce tumor cells (gray) to degrade the basement membrane and invade 

the stroma (blue mesh). Adapted with permission from Kim et al.80 (B) A three-dimensional 

(3D) cellular automaton (CA) model to study selection in heterogeneous brain cancers. Cells 

could mutate their signaling network parameters, which leads to more invasive clones. 

Adapted with permission from Zhang et al.81 (C) An immersed boundary method of contact-

based signaling and polarization in breast acini.82,83 Cells with altered signaling could fill 
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the lumen or invade the stroma. Adapted with permission from Anderson et al.82 (D) A 2D 

CA model of tumor-immune interactions. Immune cells (blue dots) become exhausted after 

too many successful tumor cell kills and create fibrotic tissue (yellow). Tumor 

encapsulation, tumor elimination, and chronic response are observed in the model. Adapted 

with permission from Kather et al.84 (E) A sophisticated 3D CA model of treatments 

targeting programmed cell death-1 (PD-1) and programmed death ligand 1 (PD-L1) in 

cancer cells. (PD-L1+ cells express PD-L1; PD-L1− cells do not.) Reprinted with permission 

from Gong et al.85 (F) A 3D center-based model of immune responses to an 

immunostimulatory factor in a heterogeneous tumor (shaded by immunogenicity; yellow 

cells are most immunogenic). Immune cells (red) seek and adhere to cancer cells, test for 

immunogenicity, and induce apoptosis. The immune response failed after immune cells 

aggregated near a local maximum in the signaling factor, which allows the tumor to 

repopulate. Adapted with permission from Ghaffarizadeh et al.21 This work was explored 

further with high-performance computing.10
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