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Abstract

PURPOSE—Early-stage cancers are routinely treated with surgery followed by radiotherapy 

(SR). Radiotherapy before surgery (RS) has been widely ignored for some cancers. We evaluate 

overall survival (OS) and disease-free survival (DFS) with SR and RS for different cancer types 

and simulate the plausibility of RS-nd SR-induced antitumor immunity contributing to outcomes.

MATERIALS AND METHODS—We analyzed a SEER data set of early-stage cancers treated 

with SR or RS. OS and DFS were calculated for cancers with sufficient numbers for statistical 

power (cancers of lung and bronchus, esophagus, rectum, cervix uteri, corpus uteri, and breast). 

We simulated the immunologic consequences of SR, RS, and radiotherapy alone in a mathematical 

model of tumor-immune interactions.

RESULTS—RS improved OS for cancers with low 20-year survival rates (lung: hazard ratio 

[HR], 0.88; P = .046) and improved DFS for cancers with higher survival (breast: HR = 0.64; P < .

001). For rectal cancer, with intermediate 20-year survival, RS improved both OS (HR = 0.89; P 
= .006) and DFS (HR = 0.86; P = .04). Model simulations suggested that RS could increase OS by 

eliminating cancer for a broader range of model parameters and radiotherapy-induced antitumor 

immunity compared with SR for selected parameter combinations. This could create an immune 

memory that may explain increased DFS after RS for certain cancers.

CONCLUSION—Study results suggest plausibility that radiation to the bulk of the tumor could 

induce a more robust immune response and better harness the synergy of radiotherapy and 

antitumor immunity than postsurgical radiation to the tumor bed. This exploratory study provides 

motivation for prospective evaluation of immune activation of RS versus SR in controlled clinical 

studies

INTRODUCTION

Surgery followed by radiotherapy (SR) improves locoregional control in numerous locally 

advanced cancers,1–3 making radiotherapy a vital component of intent-to-cure cancer 

treatment.4 Radiotherapy followed by surgery (RS) versus surgery alone has demonstrated 

improved outcomes in bladder, cervical, esophageal, rectal, and resectable pancreatic 

cancers. Clinical trials comparing SR and RS out-comes are scarce and have been limited to 

a few cancer types. One successful example is rectal carcinoma,5,6 where improved local 

control after RS versus SR (with or without concurrent chemotherapy) was demonstrated 

and resulted in a paradigm shift from SR to RS. However, these trials have failed to 

demonstrate superior overall survival (OS) after RS. Similarly, in a prospective trial for 

muscle-invasive bladder cancer,7 no significant difference in 3-year statistics between RS 

and SR was found. A slight increase in OS for patients undergoing RS compared with SR 

was observed in soft tissue sarcoma of the limbs.8
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To date, the few published studies comparing radiotherapy and surgery sequencing seem 

inconclusive. A SEER analysis showed that RS can be associated with a significantly higher 

risk of death in Siewert type II gastroesophageal junction cancer when compared with SR.9 

However, for locally advanced esophageal cancer, and squamous cell carcinoma in 

particular, superiority of RS over SR with concurrent chemotherapy was demonstrated.10 

Retrospective analyses have also shown superior OS after RS in stage III non–small-lung 

cancer11 and in cT2 noninflammatory breast cancer with concurrent chemotherapy.12 There 

are also some indications that RS can reduce the risk of local recurrence in localized soft 

tissue sarcoma.13

It is increasingly appreciated that radiotherapy increases the mutational burden and induces 

cell stress as well as immunogenic cell death, thereby exposing a wealth of previously 

hidden and de novo tumor-associated antigens, stress proteins, and danger-associated 

molecular patterns to the immune system.14–18 Tumor-infiltrating lymphocyte enrichment 

after radiotherapy was previously assessed in 40 patients with rectal cancer. The densities of 

CD3+ and CD8+ T-lymphocytes significantly increased from preradiotherapy biopsy 

specimens to postradiotherapy surgically resected specimens.19 It is conceivable that 

immune-related benefits of radiation to the bulk tumor compared with radiation to the 

postsurgical cavity could be general phenomena even in early-stage disease. Herein, we 

evaluate OS and disease-free survival (DFS) outcome data for various cancers and present a 

quantitative framework to simulate tumor–immune system dynamics during the different 

treatment sequences, which further supports the plausibility of increased antitumor 

immunity with RS compared with SR.

MATERIALS AND METHODS

SEER Analysis

We queried the SEER database (November 2016 submission with additional treatment 

information) for localized cancers (no lymph node involvement and no metastasis; N0M0) 

with at least 100 cases of each of RS and SR and available information about potentially 

confounding covariates (Fig 1A). These included cancers of the lung and bronchus, 

esophagus, rectum, cervix uteri, corpus uteri, and breast. We selected patients who received 

either RS or SR and censored the follow-up period to 20 years. DFS was calculated as 

previously discussed.19a Hazard ratios (HRs) of DFS and OS adjusted for age, sex, year of 

diagnosis, histology, type of surgery, tumor size, and treatment sequencing (RS v SR) were 

calculated using multivariable Cox proportional hazard models.20

Modeling of Tumor–Immune System Dynamics During SR and RS

Mathematical modeling of tumor–immune system interactions has a long history.21,22 The 

established Kuznetsov model captures first-order principles underlying the complex disease 

dynamics and has been calibrated against experimental data.21 This model relies on the 

following main assumptions: tumors follow logistic growth dynamics, where initially 

exponential growth decelerates as the tumor approaches the tissue-carrying capacity; tumor 

growth is modulated by the cytotoxic action of immunocompetent effector T cells as part of 

specific adaptive immune responses; cytotoxic effector T cells are recruited in response to 
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tumor burden following Michaelis-Menten dynamics; tumor-infiltrating effector T cells may 

get exhausted by their antitumor activity and undergo spontaneous death; and innate 

immunity or base immune surveillance is represented as a baseline presence of effector T 

cells at any time, even in the absence of tumor cells.

We extended the Kuznetsov model to explore the potential benefits and immunologic 

consequences of radiotherapy and surgery sequencing, on the basis of the following 

additional assumptions: radiotherapy kills both cancer and effector T cells23,24 at different 

rates determined by the radiation dose and cell type–specific radiosensitivity by some forms 

of cell death, including autophagy, apoptosis, necrosis, mitotic catastrophe, and senescence; 

irradiated tumor cells may undergo immunogenic cell death that emits immunostimulating 

signals and chemokines, resulting in the recruit ment of inflammatory immune cells to the 

tumor microenvironment, including antigen-presenting cells such as dendritic cells and 

macrophages, which in turn recruit and activate cytotoxic effector T cells15,25–28; the 

strength of radiotherapy-induced antitumor response, characterized by subsequent immune 

cell infiltration of the tumor, is assumed to depend on the number of tumor cells killed by 

radiotherapy; and surgical resection is simulated by instantaneously decreasing both cancer 

and effector cell populations.

We denoted the number of viable cancer cells (or clonogens) in an arbitrary tumor volume as 

C(t), tumor-infiltrating activated immune effector T cells as E(t), and irradiated cancer cells 

undergoing immunogenic cell death as D(t). The model was formulated as a system of 

ordinary differential equations given by dC/dt = (tumor growth) − (death of tumor cells by 

effector T cells) − (radiotherapy) − (surgical resection), or

dC
dt = rC 1 − C + D

k − apEC − δ τi TR(t, d, C) − δ τ j TS(t, C) (1)

by dE/dt = (tumor burden–stimulated effector T-cell recruitment) − (exhaustion of effector T 

cells by their antitumor action) + (physiologic level and decay of effector T cells) + 

(radiotherapy-induced immunostimulation) − (radiotherapy) − (surgical resection), or

dE
dt = f C

g + C E − a(1 − p)EC + h E* − E + qD − δ τi TR(t, d, E) − δ τ j TS(t, E) (2)

and by dD/dt = (tumor cell sterilized by radiotherapy) − (lysis of tumor cells sterilized by 

radiotherapy), or

dD
dt = δ τi TR(t, d, C) − nD (3)

where the time coordinate on the system variables was omitted for notational simplicity. δ(τ) 

is the Dirac delta function. For demonstration purposes, we chose previously reported 

specific model parameter values that simulate a growing tumor and associated effector cell 
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dynamic in the absence of therapy (Table 1). For analysis, we changed model parameters 

that may represent the patient-specific biology of individual patients, including different 

human leukocyte antigen haplotypes or increased mutational burden for different cancers 

that may translate into higher immunogenicity.

The cytotoxic effect of radiotherapy on cancer cells was simulated using the linear quadratic 

(LQ) model that is widely used in clinical applications32–34 to approximate the dose-

dependent surviving fraction SF(d) of irradiated cancer cells by

SF(d) = e
−ξ αd + βd2

(4)

where d (Gy) is the radiation dose and α (Gy−1) and β (Gy−2) are cell type–specific 

radiosensitivity parameters. Compelling evidence demonstrates that hypoxic (poorly 

oxygenated) cancer cells are growth arrested and estimated to be approximately three times 

more resistant to radiation than normoxic cycling cells.30,35 We set ξ = 1 or ξ = 1/3 to 

respectively scale the radiosensitivity of proliferative and quiescent cancer cells as 

previously demonstrated.30,36 We set radiosensitivity parameters α = 0.3 Gy−1 and β = 0.03 

Gy−2 as conventionally assumed and estimated for a variety of tumor types.29 The 

probabilities of surviving 2 Gy radiation were SF (2 Gy) = 0.49 for proliferating cancer cells 

(ξ = 1) and SF (2 Gy) = 0.79 for quiescent cancer cells (ξ = 1/3).

Effector T-cell radiosensitivity was estimated on the basis of experimental data of 

radiotherapy-induced apoptosis in lymphocytes obtained from blood samples.37 Apo-ptosis 

is considered one of the dominant cell death processes in response to radiotherapy,38 and 

correlation between the intensity of apoptosis in lymphocytes and radiation dose has been 

reported.37,39 From dose-response curves of effector CD8+ T cells in vitro after exposure to 

acute doses of 0 to 8 Gy,37 we derived SFE (2 Gy) = 0.61.

Radiotherapy was simulated with a total dose of 50 Gy delivered in 25 weekday fractions of 

d = 2 Gy per day. The total dose of 50 Gy was chosen for demonstration purposes in line 

with the standard dose for breast cancer, the largest patient cohort in the SEER data. 

Extension of the analysis to other total doses was straightforward and did not alter the results 

of this study (Appendix Fig A1). After logistic tumor growth and the LQ model in Equation 

4,32,40 the fraction of cancer cells (C) sterilized by radiotherapy with dose d at time τi was 

determined by the loss term TR(τi,d,C) in Equation 1 given by

TR τi, d, C = 1 − SFp(d) C τi 1 −
C τi + D τi

k + 1 − SFq(d) C τi
C τi + D τi

k (5)

where the terms C τi 1 −
C τi + D τi

k  and C τi
C τi + D τi

k  are the number of proliferating 

and quiescent cancer cells at time τi such that their sum is equal to C(τi). The radiobiologic 

terms 1 − SFp(d) and 1 − SFq(d) represent respectively the fraction of proliferating and 
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quiescent cancer cell sterilized by radiotherapy with dose d and determined by the LQ model 

in Equation 4.

The loss term TR(τi,d,E) in Equation 2 simulates the killing effects of radiotherapy on 

effector T cells (E) at time τi and is given by

TR τi, d, E = 1 − SFE(d) E τi (6)

Surgical resection was simulated by instantaneously decreasing both cancer and effector cell 

populations by 99%. At the time of surgery τj, removal of cell populations was incorporated 

in the model by the following loss terms

TS τ j, C = λCC τ j (7)

TS τ j, E = λEE τ j (8)

where surgical resection was simulated with λC = λE = 0.99. After surgical resection, the 

dynamics of remaining cell populations, if any, continued to be governed by Equations 1 to 

3. Model simulations were initialized with 106 viable cancer cells (or clonogens) and 105 

effector T cells in an arbitrary tumor volume. Tumor–immune system interaction dynamics 

were simulated for different combinations of tumor growth rate (r) and recruitment of 

effector T cells in response to tumor burden (f). Combinations of parameters r and f that 

yielded an increase of cancer cells > 108 were considered for treatment simulations. Note 

that this number represents viable cancer cells in a tumor that may have considerably larger 

radiographic volumes. Tumor control (TC) was assumed if the number of viable cancer cells 

dropped below C(t) < 1. The mathematical model was simulated using Matlab 

(www.mathworks.com).

RESULTS

OS and DFS of RS and SR

Cancer sites were evaluated for 20-year OS (Fig 1B) and DFS (Appendix Fig A2). A trend 

of RS benefit versus SR became apparent when cancers were sorted by their 20-year OS 

(DFS regression coefficient, −0.69; P < .05; OS regression coefficient, +0.35; P < .05; Fig 

2). For cancers of the lung and bronchus (n = 2,506), RS yielded significantly improved OS 

(HR = 0.88; P = .046; 20-year survival, 6.2% v 2.5%; Fig 2B). Although an OS benefit was 

not observed in breast cancer (n = 203,151) with high baseline 20-year OS rates, RS yielded 

a significant improvement in DFS (HR = 0.64; P < .001; Fig 2A). Interestingly, patients with 

rectal cancer (n = 8,136) with an intermediate 20-year survival rate of 30% may benefit from 

RS, with both increased OS (HR = 0.89; P = .006) and DFS (HR = 0.86; P = .04). Crucially, 

RS was not found to be significantly inferior to SR in any of the multivariable Cox 
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proportional model analyses (Data Supplement). Analysis of propensity score–matched 

cohorts is shown in Appendix Figure A3.

Effects of Treatment Order Negligible Without Simulated Radiotherapy-Induced Immunity

The effectiveness of radiotherapy in eliminating cancer may result from a combination of the 

lethal effect of radiotherapy and stimulation of antitumor immunity. We first simulated 

treatments without additional radiotherapy-induced immunity (q = 0 day−1 in Equation 2). 

Simulations of SR and RS yielded similar outcomes, with tumor control (TC) being 

dependent on tumor growth rate and pretreatment tumor size. Interestingly, radiotherapy 

alone could not eliminate tumors with as few as 107 pretreatment viable cancer cells (Fig 3).

RS Improves Outcomes With Radiotherapy-Induced Immunity

Because radiotherapy-induced cytotoxicity alone was unlikely to eradicate all cancer cells 

with the chosen radio-sensitivity parameters, but radiotherapy often sterilized large tumors 

with presumably > 107 viable cancer cells, clinically observed complete tumor eradication 

may depend on the strength of radiotherapy-induced antitumor immunity activation (q, day
−1 in Equation 2). The efficacy of radiotherapy alone and RS but not SR increased with 

increased radiotherapy-induced immunity (q = 0.25 to 0.65 day−1). In addition, for strong 

radiotherapy-induced antitumor immunity, radiotherapy alone resulted in better outcomes 

than SR. RS yielded TC for more model parameter combinations than radiotherapy alone 

and SR (Fig 4). For SR, increased radiotherapy-induced immunostimulation had no notable 

impact on outcomes, because a majority of tumor cells were removed preirradiation, and 

radiotherapy-induced antitumor immunity was not sufficiently achieved. The benefit of 

radiotherapy alone and RS over SR was independent of the total number of radiation 

fractions (Appendix Fig A1) and insensitive to changes in other model parameters 

(Appendix Figs A4 to A6).

RS Induces Stronger Antitumor Immunity Than SR

After surgery, radiation is delivered with the intent to eradicate residual cancer cells or 

microscopic tumors in the tumor bed beyond the surgical margins. Compared with RS, SR 

implied a significantly smaller number of cancer cells for radiotherapy-induced immune 

activation. The integral of the term qD in Equation 2 simulated the number of effector cells 

recruited to the tumor. Simulation analysis confirmed that the strength of tumor-specific 

immunity induced by RS was significantly higher than that induced by SR (Figs 5A and 5B). 

This may contribute to both increased OS rates and increased antitumor immunity, which 

may surveil metastatic deposits outside the irradiation field (abscopal response) to increase 

DFS (compare with Fig 2).

Radiotherapy-Induced Immunity Suggests Plausibility of RS Dose De-escalation

Normal tissue toxicity remained a limiting factor in radiotherapy, with acute and late 

toxicities largely being attributable to total radiation dose and dose per fraction. Model 

simulations suggested that for high rates of radiotherapy-induced immunity, RS with 2 Gy 

per fraction may be reduced to as low as half the number of RS fractions for outcomes 

comparable to the full course of SR (12-fraction RS v 25-fraction SR; Fig 5C). Lower 
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immunogenicity may require > 13 fractions but potentially provides TC probability with 

fewer fractions than SR. For high rates of radiotherapy-induced immunity, radiotherapy 

alone may be a potential alternative to SR, with comparable TC rates (Fig 5D).

DISCUSSION

Accumulating evidence supports the notion that radiotherapy-induced antitumor immunity, 

especially when promoted with concurrent immunotherapy, could result in long-term 

memory41,42 and may yield robust systemic immune responses against metastatic reservoirs 

outside the irradiation field, a phenomenon termed the abscopal effect.43–45 Radiotherapy 

may no longer be considered a purely cytotoxic treatment; rather, it has biologic properties 

to transform the tumor into an in situ vaccine.46 The clinical promise of the complex but 

promising immuneradiation synergy is reflected in > 100 active clinical trials testing the 

combination of radiotherapy with immunotherapy, mostly for metastatic cancer.47 A robust 

immune response after focal irradiation may require a sufficiently large population of cancer 

cells to activate immune cells in numbers large enough to disseminate systematically and 

establish an immunologic memory. The herein presented model simulations suggest a 

positive correlation between radiotherapy-induced antitumor immunity and tumor size at 

time of irradiation and may explain the poorer local outcomes achieved with SR compared 

with RS. After surgical resection with clean margins, radiotherapy will, at best, act upon 

microscopic tumor clusters in the tumor bed, which may be insufficient to elicit a robust 

immune response.

For cancers with poor OS rates even when detected early (cancers of lung and bronchus, 

esophagus, rectum), RS may increase OS compared with SR because of additional 

cytotoxicity resulting from the increased immune activation. For tumors with higher OS 

rates (breast, rectum), benefits of RS can be seen in DFS, arguably because of higher 

antitumor immunity that may also act systemically against tumors outside the irradiation 

field and future disease.22 For some tumors, no significant outcome benefits were observable 

for either sequencing of radiotherapy and surgery. However, trends toward increased OS for 

cancers with low survival rates (regression coefficient, −0.65; P < .05) as well as increased 

DFS for cancers with high survival rates (regression coefficient, 0.35; P < .05) were noted.

One inherent limitation of SEER data analysis is composed of the potentially confounding 

factors that are not recorded, including patient selection criteria. Patients eligible for RS may 

be disproportionally treated in clinical trials and thus could represent a substantially different 

population than patients undergoing SR. Moreover, RS may be preferentially performed by 

academic, high-volume centers that often provide better outcomes in general. To address the 

issue of unbalanced arms, we performed multivariate Cox proportional hazards model 

analysis after preprocessing the data with propensity score matching on the basis of all 

considered covariates.48 These data are comparable to the results obtained for the whole 

cohorts (Appendix Fig A3).

Different mathematical models have been proposed to simulate tumor–immune system 

interactions21,22,49–59 and the synergistic effects of radiotherapy with the immune system 

and immunotherapy.22,60–63 To demonstrate immunologic consequences of sequencing 

López Alfonso et al. Page 8

JCO Clin Cancer Inform. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



radiotherapy and surgery, we extended the established Kuznetsov model and its 

parameterization as previously discussed.21,22 Model simulations revealed that observable 

clinical responses may be parameter dependent, and as such, the model needs to be 

rigorously calibrated for individual cancers before definite conclusions can be drawn.

Taken together, the statistical analysis of historical outcome data and the mathematical 

model combine to further add to the growing interest in understanding the biologic and 

immunologic consequences of radiotherapy. This study provides rationale and motivation for 

additional investigating and understanding the effects of radiotherapy on the immune system 

of patients with cancer to guide appropriate prospective validation of radiotherapy and 

surgery sequencing. This should include immune panels on longitudinal blood draws during 

radiotherapy as well as analysis of immune infiltration in preirradiation biopsies and 

surgically resected tissues.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG A1. 
Model-predicted treatment outcomes of radiotherapy (RT) alone, RT after surgical resection 

(SR), and RT before surgical resection (RS) for tumors of 108 viable cancer cells 

pretreatment and increasing number of treatment fractions in a cohort of virtual patients with 

different combinations of tumor growth rate (r) and immune recruitment rate (f) in response 

to tumor burden. Radiation is delivered to total doses of 50, 60, and 70 Gy in 25, 30, and 35 

daily fractions at 2 Gy per day, 5 days per week. Tumor control (TC) by treatment (blue) and 

progressive disease (PD; red) refer to tumor eradication and escape after treatment, 

respectively. For all simulations, we set RT-induced antitumor immunity to q = 4.5 × 10−1 

day−1.
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FIG A2. 
Kaplan-Meier 20-year disease-free survival (DFS) curves for each of the considered cancer 

sites, with 95% Cis.
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FIG A3. 
Results of analysis using multivariable Cox proportional hazard model performed after 

propensity score matching of the adjuvant and neoadjuvant radiotherapy (RT) cohorts for 

each cancer site separately. Hazard ratios (HRs; with 95% CIs, P values, and trend lines 

obtained using linear least squares weighted by the inverses of site-specific CI lengths) for 

(A) disease-free survival (DFS) and (B) overall survival (OS) after preoperative 

(neoadjuvant) radiation (RS) compared with postoperative adjuvant radiation (SR). HRs 

were adjusted for age, sex, year of diagnosis, histology, type of surgery, type of applied 

radiation, and tumor size. Equation describes the trend line, and coefficients were tested for 

significant difference from 0 using t test. (*) P<.05. (†) P < .001.
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FIG A4. 
Proportion of parameter space controlled by radiotherapy (RT) alone, RT after surgical 

resection (SR), and RT before surgical resection (RS) for different values of (A) the lysis 

rate of tumor cells killed by RT (n) and (B) the T cell–cancer interactions constant (a; 

Equations 1 to 3). Radiation is delivered to a total dose of 50 Gy in 25 daily fractions at 2 

Gy per day, 5 days per week. For all simulations, we set RT-induced antitumor immunity to 

q = 4.5 × 10−1 day−1 and tumors of 108 viable cancer cells pretreatment.
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FIG A5. 
Model-predicted treatment outcomes of radiotherapy (RT) alone, RT after surgical resection 

(SR), and RT before surgical resection (RS) for tumors of 108 viable cancer cells 

pretreatment and increasing surviving fractions of tumor cells at 2 Gy (SF2) in a cohort of 

virtual patients with different combinations of tumor growth rate (r) and immune recruitment 

rate (f) in response to tumor burden. Radiation is delivered to a total dose of 50 Gy in 25 

daily fractions at 2 Gy per day, 5 days per week. Tumor control (TC) by treatment (blue) and 

progressive disease (PD; red) refer to tumor eradication and escape after treatment, 

respectively. For all simulations, we set RT-induced antitumor immunity to q = 4.5 × 10−1 

day−1.
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FIG A6. 
Model-predicted treatment outcomes of radiotherapy (RT) alone, RT after surgical resection 

(SR), and RT before surgical resection (RS) for tumors of 108 viable cancer cells 

pretreatment and increasing surviving fractions of effector cells at 2 Gy (SF2) in a cohort of 

virtual patients with different combinations of tumor growth rate (r) and immune recruitment 

rate (f) in response to tumor burden. Radiation is delivered to a total dose of 50 Gy in 25 

daily fractions at 2 Gy per day, 5 days per week. Tumor control (TC) by treatment (blue) and 

progressive disease (PD; red) refer to tumor eradication and escape after treatment, 

respectively. For all simulations, we set RT-induced antitumor immunity to q = 4.5 × 10−1 

day−1.
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FIG 1. 
(A) SEER inclusion/exclusion. (B) Kaplan-Meier 20-year survival.
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FIG 2. 
Hazard ratios (HRs; with 95% CIs, P values, and linear least squares regression lines 

weighted by the inverses of site-specific CIs) for (A) disease-free survival (DFS) and (B) 

overall survival (OS) after preoperative (neoadjuvant) RT (RS) compared with postoperative 

(adjuvant) RT (SR). HRs were adjusted for age, sex, year of diagnosis, histology, type of 

surgery, type of applied radiation, and tumor size. Equation describes the trend line, and 

coefficients were tested for significant difference from 0 using t test. (*) P < .05. (†) P < .

001. RT, radiotherapy
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FIG 3. 
(A) Model-predicted treatment outcomes of radiotherapy (RT) alone, RT after surgical 

resection (SR), and RT before surgical resection (RS) without RT-induced immunity (ie, q = 

0.0 day−1 in Equation 2) in a cohort of virtual patients with different combinations of 

pretreatment tumor size, tumor growth rate (r), and immune recruitment rate (f) in response 

to tumor burden. Radiation is delivered to a total dose of 50 Gy in 25 daily fractions at 2 Gy 

per day, 5 days per week. Tumor control (TC) by treatment (blue) and progressive disease 

(PD; red) refer to tumor eradication and escape after treatment, respectively. (B) Time 

evolution of tumor and effector T cells corresponding to the location marked by stars in 

panel A.
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FIG 4. 
(A) Model-predicted treatment outcomes of radiotherapy (RT) alone, RT after surgical 

resection (SR), and RT before surgical resection (RS) for tumors of 108 viable cancer cells 

pretreatment and increasing strength of RT-induced immunostimulation (q, day−1 in 

Equation 2) in a cohort of virtual patients with different combinations of tumor growth rate 

(r) and immune recruitment rate (f) in response to tumor burden. Radiation is delivered to a 

total dose of 50 Gy in 25 daily fractions at 2 Gy per day, 5 days per week. Tumor control 

(TC) by treatment (blue) and progressive disease (PD; red) refer to tumor eradication and 

escape after treatment, respectively. (B) Time evolution of tumor and effector T cells 

corresponding to the locations marked by diamonds, triangles, and stars in panel A.
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FIG 5. 
Comparison of immune recruitment and treatment outcomes for tumors of 108 viable cancer 

cells pretreatment with tumor growth rate (r) between 0.1 and 0.4 day−1 and immune 

recruitment rate (f) in response to tumor burden between 0.1 and 0.3 day−1. (A) Recruitment 

of effector T cells to the tumor bed as a result of radiotherapy (RT) –induced immune 

responses by surgery followed by RT (SR). (B) Recruitment of effector T cells to the tumor 

bed as a result of RT-induced immune responses by RT followed by surgery (RS). 

Recruitment of effector T cells after both SR and RS is estimated by the integral of the term 

qD in Equation 2, with q = 4.5 × 10−1 day−1. Arrows point to the parameter combinations 

that yield tumor control (TC) by SR and RS (c.f. Fig 4A). (C) Proportion of parameter space 

controlled for SR (25 daily fractions at 2 Gy per day, 5 days per week; blue line) compared 

with RS with gradually increasing number of fractionations. (D) Proportion of parameter 

space controlled for SR (25 daily fractions at 2 Gy per day, 5 days per week; blue line) 

compared with RT alone with increasing number of fractionations. Parameters are 0.1 ≤ r ≤ 

0.4 day−1 and 0.1 ≤ f ≤ 0.3 day−1. Different strengths of RT-induced immunostimulation are 

color coded (q, day−1 in Equation 2).
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