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Abstract

Purpose: Dose conformality and robustness are equally important in Intensity Modulated Proton 

Therapy (IMPT). Despite the obvious implication of beam orientation on both dosimetry and 

robustness, an automated, robust beam orientation optimization algorithm has not been 

incorporated due to the problem complexity and paramount computational challenge. In this study, 

we developed a novel IMPT framework that integrates robust beam orientation optimization 

(BOO) and robust fluence map optimization (FMO) in a unified framework.

Methods: The unified framework is formulated to include a dose fidelity term, a heterogeneity-

weighted group sparsity term, and a sensitivity regularization term. The L2,1/2-norm group 

sparsity is used to reduce the number of active beams from the initial 1162 evenly distributed non-

coplanar candidate beams, to between 2 and 4. A heterogeneity index, which evaluates the lateral 

tissue heterogeneity of a beam, is used to weigh the group sparsity term. With this index, beams 

more resilient to setup uncertainties are encouraged. There is a symbiotic relationship between the 

heterogeneity index and the sensitivity regularization; the integrated optimization framework 

further improves beam robustness against both range and setup uncertainties. This Sensitivity 

regularization and Heterogeneity weighting based BOO and FMO framework (SHBOO-FMO) was 

tested on two skull-base tumor (SBT) patients and two bilateral head-and-neck (H&N) patients. 

The conventional CTV-based optimized plans (Conv) with SHBOO-FMO beams (SHBOO-Conv) 

and manual beams (MAN-Conv) were compared to investigate the beam robustness of the 

proposed method. The dosimetry and robustness of SHBOO-FMO plan were compared against the 

manual beam plan with CTV-based voxel-wise worst-case scenario approach (MAN-WC).

Results: With SHBOO-FMO method, the beams with superior range robustness over manual 

beams were selected while the setup robustness was maintained or improved. On average, the 

lowest [D95%, V95%, V100%] of CTV were increased from [93.85%, 91.06%, 70.64%] in MAN-

Conv plans, to [98.62%, 98.61%, 96.17%] in SHBOO-Conv plans with range uncertainties. With 

setup uncertainties, the average lowest [D98%, D95%, V95%, V100%] of CTV were increased 

from [92.06%, 94.83%, 94.31%, 78.93%] in MAN-Conv plans, to [93.54%, 96.61%, 97.01%, 
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91.98%] in SHBOO-Conv plans. Compared with the MAN-WC plans, the final SHBOO-FMO 

plans achieved comparable plan robustness and better OAR sparing, with an average reduction of 

[Dmean, Dmax] of [6.31, 6.55] GyRBE for the SBT cases and [1.89, 5.08] GyRBE for the H&N 

cases from the MAN-WC plans.

Conclusion: We developed a novel method to integrate robust BOO and robust FMO into IMPT 

optimization for a unified solution of both BOO and FMO, generating plans with superior 

dosimetry and good robustness.

1. Introduction

Multi-field optimized Intensity-Modulated Proton Therapy (MFO-IMPT) is the state-of-the-

art delivery technique of radiation therapy. It utilizes the spot scanning technique1 and 3D 

modulation2 of pencil beams from multiple fields to achieve high target dose conformality 

and superior organs at risk (OARs) sparing. Since MFO-IMPT is exclusively investigated in 

this study, we will refer to it as IMPT in the remainder of the paper for brevity.

In general, both plan robustness and plan quality/conformality depend on beam angle 

selection. An ideal IMPT treatment planning process should include beam angle selection 

and fluence map optimization (FMO) simultaneously. In current clinical practice, the proton 

beam angles are manually selected first by a planner. Different from X-ray therapy where 

equiangular or arc beams are often acceptable, the proton beam orientations are typically 

asymmetric, and need to be more carefully considered for factors such as the water-

equivalent thickness to the target, nearby OAR sparing, heterogeneity of tissues in the beam 

path, and setup robustness etc3–5. To minimize low dose regions and speed up treatment 

delivery, there are practically fewer beam angles in a typical proton plan, which makes the 

selection of proton beam angle particularly important. Planners’ experience and skill can 

heavily influence the final treatment plan quality. For complicated patient cases, tedious 

trial-and-error attempts may be needed to find better beam configurations. Yet, human 

operators cannot effectively search the enormous coplanar and non-coplanar beam space, 

resulting in inconsistent planning results. Beam orientation optimization (BOO) using a 

computational model is therefore essential for improving IMPT.

The Intensity Modulated Photon Therapy (IMXT) BOO problem has been extensively 

researched using stochastic and analytical methods6–12, but there have been limited IMPT 

BOO studies. Cao et al.13 applied a local neighborhood search (LNS) algorithm to the IMPT 

BOO problem and implemented it on prostate cancer to improve beam arrangement14. The 

LNS is confined to be within a small search space near the initial condition, which still has 

to be manually selected. Later Lim et al.15 used global search methods, such as branch-and-

bound and simulated annealing, to find a good feasible solution as the initial condition for 

LNS but these stochastic methods were only demonstrated on much smaller coplanar IMPT 

problems. In our previous work16, we developed an integrated BOO and FMO framework 

for non-coplanar IMPT. Based on group sparsity regularization, this algorithm efficiently 

performs a global search on non-coplanar candidate beams and finds a dosimetrically 

optimal solution.
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Besides plan dosimetric quality, uncertainty or plan robustness is important for IMPT. The 

dose of a proton pencil beam is mostly deposited around the Bragg peak17, whose location is 

sensitive to both patient positioning and range estimation uncertainties18–22. The former is 

caused by the misalignment between proton beam and patient anatomy, and the latter due to 

the error of converting CT number to stopping power ratio, CT image artifacts, and patient 

anatomy changes. The proton dose uncertainties can lead to severely under-dosed target and 

over-dosed OARs yet the geometrical margin used in X-ray therapy is ineffective to mitigate 

the problem. For IMPT, a commonly used method to reduce the effect of uncertainties is 

worst-case optimization method21–40, where the estimated worst situations are sparsely 

sampled in the optimization problem to maintain the dose distribution even with 

uncertainties above. The plan robustness is better maintained at the cost of substantially 

increased computational cost21,34. To avoid the additional burden of calculating the worst 

cases and provide the robustness consideration as a soft constraint, we recently modeled the 

scanning spot sensitivity concerning range and positioning uncertainties as a regularization 

term in the optimization41. We showed improved dosimetry, robustness to larger range 

uncertainties, and an order of magnitude faster optimization time than the worst case 

approach.

In our previous IMPT frameworks, robustness and BOO were studied separately, despite 

their obvious inter-dependence. For instance, beams passing through highly heterogeneous 

tissues are likely more sensitive to range and positioning uncertainties than beams passing 

through homogeneous tissues. It may cause more dosimetric compromise to achieve 

robustness for these beams. The robustness consideration complicates beam selection in 

manual IMPT planning, making integrated robust BOO and FMO even more urgently 

needed. Pflugfelder et al20 modeled the interdependence of beam orientation and robustness 

as a lateral tissue heterogeneity across the proton pencil beams. Their heterogeneity number, 
is then used to guide beam angle selection42,43. After evaluating the heterogeneity of each 

beam, Bueno et al42 recommended to change the beam direction if the heterogeneity 

exceeded a threshold, and Toramatsu et al43 proposed to use the beams with minimum 

heterogeneity in single field uniform dose (SFUD) plans. These heuristic heterogeneity-

guided beam angle selection methods have not quantitatively incoporated the robustness 

consideration in IMPT optimization and potentially dismiss dosimetrically superior beam 

orientations. Cao et al13–15 combines the worst-case approach and local neighborhood 

search algorithm to achieve robust beam angle selection. However, in addition to the 

limitations above being confined to the local search, in each search step, a subproblem of 

worst-case FMO is solved, making the method impractically slow.

In this work, we develop a novel unified robust optimization framework for IMPT, that 

integrates robust beam orientation selection and robust fluence map optimization in a single 

problem and then solve this global optimization problem. The BOO is achieved by group 

sparsity regularization, and robustness is promoted by the lateral tissue heterogeneity penalty 

and dose sensitivity regularization.
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2. Materials and Methods

The integrated robust BOO and FMO framework is formulated with a dose fidelity term, a 

heterogeneity-weighted group sparsity term, and a dose sensitivity regularization term. The 

details are described as follows.

2.1. Group sparsity-based BOO

Assume  ℬ is the set containing all the feasible candidate beams. As proposed in our 

previous work16, the selection of a small number of beams from the set ℬ by group sparsity 

regularization is formulated as the following optimization problem:

minimize
x

      Γ Ax + ∑
b ∈ ℬ

αb xb 2
1/2,

subject to         x ≥ 0,

(1)

where xb is a vector representing the intensities of scanning spots from the candidate beam 

b, and x is the concatenation of all the vectors xb  b ∈ ℬ). A is the dose calculation matrix 

including all candidate beams, with each column being the vectorized doses delivered to the 

patient from one unit intensity spot. The first term Γ(Ax) in problem (1) is the dose fidelity 

term on target and critical organs, to penalize dose deviation from the ideal distribution. The 

second term ∑b ∈ ℬαb xb 2
1/2 is an L2,1/2-norm group sparsity term. Most candidate beams 

are turned off with a proper value of weighting hyperparameter for each beam b, denoted as 

αb. A small number (e.g. 2–4) of beams, remain active. The weighting parameter αb of 

beam b is set to be:

αb = c
A𝒯

b 1 2
nb

1/2

, (2)

where A𝒯
b  is the dose calculation matrix of the target volume for beam b, nb is the number of 

scanning spots in beam b, 1 is a vector with every element being one, and c is a 

regularization parameter. The aim of (2) is to use a single parameter c to control the number 

of active beams while the beams of different ranges and spot numbers are unbiasedly 

weighted.

2.2. Heterogeneity-weighted group sparsity

The group sparsity-based BOO (GSBOO) method presented in problem (1) is designed to 

select beams for good dosimetry, and the robustness is not considered yet. In order to select 

beams with less sensitivity to setup uncertainties, we incorporate lateral tissue heterogeneity 

into the current group sparsity term, to encourage the algorithm to choose beams with less 

lateral tissue heterogeneity. The lateral tissue heterogeneity observed along beam b is 

quantified by its heterogeneity index hb, which is defined as follows.
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First, as shown in Figure 1, a coordinate system is created for each pencil beam (scanning 

spot) in beam b, with the z axis along the central axis of the pencil beam and pointing from 

the source to the patient. The central axis of ith pencil beam is located at (xi, yi), and the 

position of (xi, yi, 0) is where the pencil beam enters the patient.

With discrete sampling, the heterogeneity index of ith pencil beam in beam b at the depth zk, 

denoted as  hb, i
k , is defined as:

hb, i
k =

∑
j ∈ 𝒮i zk

ϕi x j, y j, zk Srel x j, y j, zk − Srel xi, yi, zk
2

∑
j ∈ 𝒮i zk

ϕi x j,   y j, zk

1/2

, (3)

where Srel(xj, yj, zk) is the relative stopping power ratio at the voxel (xj, yj, zk), and ϕi(xj, yj, 

zk) is the particle fluence at (xj, yj, zk) for the ith pencil beam. The sampling set of lateral 

voxels at depth zk is written as 𝒮i zk . In the analytical model, the lateral dose distribution of 

pencil beam i is approximated as a single Gaussian distribution, with a standard deviation of 

σi(zk) at depth zk. The sampling set 𝒮i zk  at each depth is selected to include the voxels 

within 3σi (zk) from the central axis.

The depth-specific  hb, i
k  is evaluated and summed up from zk = 0 … Rb,i, which is the path 

spanning from where the pencil beam enters the patient to the end of its range. The sum 

generates a single metric to indicate the lateral heterogeneity affecting the ith pencil beam in 

beam b:

hb, i =   ∑
k = 0

Rb, i
hb, i

k . (4)

The heterogeneity index values of all scanning spots in the same beam b are then averaged to 

represent the beam heterogeneity. Therefore, the heterogeneity index of beam b, denoted as 

hb, is calculated as:

hb =   1
nb

∑
i = 1

nb
hb, i, (5)

where nb is the number of scanning spots in beam b.

Then hb is evaluated for each candidate beam and used to weigh the group sparsity in 

problem (1). The heterogeneity-weighted group sparsity BOO (HBOO) is thus formulated 

as:
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minimize
x

      Γ Ax + ∑
b ∈ ℬ

αbhb xb 2
1/2

subject to         x ≥ 0.

(6)

In this algorithm, the beams with higher lateral heterogeneity are more heavily penalized in 

the group sparsity term, resulting in selecting beams with higher dose fidelity and less 

sensitivity to setup errors.

2.3. Sensitivity regularization and robust BOO-FMO

Even though the beams more resilient to setup errors are preferred in problem (6), the range 

uncertainty has not been considered in FMO. Sensitivity regularization41 is thus 

incorporated into the framework to achieve simultaneous robust beam angle selection and 

robust fluence map optimization. We now describe the formulation of the sensitivity vector.

As shown in Figure 2, a coordinate system (ub, vb, wb) is first designated for the beam b, 

with the origin centered at the isocenter. ub represents the beam direction pointing from the 

source to the isocenter, and vb and wb are orthogonal vectors in the plane perpendicular to 

the beam direction. We define Pb,i as the spatial position of scanning-spot i from beam b, 

which points from the isocenter to the position of its Bragg peak in the patient. ab,i is the full 

dosimetric contribution of spot i in beam b to all voxels of the patient, embedded as a 

column vector in the dose calculation matrix A, and ab is the submatrix of A that contains 

only the ab,i for all the spots in the same beam b. Then we evaluate the gradient field of ab,i 

with respect to the spot position p, and denote its directional derivatives along ub,vb and wb 

in the respective functional forms:

Dub
ab, i = ∇pab, i ub,

Dvb
ab, i = ∇pab, i vb,

Dwb
ab, i = ∇pab, i wb .

(7)

This equation set evaluates the dose sensitivity level at each voxel from a specific scanning 

spot along the longitudinal direction (beam direction) and the lateral directions (orthogonal 

to beam direction). Since both Dvb
ab, i and Dwb

ab, i represent the lateral sensitivity, only 

Dub
ab, i and Dvb

ab, i are used for optimization in the following sections.

We can obtain the vector specific to spot i of beam b in each direction, ub or vb, by simply 

extracting column i from Dub
ab or Dvb

ab, respectively. After performing this operation on 

every beam-specific submatrix of the A, we can obtain two sensitivity matrices, written as 

DuA and DvA. The absolute values of the rows of DuA and DvA are summed up, and the 
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two resulting row vectors are transposed to produce the longitudinal and lateral sensitivity 

vectors, denoted as su and sv, respectively.

After acquiring the sensitivity vectors, the sensitivity regularization term is added to problem 

(6), to formulate the final integrated robust BOO and FMO framework, which is written as:

minimize
x

      Γ Ax + ∑
b ∈ ℬ

αbhb xb 2
1/2 + ∑

k ∈ u, v
λksk

Tx

subject to         x ≥ 0,

(8)

where λu and λv are the sensitivity regularization parameters. This Sensitivity regularization 

and Heterogeneity weighting based BOO and FMO framework (SHBOO-FMO), allows 

robust beams to be selected and robust fluence map to be generated in a single equation. 

SHBOO will be used in place of SHBOO-FMO for the rest of the paper when referring to 

the BOO algorithm and the selected beams for brevity.

In this study, a one-sided quadratic function is used for dose fidelity term, which is 

formulated as:

Γ Ax = ∑
j ∈ ℒ

w j l j − A jx + 2
2 + ∑

j ∈ 𝒪
w j A jx − d j + 2

2
(9)

where ℒ is the structure set of the target volumes, with lj being the prescription dose to jth 

target, and 𝒪 is the dose-limiting structure set which includes the OARs as well as the target 

to suppress its maximum dose, with dj being the prescribed maximal allowed dose to the jth 

structure. Aj is the dose calculation matrix block for structure j, and wj is the structure 

weighting parameter.

Problem (8) is a non-differentiable problem due to the presence of L2,1/2-norm group 

sparsity. However, it can be efficiently solved by FISTA, an accelerated proximal gradient 

method known as the Fast Iterative Shrinkage-Thresholding Algorithm44. The details of 

solving problem (8) using FISTA are shown in Appendix. A.

2.4. Evaluations

This SHBOO-FMO method was tested on two patients with skull base tumor (SBT) and two 

bilateral head-and-neck (H&N) patients. Four beams were selected for the SBT patients and 

three beams for the H&N patients. For each patient, there were originally 1162 non-coplanar 

beams in the candidate set, which were evenly distributed across the 4π space with 6° 

separation. Geometrically undesired beams and beams of infeasible energies, such as those 

directed through the feet to the head, were manually excluded from the candidate set, 

resulting in about 700 to 800 candidate beams for each patient. More accurate beam 

screening can be performed for a specific proton gantry but should not affect the generality 

of the current study. For each candidate beam, dose calculation for the scanning spots 

covering the CTV and a 5 mm margin was performed by matRad45,46, a MATLAB-based 
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3D treatment planning toolkit. In matRad, the lateral beam width is calculated as the root 

sum square of the initial beam width from Safai et al47 and the lateral broadening from 

Gottschalk et al48. The performance of analytical dose calculation for IMPT optimization 

was compared with Monte Carlo in our previous paper41 and found to be acceptable for 

pencil beam dose calculation and robust planning. The spot spacing was 3 mm in the beam 

direction, 5 mm in the lateral direction for the H&N patients and 4 mm in the lateral 

direction for the SBT patients. The dose calculation resolution was 2.5×2.5×2.5 mm. The 

CTV was set as the optimization target. The prescription dose, target volume, and average 

spot count per beam for each patient are shown in Table I.

The dosimetry and plan robustness of the proposed SHBOO-FMO method was compared 

against 1) the voxel-wise worst-case FMO method with manually selected beams (MAN-

WC), and 2) sensitivity-regularized FMO method with the same manual beams (MAN-

SenR). The voxel-wise worst-case optimization considered nine scenarios, including one 

nominal scenario and the following 8 worst-case scenarios: 1) six setup uncertainty 

scenarios, defined by shifting the beam isocenter by ±3 mm along anteroposterior, superior-

inferior, and mediolateral directions; 2) two range uncertainty scenarios, by scaling the CT 

number by ±3%. The SenR robust FMO method described in our previous work41 consists 

of dose fidelity term and a sensitivity regularization term, which has been described in 

Section 2.3. The same quadratic loss function as equation (9) was used in the WC method 

and the SenR method.

In addition to the robustness of the final plan, the sole robustness of the selected beams by 

SHBOO-FMO, was also evaluated and compared with the following beam sets: 1) manually 

selected beams, 2) GSBOO beams, and 3) HBOO beams. The comparison was performed by 

creating plans using the same conventional CTV-based FMO method (Conv), using the 

aforementioned beam sets. Same candidate beam set, spot population, and dose calculation 

scheme were used for different BOO algorithms. The acronym used for each method and its 

definition can be found in Table II.

CTV homogeneity, D95%, D98%, and maximum dose were evaluated under the nominal 

condition. CTV homogeneity is defined as D95%/D5%. The maximum dose is defined as 

the dose to 2% of the structure volume, D2%, following the recommendation by IRCU-8349. 

The mean and maximum doses for OARs were also evaluated. The robustness of a plan was 

evaluated by the DVH band plot50, as well as the worst dose metrics occurred among 

uncertainties scenarios. The robustness analysis considered the same nine scenarios as the 

WC method.

3. Results

3.1. Runtime and selected beams

The dose, sensitivity and heterogeneity calculation for all the candidate beams were 

performed on a Xeon 20-core CPU server operating at 3.10 GHz clock, with Matlab and its 

Parallel Computing Toolbox. The averaged time per beam to calculate the three data is listed 

in Table III. The most time-consuming step during preparation is the evaluation of the 

sensitivity vector. The averaged runtime for GSBOO, HBOO, and SHBOO, on an i7 CPU 
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desktop, is also shown in Table III. Depending on the target size, these BOO process took 

about 6–75 minutes to complete. With the additional heterogeneity weighting and sensitivity 

regularization, the SHBOO method reduced the runtime from the original GSBOO method 

approximately by half.

The couch and gantry angles for the beams from manual selection, GSBOO, HBOO, and 

SHBOO, are listed in Table IV. The angle notation follows IEC 61217 coordinate 

conventions. Figure 3 also shows the beam arrangement by the four methods of the SBT #1 

and H&N #1 patients. It is observed in the four tested cases that the SHBOO algorithm tends 

to select more aggregated beams while GSBOO and HBOO prefer more scattered beams.

3.2. Beam robustness

The beam robustness was compared among the plans using different BOO methods but the 

same conventional CTV-based approach (Conv) for fluence map optimization.

Figure 4 shows the DVH bands of the CTVs of these Conv plans with range uncertainty and 

setup uncertainty for the SBT patients and H&N patients. In these DVH band plots, the solid 

lines are the nominal DVHs without uncertainties, the dotted lines and bands bound the 

worst-case dose distributions, and the horizontal and vertical lines label the worst D95% of 

each method for each CTV. For the tested cases, the beam robustness of the GSBOO method 

is not maintained. For example, the GSBOO beams lead to wide DVH bands under range 

uncertainties for the SBT #2 and H&N #2 patients, and wide bands under setup uncertainties 

for the two SBT patients. With heterogeneity-weighted group sparsity, the beam robustness 

against setup uncertainty is improved from the GSBOO beams for the four tested patients, 

while the robustness against range uncertainty varies among patients. With SHBOO method, 

the beams with superior range robustness over manual beams and HBOO beams are selected 

while the setup robustness is maintained or improved.

The lowest (worst) D98%, D95%, V95% and V100% of each CTV with range uncertainties 

and setup uncertainties were evaluated and plotted in Figure 5. Compared with the manual 

selection, the D98%, D95%, V95%, and V100% were improved by the SHBOO method. On 

average, the lowest [D98%, D95%, V95%, V100%] of CTV increased from [90.85%, 

93.85%, 91.06%, 70.64%] in MAN beams, to [96.05%, 98.62%, 98.61%, 96.17%] in 

SHBOO beams. Under setup uncertainties, the average lowest [D98%, D95%, V95%, 

V100%] of CTV increased from [92.06%, 94.83%, 94.31%, 78.93%] in MAN beams, to 

[93.54%, 96.61%, 97.01%, 91.98%] in SHBOO beams.

3.3. Plan robustness

The plan robustness of SHBOO-FMO method was compared with the plan with manual 

beams and voxel-wise worst-case FMO (MAN-WC) as well as that with manual beams and 

SenR FMO (MAN-SenR). The CTV DVH bands of the three methods are shown in Figure 6 

for the SBT patients and the H&N patients. Under range uncertainties, narrower DVH bands 

were observed in the SHBOO-FMO plans compared with the MAN-WC plans, and the CTV 

underdosage in the MAN-SenR plans was also improved by the SHBOO-FMO method. 

Under setup uncertainties, the SHBOO-FMO method was less robust than MAN-WC but 

comparable with or more robust than MAN-SenR.
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The lowest (worst) D98%, D95%, V95% and V100% of each CTV with range uncertainties 

and setup uncertainties were also evaluated and plotted in Figure 7. Compared with MAN-

SenR, the D98%, D95%, V95% and V100% were improved by the SHBOO-FMO method. 

On average, the lowest [D98%, D95%, V95%, V100%] of CTV were increased from 

[93.95%, 97.42%, 97.64%, 94.60%] in MAN-SenR plans, to [96.18%, 98.75%, 98.68%, 

96.68%] in SHBOO-FMO plans. Under setup uncertainties, the averaged lowest [D98%, 

D95%, V95%, V100%] of CTV were increased from [93.10%, 96.54%, 96.93%, 92.01%] in 

MAN-SenR plans, to [93.80%, 96.89%, 97.29%, 92.99%] in SHBOO-FMO plans. Overall 

the MAN-WC method achieved the best CTV metrics, with the averaged lowest [D98%, 

D95%, V95%, V100%] of [97.53%, 98.82%, 99.36%, 97.44%] under range uncertainties 

and [97.86%, 99.10%, 99.59%, 97.90%]

3.4. Nominal dose comparison

Table V compares the nominal CTV statistics of each patient between the MAN-WC, MAN-

SenR and SHBOO-FMO methods. Without uncertainties, the three methods achieved similar 

CTV dose coverage. Several OARs are selected for the SBT and H&N sites, respectively, 

and the differences of their mean and maximum doses between the SHBOO plans and the 

MAN plans are presented in Table VI, and VII. Figure 8 shows the nominal DVHs 

comparison between the SHBOO-FMO method and MAN-WC method for the four tested 

patients.

The SHBOO-FMO plans achieved substantially better OAR sparing compared with the 

MAN-WC plans. For example, in the SBT cases, the dose sparing of all the OARs was 

improved. In the SBT #2 patient, the SHBOO-FMO plan reduced the max dose to the right 

optical nerve and left eye by 13.93 GyRBE and 25.63 GyRBE from the MAN-WC plan. In 

the H&N cases, the overall OAR sparing was also improved by SHBOO-FMO method from 

MAN-WC method, except for the increase of mean dose to the right submandibular gland. 

The average reduction of [Dmean, Dmax] of the SHBOO-FMO plans from the MAN-WC 

plans were [6.31, 6.55] GyRBE for the SBT cases and [1.89, 5.08] GyRBE for the H&N 

cases.

From Table VI and Table VII, the overall OAR sparing of SHBOO-FMO was better than 

MAN-SenR in the SBT cases and comparable with the MAN-SenR in the H&N cases. The 

average reduction of [Dmean, Dmax] of the SHBOO-FMO plans from the MAN-SenR plans 

were of [2.09, 2.40] GyRBE for the SBT cases, and [−0.35, 2.49] GyRBE for the H&N 

cases.

4. Discussion

To the best of our knowledge, this work describes the first integrated IMPT optimization 

method that optimizes beam orientation and scanning-spot intensities for both nominal dose 

conformality and robustness. It is known that the beam orientation directly impacts the 

IMPT dose conformality and robustness, requiring substantial manual effort from the 

dosimetrists in clinical IMPT planning to find better beam angles. However, a manual search 

is ineffective to identify beams from the enormous non-coplanar space for both dosimetry 

and robustness goals. The combination of group sparsity, lateral heterogeneity, and 
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sensitivity into a formulation that allows global search on all feasible candidate beams is a 

major contribution of this study.

Proton beam has a unique feature that protons stop at the end of its Bragg Peak. This is 

different from photon beam. As a result, the experience in beam angle selection is different 

from the photon experience, in particular for non-coplanar beams. The results on tested 

patients show that the proposed robust BOO algorithm selects beams that are more resilient 

to range and setup uncertainties. The final SHBOO-FMO plans better spared the OAR 

sparing compared with the voxel-wise worst-case method on the manual beams while 

maintaining similar robustness. Compared with the plans using manually selected beams and 

SenR FMO, the proposed method achieved better target coverage under simulated 

uncertainties.

Furthermore, the sensitivity regularization term helps to directly generate the fluence map 

which is more robust to range and setup uncertainties. In the limited existing IMPT BOO 

studies, the FMO is a nested subproblem that is solved post-hoc, which not only is 

inefficient but also compromises plan optimality as the FMO results could influence the 

selected beams. Our algorithm integrates FMO and BOO in a single function to ensure that 

both the beam orientations and the spot intensities are matched for the desired dosimetry and 

robustness. The second important aspect of our study is that rather than the commonly used 

worst-case scenario optimization method for FMO, we apply sensitivity regularization to 

improve the plan robustness against errors. This non-scenario-based method can be easily 

and efficiently incorporated into the optimization framework and provides the flexibility 

between the dosimetry and the robustness. Our previous study41 showed that the sensitivity 

regularization is more effective to mitigate range uncertainties than setup uncertainties. The 

latter weakness is largely remedied in the current framework by incorporating lateral tissue 

heterogeneity in the BOO.

Compared with GSBOO16 or SenR41 alone, the planning time of SHBOO-FMO is longer. 

The computational cost of the proposed method attributes to two main components: the pre-

optimization calculation and optimization of the objective function. Preoptimization includes 

calculating a dose calculation matrix, heterogeneity index, and sensitivity vector for each 

candidate beam. Under the analytical calculation model, the dose calculation and 

heterogeneity evaluation, in theory, could have shared the same ray tracing step to reduce the 

calculation time shown in Table III. Calculation of the sensitivity is more time-consuming. 

However, this parallel calculation process can be accelerated using the modern graphics 

processing unit (GPU) platform. Further acceleration is expected using a non-uniform 

sampling of the dose matrix to have a higher resolution in the CTV and its vicinity and lower 

resolution elsewhere.

For the optimization step, the problem (8) itself is a large-scale problem due to the extra 

freedom of proton energy in IMPT and a large number of non-coplanar candidate beams 

used in this study. With the linear formulation of the sensitivity regularization term and the 

proximal operators derived in our previous work16, we are able to efficiently solve the 

problem with FISTA, which converges at a rate of O(1/k2) amongst the first-order 

methods44. Moreover, by adding the sensitivity regularization term, the time spent on beam 
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pruning within the SHBOO method is reduced to approximately half of the initial group-

sparsity based BOO method.

It is necessary to clarify that the study only handles range uncertainties and setup errors from 

interfractional setup variations. Other sources of uncertainties such as intrafractional 

respiratory motion and anatomy changes, which heavily affect the beam selection process, 

require separate approaches to tackle. Biological effect is another important factor to 

consider in BOO. In our future work, linear energy transfer (LET) will be included in this 

framework to encourage selecting beams with a higher biological effect on the target and 

lower biological risk on the OARs.

5. Conclusions

We developed a novel IMPT robust optimization method, which efficiently solved robust 

BOO and FMO in a unified framework, generating plans with superior dosimetry and good 

robustness.
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Appendix. A

To solve an optimization problem using FISTA, the problem needs to be formulated in the 

following form:

minimize
x

  f x + g x , (A.1)

where f is a smooth convex function, which is continuously differentiable with Lipschitz 

continuous gradient (∇f); g is a function which is possibly nonsmooth, but has a proximal 

operator that can be evaluated efficiently. The proximal operator with step size t > 0 for 

function g is defined by:

proxtg x = argmin
y

  g y + 1
2t y − x 2

2 . (A.2)

Once the optimization problem is formulated as in Equation (A.1) and the conditions for f(x) 

and g(x) are satisfied, FISTA is relatively straightforward to implement as it only involves 

elementary matrix-vector arithmetic operations and inexpensive proximal operator 

evaluations. FISTA with line search is used in this work, which follows the steps shown in 

Table A.I.
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Table A.I.

Pseudo code for FISTA with line search.

FISTA with line search

Initialize x0: = 0, v0: = x0, t0 > 0, 0 < r < 1

for k = 1, 2, … , n,⋯do

  t ≔ tk-1/r

  Repeat

   θ≔
1 if k = 1
positive   root   of   tk − 1θ2 = tθk − 1

2 1 − θ if k > 1

   y ≔ 1 − θ xk − 1 + θvk − 1
   x ≔ proxtg(y – t∇f(y))

  break if f x ≤ f y + < ∇ f y , x − y > + 1
2t x − y 2

2

  t ≔ rt

 tk ≔ t

 θk ≔ θ

 xk ≔ x

 vk ≔ xk + 1
θk

xk − xk − 1

end

return x

In the problem (8), the objective function can be rewritten in the following format:

f x =   Γ Ax + ∑
k ∈ b, u

λksk
Tx  

g x = ∑
b ∈ ℬ

αbhb xb 2
1/2 + I ≥ 0 x ,

(A.3)

where I≥0 (x) is an indicator function on nonnegative orthant, with its ith element equal to 0 

if if xi ≥ 0 and ∞ otherwise.

For the quadratic fidelity formulation, the gradient of f is given by:

∇ f x = AT∇Γ Ax +   ∑
k ∈ b, u

λksk = ∑
q ∈ 𝒯

wqAq
T lq − Aqx + + ∑

q ∈ 𝒪
wqAq

T Aqx − dq +

+    ∑
k ∈ b, u

λksk,

(A.5)
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g(x) is a separable sum: g x = ∑b ∈ ℬαbhbgb xb , where

gb xb = αbhb xb 2
1/2 + I ≥ 0 xb . (A.6)

Following the separable sum rule, the problem evaluating the proximal operator of g(x) 

reduces to independently evaluating the proximal operators of the functions gb (xb). To 

simplify notation, we derive an expression for the proximal operator of the function 

h x = β x 2
1/2

+ I ≥ 0 x . The proximal operator of function h is16

proxth x = prox
βt ∙

2

1/2 max x, 0 . (A.7)

The form of proximal operator for L2,1/2-norm is known41:

prox

t  ⋅
2

1
2

x =
0, i f   t x 2

−1.5
> 2 6

9

x 2
3sin 1

3 arccos 3 3
4 t x 2

−1.5
+ π

2 otherwise

Using these formulas for the gradient of the function f and the proximal operator of function 

g, the problem (8) is readily solved using FISTA.
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Figure 1. 
Diagram showing the coordinates used in heterogeneity index calculation for a specific 

pencil beam.
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Figure 2. 
Diagram showing the coordinates and the vectors used in spot sensitivity calculation. The 

beam divergence due to spot lateral distance to the isocenter is exaggerated for illustration 

purposes. The actual proton system source-to-axis distance is substantially greater than the 

target size and the individual pencil beams in the same beam direction are nearly parallel.
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Figure 3. 
The beam arrangement of each method for the SBT #1 patient (top row) and H&N #1 patient 

(bottom row). From left to right, each column is MAN, GSBOO, HBOO, and SHBOO 

beams, respectively .
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Figure 4. 
CTV DVH bands of the four patients, indicating the robustness of the beams chosen by 

different methods. The situation with only range uncertainty is shown on the left and 

situation with only setup uncertainty is shown on the right. The worst D95% of each method 

is labeled by reference lines in the x-y plane. The two CTVs in the H&N #1 patient are 

plotted together in the third row, and the three CTVs in the H&N #2 patient are plotted 

together in the fourth row, with different transparencies.
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Figure 5. 
The comparison of worst D98% (top row), D95% (second row), V95% (third row), and 

V100% (bottom row) of the CTVs as a percentage of prescription doses, for every patient, 

between the plans with Conv FMO and MAN, GSBOO, HBOO and SHBOO beams, 

respectively. The situation with only range uncertainty is shown on the left and situation 

with only setup uncertainty is shown on the right in each plot.
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Figure 6. 
CTV DVH bands of the four patients, indicating the robustness of the plans generated by 

SHBOO-FMO, MAN-WC and MAN-SenR. Situation with only range uncertainty is shown 

on the left and situation with only setup uncertainty is shown on the right. The two CTVs in 

the H&N #1 patient are plotted together in the third row, and the three CTVs in the H&N #2 

patient are plotted together in two figures in the fourth row. The worst D95% of each method 

is labeled by reference lines in the x-y plane.

Gu et al. Page 23

Med Phys. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
The comparison of worst D98% (top row), D95% (second row), V95% (third row), and 

V100% (bottom row) of the CTVs as a percentage of prescription doses, for every patient, 

between the MAN-WC plan, MAN-SenR plan and SHBOO-FMO plan Situation with only 

range uncertainty is shown on the left and situation with only setup uncertainty is shown on 

the right.
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Figure 8. 
Comparison of nominal DVHs for four patients between the SHBOO-FMO method (solid) 

and MAN-WC method (dotted).

Gu et al. Page 25

Med Phys. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gu et al. Page 26

Table I.

Prescription doses, CTV volumes and average number of spots per beam for each patient.

Case Prescription Dose (GyRBE) CTV Volume (cc) Average Spots per Beam

SBT #1 56 33.7 2537

SBT #2 70 36.8 2650

H&N #1
CTV54 54 108.0

10077
CTV60 60 127.3

H&N #2

CTV54 54 110.4

9433CTV60 60 99.0

CTV63 63 10.2
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Table II.

Acronym of each method and its definition.

Acronym Definition

SHBOO-FMO Group sparsity based integrated BOO and FMO framework with sensitivity regularization and heterogeneity weighting

SHBOO Short for SHBOO-FMO when referring to the BOO algorithm and the beams selected by SHBOO-FMO

MAN Manually selected beams

GSBOO Group sparsity based BOO algorithm

HBOO Heterogeneity-weighted group sparsity BOO algorithm

Conv Conventional CTV-based FMO method

MAN-Conv
GSBOO-Conv
HBOO-Conv

SHBOO-Conv

Conventional CTV-based FMO plan with MAN, GSBOO, HBOO, and SHBOO beams, respectively

MAN-WC CTV-based voxel-wise worst-case FMO method with manually selected beams

MAN-SenR Sensitivity-regularized FMO method with manually selected beams
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Table III.

Preparation time and runtime of each BOO method for the tested patients.

Case
Calculation time per beam (s) BOO runtime (s)

Dose Sensitivity Heterogeneity GSBOO HBOO SHBOO

SBT #1 0.4 1.5 1.5 804 745 362

SBT #2 0.6 2.0 1.6 1102 999 682

H&N #1 1.9 24.0 8.2 3214 2978 1446

H&N #2 1.4 14.9 7.2 4407 3996 2728
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Table IV.

Beam angles (gantry and couch angle) selected in each method.

Patient MAN GSBOO HBOO SHBOO

SBT #1

(60, 273),
(270, 0),
(90, 0),
(180, 0).

(84, 312),
(80, 323),
(30, 272),
(289, 25).

(252, 45),
(206, 69),
(96, 342),
(96, 348).

(78, 348),
(96, 348),
(96, 348),
(96, 0).

SBT #2

(60, 273),
(270, 0),
(90, 0),
(180, 0).

(285, 80),
(270, 342),
(62, 21),
(37, 43).

(262, 81),
(126, 270),
(72, 354),
(67, 20).

(66, 353),
(72, 354),
(62, 21),
(67, 20).

H&N #1
(0, 0),

(162, 0),
(198, 0).

(153, 332) ,
(197, 46) ,
(37, 57).

(167, 296),
(197, 46),
(32, 23).

(36, 0),
(328, 291) ,

(33, 66).

H&N #2
(0, 0),

(162, 0),
(198, 0).

(145, 327) ,
(49, 344),
(192, 270).

(188, 45),
(180, 0),

(324, 301).

(32, 23) ,
(30, 39),

(324, 301).
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Table VI.

OAR mean dose and max dose reduction of the SHBOO-FMO plans from the MAN-WC plans and MAN-

SenR, for the SBT cases under nominal situation.

SBT Case

SHBOO-FMO – MAN-WC (GyRBE) SHBOO-FMO – MAN-SenR (GyRBE)

Dmean Dmax Dmean Dmax

#1 #2 #1 #2 #1 #2 #1 #2

L Opt Nrv −5.06 −15.12 −1.40 −0.90 +0.07 −10.05 +0.83 +1.40

R Opt Nrv −13.93 −1.80 −4.57 −11.20 −2.07 −0.18 −2.00 −4.60

Chiasm −2.35 −13.72 −0.76 −7.18 −2.07 −5.14 +0.24 −4.18

Brainstem −1.45 −4.63 −5.75 −7.32 −0.37 −0.39 −3.33 +2.34

L Eye −0.57 −13.65 −5.42 −25.63 +0.50 −6.01 −2.23 −16.66

R Eye −1.21 0.00 −8.38 0.00 −0.13 0.00 −0.72 0.00

L Cochlea 0.00 −3.59 0.00 0.00 0.00 0.79 0.00 +1.20

R Cochlea 0.00 −4.89 0.00 −6.72 0.00 −2.06 0.00 −3.52
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Table VII.

OAR mean dose and max dose reduction of the SHBOO-FMO plans from the MAN-WC plans and MAN-

SenR, for the H&N cases under the nominal situation.

H&N Case

SHBOO-FMO – MAN-WC(GyRBE) SHBOO-FMO – MAN-SenR(GyRBE)

Dmean Dmax Dmean Dmax

#1 #2 #1 #2 #1 #2 #1 #2

R Submandibular Gland −6.76 +11.48 −5.25 −0.33 +9.22 +10.31 −1.60 +0.76

L Parotid −3.79 −0.42 −1.85 −0.27 +5.67 +0.94 +0.25 +0.07

R Parotid −1.45 −3.33 0.00 −4.27 −0.79 −3.22 +0.22 −3.99

Larynx −3.18 −2.28 −5.39 −9.63 −1.30 +0.04 −0.48 −3.91

Spinal Cord −1.56 −2.33 −5.88 −8.68 −0.49 −0.30 −3.58 −2.75

BrainStem −1.77 −0.35 −13.57 −4.11 −0.68 −0.06 −8.82 −0.79

Oral Cavity +0.12 −3.28 +2.86 −9.20 1.91 −0.41 +5.46 +1.52

Constrictors −3.37 −1.24 −6.28 −2.17 −0.20 +0.98 −3.15 −0.04

L Middle Ear −3.40 −5.33 −10.05 −9.06 −1.77 −10.51 −4.78 −16.46

Esophagus −1.82 −3.36 −6.80 −11.89 −0.80 −1.34 −2.02 −7.73

Mandible +0.68 −4.87 +0.15 −0.05 4.02 −3.48 +2.98 −5.96
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