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Abstract

Purpose: The purpose of this study was to develop a fully automated algorithm for 

mammographic breast density estimation using deep learning.

Method: Our algorithm used a fully convolutional network, which is a deep learning framework 

for image segmentation, to segment both the breast and the dense fibroglandular areas on 

mammographic images. Using the segmented breast and dense areas, our algorithm computed the 

breast percent density (PD), which is the faction of dense area in a breast. Our dataset included 

full-field digital screening mammograms of 604 women, which included 1208 mediolateral-

oblique (MLO) and 1208 Cranial-Caudal (CC) views. We allocated 455, 58, and 91 of 604 

women’s exams into training, testing, and validation datasets, respectively. We established ground 

truth for the breast and the dense fibroglandular areas via manual segmentation and segmentation 

using a simple thresholding based on BI-RADS density assessments by radiologists, respectively. 

Using the mammograms and ground truth, we fine-tuned a pre-trained deep learning network to 

train the network to segment both the breast and the fibroglandular areas. Using the validation 

dataset, we evaluated the performance of the proposed algorithm against radiologists’ BI-RADS 

density assessments. Specifically, we conducted a correlation analysis between a BI-RADS 

density assessment of a given breast and its corresponding PD estimate by the proposed algorithm. 

In addition, we evaluated our algorithm in terms of its ability to classify the BI-RADS density 

using PD estimates, and its ability to provide consistent PD estimates for the left and the right 

breast and the MLO and CC views of the same women. To show the effectiveness of our 

algorithm, we compared the performance of our algorithm against a state of the art algorithm, 

LIBRA.

Result: The PD estimated by our algorithm correlated well with BI-RADS density ratings by 

radiologists. Pearson’s rho values of our algorithm for CC view, MLO view, and CC-MLO 

averaged were 0.81, 0.79, and 0.85, respectively, while those of LIBRA were 0.58, 0.71, and 0.69, 

respectively. For CC view and CC-MLO averaged cases, the difference in rho values between the 

proposed algorithm and LIBRA showed statistical significance (p-value < 0.006). In addition, our 

algorithm provided reliable PD estimates for the left and the right breast (Pearson’s rho > 0.87) 

and for the MLO and CC views (Pearson’s rho = 0.76). However, LIBRA showed lower Pearson’s 

rho value (0.66) for left and right breast for CC view. In addition, our algorithm showed excellent 

ability to separate each sub BI-RADS breast density class (statistically significant, p-values = 
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0.0001 or less); only one comparison pair, density 1 and density 2 in CC view, was not statistically 

significant (p-value = 0.54). However, LIBRA failed to separate breasts in density 1 and 2 for both 

CC and MLO views (p-values > 0.64).

Conclusion: We have developed a new deep learning based algorithm for breast density 

segmentation and estimation. We showed that the proposed algorithm correlated well with BI-

RADS density assessments by radiologists and outperformed an existing state of the art algorithm.
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1 Introduction

For over 30 years clinicians have used mammography for breast cancer screening. Research 

has shown that screening with mammography reduces breast cancer related deaths 

significantly, as noted with a 63% reduction among women who performed regular 

screening1. However, mammography is not perfect, as it suffers from lower sensitivity for 

women with dense breast tissue than for women with fatty breast tissue2, because of the 

potential masking of breast lesions by dense fibroglandular tissue. Women with dense 

breasts are often recommended to undergo additional screening procedures, such as 

magnetic resonance imaging (MRI) or ultrasound, which are more sensitive than screening 

mammography, but have lower specificity. In addition, research has shown that women with 

dense breasts are at higher risk for breast cancer than women with fatty breasts3, 4. Assessing 

breast density from screening mammograms is an active area of research.

Among the various methods assessing breast density of women, the Breast Imaging 

Reporting and Data System (BI-RADS)5 by the American College of Radiology (ACR) is 

the most widely accepted classification method. Radiologists use the BI-RADS density 

classification to assign women to one of four categories. The BI-RADS (5th edition) breast 

density categories are: 1) entirely fatty, 2) scattered, 3) heterogeneously dense, and 4) 

extremely dense.

However, BI-RADS breast density classification is subjective and coarse, and therefore, 

different radiologists can assign a different BI-RADS density level to the same breast, 

especially for moderately dense breasts, which can be categorized as either scattered or 

heterogeneously dense. Thus, many previous studies (to name a few6, 7) have established a 

relative proportion of dense fibroglandular tissue in a breast, referred to as breast percent 

density (PD), as an alternative to the four BI-RADS categories.

To facilitate the process of estimating PD from a given FFDM, researchers have developed 

various automated algorithms. We can assign those algorithms into one of two categories: 1) 

area-based or two-dimensional methods6–9 and 2) volumetric methods10–12. Area-based or 

two-dimensional methods estimate PD from the proportion between the segmented breast 

area and the segmented dense fibroglandular areas in mammograms. Volumetric methods 

utilize the physics of x-ray attenuations in breast tissue to estimate how much dense 

fibroglandular tissue exists in each given x-ray path length. The area-based PD is the most 
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validated measure and researchers are actively using this measure, as indicated in recent 

studies13–15. Among the above algorithms, Cumulus, a semi-automatic area-based method 

for estimating PD from the University of Toronto6, is considered the gold standard for 

segmenting dense areas of the breast and estimating PD from given mammograms. However, 

Cumulus requires considerable human input and time to create the breast segmentation.

Laboratory for Individualized Breast Radiodensity Assessment (LIBRA), developed by 

Keller et al.7 at the University of Pennsylvania, is a fully automated algorithm for 

segmenting dense areas of the breast and estimating PD. LIBRA is a publicly available 

automated software that estimates area-based PD by utilizing multiclass fuzzy C means to 

locate and segment dense fibroglandular areas. The software was validated against the area-

based PD from the mediolateral oblique (MLO) view of a mammogram estimated by 

radiologists using Cumulus. However, it may not always accurately segment the breast area, 

which can affect the PD estimate. Specifically, LIBRA uses a few connected straight lines to 

remove the pectoral muscle from the segmented breast area in the MLO view of a 

mammogram. However, the line between the pectoral muscle and the breast is not linear. 

Further, LIBRA cannot remove non-breast tissues, e.g., belly tissue, imaged in the 

mammogram. These factors can hinder the accurate estimation of PD. These limitations are 

coming from the fact that humans set a list of rules for algorithms to follow. The algorithm 

fails if it encounters an event that is out of the predefined rules. This is a universal issue for 

automated algorithms built from human defined rules.

To overcome such limitations, researchers in computer vision and machine learning 

communities introduced deep learning, where the machine learns and determines the rules to 

solve given problems. Deep learning is a branch of machine learning, where multiple layers 

of artificial neural networks are trained using millions of (labeled) data to solve various data 

analysis problems, such as image classification and speech recognition, with the help of 

massive computing power via GPU. Since its first successful appearance in classifying 

natural scenes16, deep learning has shown its effectiveness in various image analysis 

problems and it is now considered state of the art for various tasks in computer vision and 

machine learning fields. Researchers in the medical imaging field are now actively adopting 

deep learning to solve medical image analysis problems. Although there exists some areas of 

applications that deep learning outperforms medical professionals, e.g., detecting diabetic 

retinopathy17, deep learning in the medical imaging field is still in its infancy.

Previous studies for density segmentation using deep learning are very limited; Kallenberg et 

al., developed a convolutional sparse autoencoder (CSAE)18 to learn features in 

mammograms in an unsupervised fashion, and followed by a classifier on the learned 

features to solve a problem of interest, i.e., mammographic density segmentation. They used 

manual segmentations of dense areas on mammograms by a radiologist as ground truth and 

evaluated the segmentation performance of their algorithm against the manual 

segmentations. They showed a good correlation (Pearson’s rho of 0.85) between the PD 

computed from the manual segmentations and that from their algorithm’s outputs. However, 

the dense area segmentation performance by their algorithm against that of the radiologist 

was suboptimal; the image wise averaged Dice coefficient19 was 0.63 with a wide 

confidence interval of 0.19.
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In this study, we developed a new fully automated algorithm for mammographic breast 

density estimation using deep learning. Specifically, we used a deep learning framework 

developed for image segmentation, i.e., Fully Convolutional Network (FCN), which shows 

successful performance in segmenting objects in natural scenes20, to segment both the breast 

and the dense fibroglandular tissue areas from mammograms. We used manual 

segmentations of the breast area as ground truth. For dense area segmentation, we used a 

simple thresholding method based on BI-RADS density assessments as ground truth. Then, 

we trained, tested, and validated our algorithm on FFDM exams of 604 women. As the size 

of our dataset is small compared to a typical dataset for deep learning, e.g., ImageNet with 

over a million images with 1000 categories21, we used a transfer-learning method, i.e., fine-

tuning, to train our algorithm. Then, we computed the PD using the segmented breast and 

dense area outcomes.

We compared the PD estimates of our algorithm against the BI-RADS density assessments 

of radiologists to evaluate the segmentation performance of our algorithm. Specifically, we 

conducted a correlation analysis between the PD estimates of the proposed algorithm and 

radiologists’ BI-RADS density assessments. In addition to the correlation analysis, we 

evaluated our algorithm’s ability to classify BI-RADS density levels using PD estimates, and 

the ability to provide consistent PD estimates for the left and the right breast, and for the 

MLO and CC views from the same women. To show effectiveness of our algorithm, we 

compared the performance of our algorithm to that of a state of the art and publicly available 

algorithm, LIBRA.

2 Methods

2.1 Dataset

Under an approved exempt institutional review board (IRB) protocol, we used screening 

mammography exams of 604 women who underwent breast screening within the University 

of Pittsburgh Medical Center (UPMC) network during 2007 to 2013. The UPMC network 

uses the Hologic Selenia system (Hologic Inc, MA, USA) to obtain screening 

mammograms. All exams consisted of at least four views: left and right mediolateral-oblique 

(MLO) views, and left and right Cranial-Caudal (CC) views. We utilized those four views 

and the “for presentation” version of the mammograms for this study. Although the most 

current BI-RADS version is the 5th edition, our data were acquired before it was introduced, 

and therefore, radiologists reviewed the FFDM data of this study following the previous BI-

RADS edition (4th edition). Thus, we used the previous BI-RADS edition for breast density 

assessments.

To develop and evaluate the proposed algorithm, of the 604 women’s mammography exams, 

we allocated the mammography exams of mutually exclusive 455, 58, and 91 women into 

training, test, and validation datasets (75%, 10%, and 15% of the entire exams), respectively. 

We grouped MLO and CC views together, but treated left and right mammograms as 

independent samples. Thus, the resulting mammogram images per view for each dataset 

were 910, 116, and 182, respectively. Table 1 summarizes the number of mammography 

images used for training, testing, and validating the proposed algorithm. We stratified the 

table in terms of BI-RADS density level to show the breast density distribution of our 
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dataset. We allocated similar number of cases for each density level for the validation set to 

increase the statistical power for classifying density level with low prevalence, i.e., density 

level 1 and density level 4.

2.2 Establishing ground truth

To train a deep learning network to segment the breast and the dense fibroglandular areas, 

we first established ground truth for both the breast and the dense fibroglandular areas.

This study utilized manually segmented breast areas as the ground truth. Using a computer 

Graphic User Interface (GUI) tool in MATLAB (Mathworks, MA), two undergraduate 

student research assistants delineated the breast areas on mammograms in the dataset of this 

study (Figure 1). We removed any non-breast areas, such as the pectoral muscle and/or belly 

tissue, from the resulting ground truth mask for the breast area.

Then, within the manually segmented breast area from the above, we established the ground 

truth for the dense fibroglandular area per image as follows:

1. Remove breast skin by applying a binary image erosion filter with a square 

structure with an edge length of 1 cm.

2. Create a histogram of the given breast area in terms of its gray-level intensity.

3. Place a threshold in the histogram based on the BI-RADS density of a given 

mammogram:

a. Density 1: threshold at 87.5 percentile of the histogram

b. Density 2: threshold at 62.5 percentile of the histogram

c. Density 3: threshold at 37.5 percentile of the histogram

d. Density 4: threshold at 12.5 percentile of the histogram

4. Assign any pixels with an intensity level higher than the given threshold as 

fibroglandular tissue.

We used the definition of the BI-RADS density classification to create the above criteria. 

Note that radiologists reviewed the FFDM data of this study following the previous BI-

RADS edition (4th edition). According to the version of BI-RADS density classification 

relevant to our data22, the proportion of fibroglandular area in a mammogram increases 

every quartile (25%) as density level increases. Thus, the proportion of fibroglandular area in 

a histogram should increase as the BI-RADS density level increases. That is, for breast with 

a BI-RADS density level 1, we can expect that pixels in the last quartile in the intensity 

histogram would indicate dense fibroglandular area, while pixels in the last three quartiles 

would indicate dense fibroglandular area for a breast with BI-RADS density level 3. Using 

this rationale, we assigned the midpoint of each quartile, i.e., 12.5%, 37.5%, 62.5%, and 

87.5 % as the threshold value for each density category. Figure 2 shows examples how we 

set up the ground truth for dense breast tissue. Note that we used the midpoint of each 

quartile instead of the minimum or the maximum as the minimum or the maximum 

threshold will produce less meaningful dense area segmentation outputs for either density 
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level 1 or 4 for training. For example, for density level 1, if we used 100% (i.e., maximum) 

as the threshold, it will segment nothing from the given breast area.

2.3 Fully convolutional network for breast and dense area segmentation

This study used an existing deep learning framework for segmentation, called Fully 

Convolutional Network (FCN)20, to segment the breast and the dense fibroglandular areas of 

the given breasts.

We used the VGG16 network23 as our basic network structure and fine-tuned the network 

for segmenting breast and dense areas using our dataset. As described in20, we removed the 

final classification layer of the VGG16 network and transformed the last two remaining fully 

connected layers to convolutional layers. Then, we added a 1 × 1 convolution layer with two 

channels to match our objective, which is assigning a pixel into either a foreground or 

background class. The resulting network provides a coarse score map for being a foreground 

or a background, since the original VGG16 network before fully connected layer has five 

pooling layers with a stride of two, with a padding option for convolution to keep image 

resolution same after convolution, which resulted in reducing the image size by a factor of 

32. The resulting coarse-score map then was upsampled with a transposed convolution layer 

with a stride of 32 to provide the segmentation score map for a given image. As the resulting 

output is too coarse to provide meaningful segmentation results, we utilized skip architecture 

to extract lower layer information to obtain high-resolution segmentation outputs. We used 

the FCN-8s20, which is a fused version of the output score map using the output of the final, 

pool4, and pool3 layers, as our final segmentation score map for a given image. To match the 

size of the output of the above three layers, we fused them in cascaded fashion; the final 

layer output is first upsampled with stride two and fused with the output of pool4, and then 

the resulting output upsampled with stride two again and fused with the output of pool3. At 

last, the resulting fused output is upsampled with stride 4. Note that each upsampling 

involves applying different transposed convolution layers. Following original FCN paper20, 

we initialized the upsample layers to bilinear upsampling and then let their weights be 

learned during fine-tuning. Table 2 shows the FCN network architecture used for this study.

2.4 Training (fine-tuning) setup

The typical size of a mammogram is around 3000 by 4000 pixels. The purpose of this study 

is to segment breast area and dense area in the breast, which do not require the full 

resolution of mammogram. Thus, we conducted the following preprocessing step to make 

the mammogram images suitable to train FCN networks:

1. Convert an image I with 16 bit intensity [0, 65535] to an image I  with 8 bit 

intensity [0, 255] by using the following equation: I = 255 * I, where 

I = I − min I /max I .

2. Convert I  to RGB image I by repeating I  in red, blue, and green channel.

1. Subsample images (original, breast area mask, and dense area mask) to 227 by 

227 pixels.
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The expected input image sizes for popular deep learning networks are ranged from 224 by 

224 to 299 by 299. For example, AlexNet16 expects to have 227 by 227 as input image size, 

while VGG1623 expects 224 by 224 and Google’s Inception model24 expects 299 by 299 as 

input image resolution. Among these choices, we set 227 by 227 as input image resolution 

as it is enough to visualize the required information (e.g., dense area has higher pixel 

intensity than non-dense area) for the segmentation of breast and dense area. However, it 

should be noted that one can choose other higher resolutions (e.g., 299 by 299 or higher) as 

input image size to train FCN networks.

We then trained four FCN networks, two (MLO and CC) for segmenting the breast area and 

two (MLO and CC) for segmenting the dense fibroglandular area. We refer to the two FCN 

networks for segmenting the breast area as FCNBreastMLO and FCNBreastCC, and the other 

two for segmenting the dense area as FCNDenseMLO and FCNDenseMLO. Note that we trained 

separate FCN networks for the MLO and CC views, as they contain anatomically different 

body parts. For example, MLO view contains a pectoral muscle, which show high intensity 

comparing to other breast tissues, while CC view typically contains breast area only. We 

trained all networks using the Adaptive Moment Estimation (Adam) optimizer25 with a 

learning rate of 0.00001. We used a weight decay of 0.0005 for all layers and a dropout 

probability of 0.5 for the convolution layers 6 and 7. We set the batch size as 1 and 

augmented the training data by applying a random cropping by randomly moving a window 

up to 32 pixels in both x and y axes. We followed the choice of the learning rate, weight 

decay, batch size, and dropout probability from a previous study26, which showed the 

excellent result on a related but different task, i.e., the segmentation of roads for Kitti Road 

Detection Benchmark27. We used cross-entropy as a loss function and set the maximum 

iteration as 8000 for all networks. Every 100 iterations, we evaluated each FCN using the 

test dataset. Specifically, we tested each FCN by computing the Dice coefficient between the 

FCN outputs and corresponding ground truth. We found that both FCNs for breast area and 

FCNs for dense area converged and were steady when they were at the maximum iteration 

for the both training and test datasets (Figure 3). FCNBreastMLO and FCNBreastCC converged 

98 – 99 after 1000 iterations. FCNDenseMLO and FCNDenseMLO, relatively slow to converge 

compared to FCN networks for breast areas, with the maximum Dice score for 94 – 95 after 

4000 or 6000 iterations. Thus, we used the version of FCN networks at 4000 iterations for 

FCNBreastMLO and FCNBreastCC, while we used the version of FCN networks at 8000 

iterations for FCNDenseMLO and FCNDenseMLO.

2.5 Computing percent density from segmentation outcomes

The output of the trained FCN networks is the probability map or score for each pixel being 

a foreground or a background. To convert the score map (ranged from 0 to 1) to a binary 

segmentation mask, we applied the threshold at 0.5. Note that one may see small blobs that 

are not the breast area in the output of FCNBreastMLO and FCNBreastCC. Thus, we selected 

the largest blob among all blobs in the output image as the breast area, and removed other 

smaller blobs from the output image. Figure 4 shows the flowchart of the proposed density 

segmentation algorithm of this study.
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Using the segmented outcomes, i.e., breast and dense area masks, we then computed the 

percentage density (PD) for each mammogram using the following equation:

PD = Area Dense   Mask
Area Breast   Mask . (Eq. 1)

2.6 Evaluation

We used the independent validation dataset, 182 MLO and CC view mammograms of 91 

women, to evaluate the proposed algorithm.

We used BI-RADS density assessments by radiologists as ground truth, and calculated the 

Pearson’s correlation rho between it and the corresponding PD estimates by the algorithm. 

We computed the 95% confidence interval of the correlation coefficient using a 

bootstrapping over cases (N = 1000) in the validation set.

In addition, we evaluated whether the proposed algorithm has ability to separate given 

breasts into one of four BI-RADS density categories. To do so, we first conducted one-way 

analysis of variance (ANOVA) on both the proposed algorithm and LIBRA on PD estimates 

of all four BI-RADS density categories, and then conducted a post hoc analysis using a 

multiple comparison test (multcompare function in MATLAB) using the one-way ANOVA 

test statistics. In the multiple comparison test, we estimated the 95% confidence interval of 

the difference between the means of the two groups.

We also evaluated the algorithm’s ability to provide consistent PD estimates for the same 

women, by comparing left and right, and MLO and CC views. We used Pearson’s 

correlation analysis and Bland Altman plot to evaluate the consistency of the algorithm.

In addition, we compared our algorithm against the state of the art and publicly available 

breast density segmentation algorithm, LIBRA, in terms of the above three evaluation 

criteria.

3 Results

Figure 5 shows four examples of breast and dense area segmentation outcomes from our 

proposed algorithm and LIBRA. Compared to LIBRA, the proposed algorithms delineated 

breast and dense areas better than LIBRA. For example, the proposed algorithm provided a 

smoother contour between the pectoral muscle and the breast than LIBRA, and it removed 

the skin effectively, while LIBRA assigned the skin area as the dense part of the breast.

Table 3 shows the summary statistics of the PD estimates from the proposed algorithm and 

LIBRA. The proposed algorithm computed similar PD estimates for the CC and MLO views 

(p-value for mean difference was 0.2). However, LIBRA computed higher PD estimates for 

CC view cases, compared to those for the corresponding MLO view cases (p-value < 

0.0001). In addition, we found that the PD estimates for the CC view from LIBRA was 

higher than those from the proposed algorithm (p-value < 0.0001). The above results 
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indicate that the proposed algorithm estimated similar PD values for the CC and MLO views 

of the same breast, while LIBRA over-estimated CC view cases over MLO view cases.

Then, we compared the PD values computed from each algorithm’s output against 

radiologists’ BI-RADS density assessments (Figure 6). We observed high correlations28 

between the proposed algorithm’s estimated PD values and the BI-RADS density levels for 

CC and MLO views, respectively, while the correlations between LIBRA’s estimates and the 

BI-RADS density levels were only moderate for the same cases. In fact, LIBRA showed a 

low correlation coefficient for the CC view. Further, the differences between the correlation 

values of the proposed algorithm and LIBRA for CC views were significantly different 

(Table 4).

Both the proposed algorithm and LIBRA showed their ability to separate at least one BI-

RADS density class from other classes using their PD estimates (Table 5, all p-values from 

one-way ANOVA were approximately 0). However, the post-hoc analysis results showed 

that the proposed algorithm had excellent ability to separate each sub BI-RADS breast 

density class (Table 6); only one comparison pair, density 1 and density 2 in CC view, was 

not statistically significant. However, LIBRA failed to separate breasts in density 1 and 2 for 

both CC and MLO views. We found that LIBRA tended to overestimate the PD values for 

density level 1 and 2. In addition, we found that LIBRA was more susceptible for incorrect 

dense area segmentation than our algorithm for CC views with a BI-RADS density level 1 

(Figure 6.B). We also observed the cases that LIBRA failed to segment dense area correctly 

for CC views with a BI-RADS density level 1, resulting in a wide box plot for the 

corresponding density group.

In addition, we averaged MLO and CC view PD estimates of both the proposed algorithm 

and LIBRA to obtain case-based PDs (Figure 7). The proposed algorithm showed high 

correlation with a Pearson’s correlation rho = 0.85 between the estimated PD values and the 

BI-RADS density levels, while LIBRA only showed moderate correlation with a Pearson’s 

correlation rho = 0.69. The difference between the above two correlations were statistically 

significant (Table 4). We found that the proposed algorithm showed excellent ability to 

assess the BI-RADS density level of the segmented dense area (Table 6). However, for 

LIBRA, the mean difference between BI-RADS density 1 and 2 was not statistically 

different (Table 6).

Figure 8. A-D shows the Bland Altman plot of the PD values for the left and right breasts 

estimated by the proposed algorithm and LIBRA. Both proposed algorithm and LIBRA 

showed no systematical bias (mean difference < 0.02) between measures, except LIBRA for 

the PD estimates between CC and MLO view (mean difference = −0.082), that is, LIBRA 

over-estimated PD estimates of CC view compared to that of PD view. However, LIBRA 

showed wider variations in PD estimate differences than the proposed algorithm for all 

comparisons (i.e., for subplots A vs. B, C vs. D, and E vs. F in Figure 8). The correlation 

between the PD values of the left and right breasts for the proposed algorithm were high 

with a Pearson’s correlation coefficient of 0.87 for the MLO view and 0.91 for the CC view. 

LIBRA showed a similar correlation level for the MLO view with a Pearson’s correlation 

coefficient of 0.91. However, we found that LIBRA showed only a moderate level of 
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correlation in the PD values between the left and right breasts for CC view, and the 

difference between the correlation coefficients of the proposed and LIBRA algorithms was 

statistically different (Table 7).

In addition, we found that both the proposed algorithm and LIBRA showed similar 

correlation level for their PD estimates from the CC and MLO views, with Pearson’s 

correlation coefficient of 0.75 – 0.76. However, we found the difference in PD estimates 

between MLO and CC view from the proposed algorithm is smaller, with mean 0.07 ± 0.07, 

than those of LIBRA, with mean 0.12 ± 0.12. In fact, one can observe that PD estimates by 

our algorithm is closer to the mean than those of LIBRA (Figure 8.E–F).

4 Discussion

We have shown that compared to LIBRA, our proposed algorithm can estimate PD 

consistently with radiologists’ BI-RADS breast density categorization. It also has less 

variability and more consistency between views of the same breast and between views of the 

left and right breasts. In addition, LIBRA tended to have higher estimates of PD for dense 

breasts than those of the proposed algorithm (Figure 6 – 7). The possible reason for the 

difference is the inclusion of skin for PD estimates. We specifically trained our algorithm to 

remove skin for dense area segmentation, while LIBRA did not enforce such a restriction. 

Previous research showed that including skin for PD in mammograms can increase the 

estimated PD by 3.8% to 4.9%29.

Both our algorithm and LIBRA showed similar correlation in PD estimates between the 

MLO and CC views of the same breast. Although correlation coefficient values of 0.75 – 

0.76 indicate strong correlation, the correlation amount is lower than that of a previous 

study, which ranged from 0.86 – 0.9630. For the case of our algorithm, some PD estimates 

for the CC view were higher than the corresponding MLO view, where the difference in PD 

estimates between them were higher than 0.25 (Figure 8.E). These cases were part of the 

outliers. Specifically, two of these outliers were from BI-RADS density level 1 cases and the 

remaining two were from BI-RADS density level 4 cases. For those outliers with a BI-

RADS density 1 category, the proposed algorithm over-segmented the dense area in the CC 

view, while the proposed algorithm under-segmented the dense area in the MLO view for the 

outliers with a BI-RADS density 4 category (Figure 9). After removing the above four 

outliers, Pearson’s correlation between PD estimates of the MLO and CC views were 

increased to 0.83, which is the upper bound of the 95% CI of Pearson’s rho in Table 7.

LIBRA showed poor performance on the CC view, while it showed compatible performance 

to the proposed algorithm on the MLO view. One possible reason is that LIBRA was 

optimized for the MLO view. In the original publication and its follow-up research of 

LIBRA, the developers of LIBRA utilized the MLO view only7, 31 to segment dense area 

and estimate PD. Thus, one may need to avoid LIBRA to segment dense area and estimate 

PD from the CC view, as its performance on the CC view can be sub-optimal.

We developed the proposed algorithm using “for presentation” version of mammography 

exams from a single vendor (Hologic Inc), which can be a limitation of the proposed 
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algorithm as each vendor uses different image processing algorithms for presentation of 

mammography exams. We expect that the pre-processing step to convert 16-bit 

mammograms to 8-bit grayscale images would reduce the image quality difference due to 

different imaging system from different vendors. However, it is required to test the proposed 

algorithm for mammography exams from other vendors such as GE to check the robustness 

of the proposed algorithm. Such testing can be a possible future study of this paper.

One may consider using BI-RADS density ratings as ground truth as a potential limitation of 

this paper. This is because BI-RADS density rating is an ‘indirect truth’ for breast dense 

fibroglandular area segmentation. In fact, many previous studies7, 10–12 on breast density 

segmentation typically used manual segmentation of dense fibroglandular areas by 

radiologists as ground truth. However, it is well known that each radiologist is different from 

each other for segmenting dense breast area32. In addition, most previous studies used 

segmentation outcomes from a very limited number of radiologists, typically one or two, as 

manual segmentation is time consuming and labor intense. Thus, it is possible that the 

density segmentation algorithms based on one or two radiologists are difficult to generalize 

for other radiologists and new cases. In this respect, the fact that we used indirect truth (i.e., 

BI-RADS density rating by radiologists) to train our algorithm can be an advantage, not a 

limitation, over other previous algorithms using manual segmentations by one or two 

radiologists. We used BI-RADS density ratings from a pool of radiologists, not just one or 

two radiologists, to create ground truth for dense fibroglandular area. As the PD estimates by 

our algorithm were highly correlated with BI-RADS density ratings by a pool of 

radiologists, we concluded that our algorithm was able to locate and learn a common area or 

feature that a pool of radiologists would assess as the dense portion of the breast.

Another possible limitation of this study is that we used the fixed threshold value based on 

the BI-RADS density ratings, e.g., 12.5 percentile for BI-RADS density 4, to obtain the 

ground truth segmentation for dense area. Thus, the resulting dense segmentation outcome 

can include error, either missing dense area or including non-dense area, which can degrade 

the segmentation performance of the algorithm. However, we showed that deep learning 

could learn essential information to segment dense fibroglandular area, despite these 

possible errors on the ground truth for dense area. This is an important finding, especially 

for developing deep learning algorithms for image segmentation, as this may indicate that 

rough outlines for the region of interest may be enough to train deep learning algorithms for 

image segmentation. Thus, researchers may spend less time on establishing ground truth by 

trading off its precision. Of course, the required precision for image segmentation is 

different from one application to another. Future research is therefore required on the effect 

on the precision of ground truth for developing deep learning algorithms for image 

segmentation.

We used the VGG16 network as a basis deep learning architecture for this study. There are 

other deep learning architectures such as ResNet33. Although a previous study26 reported 

that both VGG16 and ResNet showed similar performances on road segmentation 

benchmarks, there could be differences when applied to dense breast area segmentation. In 

addition, training parameters used for this study such as learning rate, and the threshold 

value to convert a score map to binary segmentation (i.e., T in Figure 4) can be further 
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optimized. Evaluating other network architectures, finding the optimal training parameters 

and the threshold value can be a follow-up study of this paper.

In conclusion, we introduced a new deep learning based algorithm for breast density 

segmentation. We showed that the proposed algorithm can provide segmentation outcomes 

that its corresponding PD estimates are well correlated with radiologists’ BI-RADS density 

assessments. In addition, we showed that the proposed algorithm outperformed the existing 

state of art algorithm, LIBRA.
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Figure 1. 
Two undergrad research assistants delineated the breast area on mammograms using a GUI 

program in MATLAB. Created breast ground truth masks include only the breast area, 

removing the pectoral muscle, as shown in the right image, and/or belly tissue, as shown in 

the left image.
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Figure 2. 
This figure shows a few examples from each density level and mammographic view on how 

we established the ground truth mask for dense fibroglandular area. Images on the left side 

of the panel show the original mammograms. Images in the middle show the results after 

applying manually delineated breast area mask and skin removal using a binary image 

erosion technique. Then, we applied a thresholding method to get ground truth mask for 

dense fibroglandular area. We used the mid-point of quartiles, i.e., 12.5, 37.5, 62.5, and 87.5 

percentiles, of pixel intensity distribution as thresholds. Then, we assigned any pixels higher 

than a given threshold as dense fibroglandular area. Note that we selected thresholds in 

descending order based on each case’s BI-RADS density level. For example, we selected the 

87.5 percentile as the threshold for BI-RADS density level 1 cases. Images on the right side 

of the panel show the results after applying the thresholding method. Also shown are the 

pixel intensity histograms inside the breast area.
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Figure 3. 
This figure shows the testing scores, i.e., Dice coefficient ranged [0, 100], for four FCN 

networks during the courses of training. Using the test dataset (N = 58 exams, i.e., 116 MLO 

and CC view mammograms) we tested each network every 100 iterations of training. The 

plots include the Dice coefficient values for training dataset (N = 455 exams, i.e., 910 MLO 

and CC view mammograms). FCN networks for breast areas quickly converges to 98 – 99 

after 1000 iterations for both training and test datasets. FCN networks for dense areas 

relatively slow to converge compared to FCN networks for breast areas, with the maximum 

Dice score for 94 – 95 after 4000 or 6000 iterations for both training and test datasets. We 

used the version of FCN networks for breast areas at iteration 4000, and the version of FCN 

networks for dense areas at iteration 8000 for this study.
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Figure 4. 
This diagram summarizes the entire process of training, denoted as bold arrow lines, for the 

proposed algorithms, and how they create estimated breast area and dense area 

segmentations, denoted as dashed arrow lines. T refers to the thresholding to convert an 

estimated segmentation outcome in probability to binary masks. We used 0.5 for T. For 

breast area segmentation, we selected the largest blob in the resulting binary mask as breast 

area mask.

Lee and Nishikawa Page 17

Med Phys. Author manuscript; available in PMC 2020 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
This figure shows some examples of breast area and dense area segmentation for the 

proposed algorithm and LIBRA. Images in 1st and 3rd columns show the outcomes of the 

proposed algorithm and those of LIBRA, respectively. Images in the center show the target 

mammograms.
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Figure 6. 
This figure shows the box plots of the proposed algorithm and LIBRA for the estimated PD 

values verses the BI-RADS breast densities. The number of exams in each breast density 

category (density 1 – 4) are 15, 22, 28, and 26, respectively. The two extreme values on the 

box plots indicate the 25 and 75 percentile of the data. The two extreme values of the dash 

lines refer to the minimum and the maximum of the data that are not considered outliers. 

The plus (+) marker indicates a possible outlier within the data (which is more than 2.7 

standard deviations above or below the mean of a normal distribution). The notches indicate 

the 95% confidence interval of the median.
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Figure 7. 
This figure shows the box plots of the proposed algorithm and LIBRA for the case-based PD 

value, i.e., MLO and CC view averaged, verses BI-RADS breast density. The number of 

exams in each breast density category (density 1 – 4) are 15, 22, 28, and 26, respectively. 

The proposed algorithm showed higher correlation between the PD estimates and the BI-

RADS density levels than LIBRA.
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Figure 8. 
A and C show the Bland Altman plot between the PD values of the left and right breasts for 

the proposed algorithm on MLO and CC views, respectively. Similarly, B and D show the 

Bland Altman plots for LIBRA. E and F show the Bland Altman plot between the PD 

estimates of CC and MLO views for the proposed algorithm and LIBRA, respectively. Note 

that the validation dataset (N = 91 exams, i.e., 182 CC and MLO view mammograms) was 

used for this analysis. Both proposed and LIBRA showed no systematical bias (mean 

difference < 0.02) between measures, except LIBRA for the PD estimates between CC and 

MLO view (mean difference = −0.082), that is, LIBRA over-estimated PD estimates of CC 

view compared to that of MLO view. However, LIBRA showed wider variations in PD 

estimate differences than the proposed algorithm for all comparisons. The proposed 

algorithm showed high correlation (rho > 0.87) between left and right PD value estimates for 

both MLO and CC views, while LIBRA showed only moderate correlation (rho = 0.66) 

between left and right PD value estimates for CC views.
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Figure 9. 
This figure shows outliers that the proposed algorithm either over-segmented (A-B) or 

under-segmented (C-D) dense fibroglandular areas of the breast. A and B are the right and 

left CC mammogram views from the same woman with a BI-RADS density level 1. C and D 

are the right MLO mammogram views of two different women with a BI-RADS density 

level 4.
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Table 1.

Characteristics of screening mammogram dataset

BI-RADS Density Level (4th edition)
Training (N = 455) Test (N = 58) Validation (N = 91)

MLO CC MLO CC MLO CC

Density 1 60 60 8 8 30 30

Density 2 366 366 46 46 44 44

Density 3 454 454 58 58 56 56

Density 4 30 30 4 4 52 52

Total (# of mammogram images) 910 910 116 116 182 182

Med Phys. Author manuscript; available in PMC 2020 April 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lee and Nishikawa Page 24

Table 2.

VGG16 based FCN network structure

Layer Type Kernel Size Stride # Repetition # Upsampling Output

Output prediction FCN-8s A + B + C

Conv7 3 × 3 1 × 1 ×4 A

Conv6 3 × 3 1 × 1

Max pool5 2 × 2 2 × 2 ×2 B

Conv5 3 × 3 1 × 1 ×3

Max pool4 2 × 2 2 × 2

Conv4 3 × 3 1 × 1

Max pool3 2 × 2 2 × 2 ×1 C

Conv3 3 × 3 1 × 1 ×3

Max pool2 2 × 2 2 × 2

Conv2 3 × 3 1 × 1 ×2

Max pool1 2 × 2 2 × 2

Conv1 3 × 3 1 × 1 ×2

Input image
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Table 3.

Summary statistics for PD estimates by the proposed algorithm and LIBRA

N = 91 exams (182 mammograms) CC, Mean [95% CI] ± SD MLO, Mean [95% CI] ± SD CC – MLO Mean [95% CI]

Proposed 0.42 [0.4, 0.44] ± 0.14 0.41 [0.39, 0.44] ± 0.15 0.01 [−0.005, 0.03]

LIBRA 0.52 [0.49, 0.56] ± 0.21 0.44 [0.41, 0.47] ± 0.22 0.08 [0.06, 0.11]*

LIBRA – Proposed 0.1 [0.08, 0.13]* 0.03 [0.01, 0.06]

*
Statistically significant with significance level was 0.0125 after Bonferroni correction.
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Table 4.

Comparison of correlation values of the proposed algorithm and LIBRA. The correlation is between the PD 

estimates and radiologists’ BI-RADS assessments

N = 91 exams (182 mammograms) Proposed LIBRA Difference p-value

CC 0.81 [0.74, 0.85] 0.58 [0.43, 0.68] 0.24 [0.12, 0.41]
<0.0001

*

MLO 0.79 [0.7, 0.85] 0.71 [0.57, 0.79] 0.08 [−0.02, 0.24] 0.18

CC-MLO averaged 0.85 [0.8, 0.89] 0.69 [0.55, 0.77] 0.17 [0.08, 0.3]
0.006

*

*
Statistically significant with significance level was 0.0167 after Bonferroni correction.
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Table 5.

One-way ANOVA Statistics for PD estimates by the algorithms

View
Proposed algorithm LIBRA

SS
* df MS F p-value SS df MS F p-value

CC Groups 2.41 3 0.8 141.38 7e-47 2.99 3 0.996 32.97 5e-17

Error 1.01 178 0.006 5.38 178 0.03

Total 3.42 181 8.37 181

MLO Groups 2.63 3 0.88 104.7 4e-39 4.78 3 1.59 72.47 1e-30

Error 1.49 178 0.008 3.91 178 0.22

Total 4.12 181 8.69 181

Averaged Groups 2.45 3 0.82 168.04 1e-51 3.83 3 1.28 61.57 2e-27

Error 0.87 178 0.005 3.69 178 0.021

Total 3.32 181 7.52 181

*
SS, df, and MS refer to sum of squares, degree of freedom, and mean square error.
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Table 6.

Evaluation of the algorithm’s ability to separate BI-RADS density levels

View BI-RADS density level pairs
Proposed algorithm LIBRA

Mean difference and 95% CI p-value Mean difference and 95% CI p-value

CC 1 – 2 −0.02 [−0.07, 0.02] 0.54 −0.05 [−0.15, 0.05] 0.64

2 – 3 −0.12 [−0.16, −0.09] <0.0001* −0.11 [−0.2, −0.02] 0.0067

3 – 4 −0.14 [−0.18, −0.11] <0.0001* −0.17 [−0.26, −0.09] <0.0001*

MLO 1 – 2 −0.12 [−0.17, −0.06] <0.0001* −0.04 [−0.13, 0.05] 0.72

2 – 3 −0.13 [−0.18, −0.09] <0.0001* −0.16 [−0.23, −0.08] <0.0001*

3 – 4 −0.08 [−0.13, −0.04] <0.0001* −0.22 [−0.29, −0.14] <0.0001*

Averaged 1 – 2 −0.07 [−0.11, −0.03] 0.0001* −0.04 [−0.13, 0.04] 0.59

2 – 3 −0.13 [−0.17, −0.09] <0.0001* −0.14 [−0.21, −0.06] <0.0001*

3 – 4 −0.11 [−0.15, −0.08] <0.0001* −0.2 [−0.27, −0.12] <0.0001*

*
Statistically significant with significance level of 0.0014 with Bonferroni correction. The mean difference for all other pairs, 1 – 3, 1 – 4, and 2 – 4 

were statistically significant with p-value < 0.0001.
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Table 7.

Comparison of the proposed algorithm and LIBRA for correlation in PD estimates between left and right, and 

MLO and CC view of same woman

Correlation (N = 91 exams, 182 mammograms) Proposed LIBRA Difference p-value

PDLeft – PDRight, CC 0.91 [0.87, 0.94] 0.66 [0.4, 0.8] 0.25 [0.1, 0.49] 0.014*

PDLeft – PDRight, MLO 0.87 [0.78, 0.92] 0.91 [0.84, 0.94] −0.04 [−0.12, 0.02] 0.73

PDCC – PDMLO 0.76 [0.66, 0.83] 0.75 [0.63, 0.83] 0.01 [−0.11, 0.13] 0.9

*
Statistically significant with significance level of 0.0167 with Bonferroni correction.
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