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Abstract

Lesion-symptom mapping has become a cornerstone of neuroscience research seeking to localize 

cognitive function in the brain by examining the sequelae of brain lesions. Recently, multivariate 

lesion-symptom mapping methods have emerged, such as support vector regression, which 

simultaneously consider many voxels at once when determining whether damaged regions 

contribute to behavioral deficits (Zhang, Kimberg, Coslett, Schwartz, & Wang, 2014). Such 

multivariate approaches are capable of identifying complex dependences that traditional mass-

univariate approach cannot. Here we provide a new toolbox for support vector regression lesion-

symptom mapping (SVR-LSM) that provides a graphical interface and enhances the flexibility and 

rigor of analyses that can be conducted using this method. Specifically, the toolbox provides 

cluster-level family-wise error correction via permutation testing, the capacity to incorporate 

arbitrary nuisance models for behavioral data and lesion data, and makes available a range of 

lesion volume correction methods including a new approach that regresses lesion volume out of 

each voxel in the lesion maps. We demonstrate these new tools in a cohort of chronic left-

hemisphere stroke survivors, and examine the difference between results achieved with various 

lesion volume control methods. A strong bias was found toward brainwide lesion-deficit 

associations in both SVR-LSM and traditional mass-univariate voxel-based lesion symptom 

mapping when lesion volume was not adequately controlled. This bias was corrected using three 

different regression approaches; among these, regressing lesion volume out of both the behavioral 

score and the lesion maps provided the greatest sensitivity in analyses.
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INTRODUCTION

A central goal of cognitive neuroscience is to understand the relationship between structure 

and function in the brain. Early insights into this relationship came from linking behavioral 

deficits exhibited by individuals while they were alive with the general location of a brain 

lesion discovered on autopsy. Using this logic, 19th century aphasiologists established the 

foundation of our modern understanding of language in the brain, localizing language 

function to the left hemisphere, with frontal regions supporting speech production faculties 

(Broca, 1866) and posterior regions supporting auditory language comprehension (Wernicke, 

1874).

The introduction of computed tomography (CT) in the 1970s and the spread of magnetic 

resonance imaging (MRI) in the 1980s allowed lesions to be considered in vivo with greater 

spatial resolution, enabling approximately congruous slices to be compared across patients. 

Through the 1990s, researchers used this logic to study groups of individuals categorized by 

behavioral syndrome, lesion characteristics, or specific behavioral deficit. This approach is 

limited because it requires categorization of individuals using arbitrary cutoffs based on 

behavioral symptoms or lesion distribution. Within the domain of language, this work both 

supported traditional views of the lesion-deficit relationship in aphasia (Mazzocchi & 

Vignolo, 1979; Naeser & Hayward, 1978; Yarnell, Monroe, & Sobel, 1976) and highlighted 

important exceptions that suggested the traditional views were incomplete (Basso, Lecours, 

Moraschini, & Vanier, 1985). This work also suggested that critical brain regions extended 

beyond classical language areas (Alexander, Naeser, & Palumbo, 1990), and indeed that the 

role of classical language regions like Broca’s area must be revisited (Mohr et al., 1978).

Today, lesion-deficit correlation studies are conducted with millimeter-scale precision by 

relying on high-resolution structural MRI scans. This voxel-based lesion-symptom mapping 

(VLSM) technique produces a statistical map showing the strength of the relationship 

between damage at any given voxel and performance on a behavioral measure of interest 

across a group of individuals with brain lesions (Bates et al., 2003). Analyses are performed 

on lesion maps delineated by hand (Ashton et al., 2003) or through automated methods 

(Pustina et al., 2016) on anatomical scans which are then warped to a standard space. 

Statistical analysis conceptually involves conducting a between-group comparison at each 

voxel in the sample of spatially normalized lesion maps, with behavioral score binned by 

lesion status at that voxel. Hot regions in the resulting statistical map correspond to voxels 

where lesioned status predicts the measured behavior over and above chance alone. These 

regions are inferred to relate to the cognitive functions relied upon by the behavior under 

investigation. A similar technique, voxel-based morphometry, uses the same logic except 

tissue values are continuous rather than binary lesion maps (Ashburner & Friston, 2000; 

Geva, Baron, Jones, Price, & Warburton, 2012). These procedures not only exploit the full 

spatial resolution of modern medical imaging, but alleviate the need to categorize patients 

with arbitrary cutoffs, as they model behavioral measures on continuous scales (Bates et al., 

2003).

In addition to demonstrating proof of concept, the initial VLSM publication challenged 

traditional notions of Broca’s and Wernicke’s areas, finding anterior insula important for 

DeMarco and Turkeltaub Page 2

Hum Brain Mapp. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fluency and middle temporal gyrus important for auditory comprehension over and above 

Wernicke’s area (Bates et al., 2003). In a relatively short period of time since their 

introduction, univariate voxelwise lesion-symptom mapping techniques have become widely 

used, resulting in important findings on crucial brain structures for language (Mirman et al., 

2015), written language processing (Rapcsak et al., 2009), visual attention (Karnath, 

Fruhmann Berger, Küker, & Rorden, 2004), and cognitive control (Gläscher et al., 2012), 

among many other functions.

One limitation of traditional VLSM is its reliance on a mass-univariate analytical approach, 

where the relationship between lesion status and behavioral performance is considered one 

voxel at a time. A consequence of this approach is that information concerning the spatial 

relationship between a specific voxel and neighboring voxels is not incorporated into the 

analysis. This constraint equates to an assumption of statistical independence across voxels, 

but such an assumption is unwarranted given both the spatial autocorrelation across voxels 

inherent to neuroimaging data and the non-random distribution of lesions throughout the 

brain (Husain & Nachev, 2007; Mah, Husain, Rees, & Nachev, 2014). The consequences of 

assuming voxelwise independence in VLSM includes not only a loss of statistical power but 

also a potential bias in regional localization of the lesion-deficit relationship, in particular 

when a behavior of interest relies on multiple distinct brain regions (Herbet, Lafargue, & 

Duffau, 2015; Kimberg, Coslett, & Schwartz, 2007; Mah et al., 2014). Indeed, large-scale 

simulations have demonstrated that the assumption of statistical independence across voxels 

can lead traditional mass-univariate VLSM analyses to produce biased lesion-symptom 

maps. The same work has highlighted the potential for multivariate inference methods to 

reduce or remove this source of error (Mah et al., 2014). By considering the contribution of 

many voxels simultaneously, these methods enable the detection of multivariate relationships 

between lesion location and behavioral deficit.

Recently, Zhang and colleagues (Zhang et al., 2014) proposed and validated an approach to 

lesion-symptom mapping using support vector regression (SVR), an application of support 

vector machines that permits regression involving continuous variables such as behavioral 

scores (Cortes & Vapnik, 1995). This new approach, called support vector regression-based 

lesion-symptom mapping (SVR-LSM), provides a multivariate method that addresses these 

important limitations of the traditional mass-univariate approach. In their study, the authors 

demonstrated that SVR-LSM has higher sensitivity and specificity compared to VLSM 

when applied to simulated data, and higher sensitivity to lesion-behavior relationships in real 

data.

Zhang and colleagues have made their implementation of SVR-LSM publicly available 

online as a free download. Here we describe a new MATLAB toolbox for SVR-LSM that 

provides several upgrades over this prior implementation, including a graphical interface to 

improve usability and new options that allow more flexible and rigorous analysis designs. 

First, we implement a permutation-based cluster-level correction for multiple comparisons 

correction. This method addresses limitations of the voxelwise FDR approach implemented 

previously in SVR-LSM, which treated each voxel as an independent comparison, resulting 

in potentially flawed corrections. Permutation-based multiple-comparisons correction 

methods are considered the gold standard for lesion symptom mapping because they account 
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for the lesion autocorrelation structure inherent to the datasets (Kimberg et al., 2007; 

Mirman, Landrigan, Kokolis, Verillo, & Ferrara, 2016; Nichols & Holmes, 2002; Wilson, 

2016). Second, we provide the ability to control for multiple covariates in the analysis 

design, and provide more flexibility in how the covariates are handled via nuisance models. 

Although permutation-based multiple comparisons correction and support for multiple 

covariates has been available in mass-univariate lesion-symptom mapping tools like vlsm2 
(Bates et al., 2003) and npm (Rorden, Karnath, & Bonilha, 2007), these techniques have not 

yet to our knowledge been implemented in a multivariate environment. Third, we provide 

new options for lesion volume correction in multivariate lesion-symptom mapping, 

including a method to control for lesion volume that removes bias from all voxels in the 

data.

Lesion volume is an important confounding variable in lesion-symptom mapping analyses 

because larger lesions tend to cause more severe deficits regardless of location (Price, Hope, 

& Seghier, 2017). Further, at any given voxel, the patients with a lesion occupying that voxel 

are likely to have larger strokes than those without a lesion at that voxel. This imbalance is 

likely to lead to a bias toward identifying lesion-behavior associations throughout the brain, 

even in regions with no role in the behavior under investigation. One approach to control for 

lesion volume has been to regress it out of behavioral scores, which transforms behavioral 

scores to remove their relationship with lesion volume prior to lesion-symptom mapping. 

These transformed behavioral scores are then used in a subsequent lesion-symptom mapping 

analysis (Karnath et al., 2004; Schwartz, Faseyitan, Kim, & Coslett, 2012). This approach is 

analogous to a semi-partial correlation, which is an atypical method of covariate handling in 

general statistical analyses, but is advantageous in that any between-group statistical test can 

be used for the lesion-symptom mapping analysis (e.g., t-test, Brunner-Munzel test). 

Software packages that model the lesion-deficit relationship using multiple regression (e.g., 

vlsm2) can simply include lesion volume as second predictor along with the behavioral 

score, thus controlling for the lesion volume confound in both the voxel data and the 

behavior. This approach limits the statistical test used for lesion-symptom mapping to 

voxelwise regressions. Because translation of this approach to SVR-LSM is not 

straightforward, Zhang et al. (2014) introduced “direct total lesion volume control” (dTLVC) 

which places greater weight on the contribution of smaller lesions to control for lesion 

volume in the lesion map data. Prior to SVR analysis, the voxel values in each lesion map 

are divided by the square root of the lesion volume for that patient. Although the method 

addresses bias in lesioned voxels, unlesioned voxels remain uncorrected because zero values 

are unaffected by the transform. Here, we introduce an additional approach in which lesion 

volume is regressed out of each voxel in the lesion maps prior to SVR analysis, thus 

correcting both voxels with and without lesions. In the new SVR-LSM toolbox, we provide 

several options for lesion volume correction: dTLVC, regression of lesion volume out of 

behavioral scores, regression of lesion volume out of lesion maps, and regression of lesion 

volume out of both behavioral scores and lesion maps. This last approach is conceptually 

appealing because it is mathematically nearly equivalent to the way in which covariates are 

typically treated in between-group statistical comparisons (e.g., ANCOVA), and also the 

way covariates including lesion volume are handled in regression-based mass-univariate 

lesion-symptom mapping software (e.g., vlsm2). Below, in addition to describing the 
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features of the new SVR-LSM toolbox, we test the impact of each of the available correction 

methods on the results of analyses on a cohort of left hemisphere stroke survivors. Finally, 

we examine two cases of how controlling for lesion volume affects the results and 

interpretation of multivariate lesion-symptom mapping analyses. In order to demonstrate the 

generality of our findings about lesion volume correction beyond multivariate lesion-

symptom mapping, we also replicate some analyses using a mass-univariate VLSM 

approach (see Supplemental Figures 2 and 3).

2. Methods

2.1 Pre-existing implementation

The support vector machine (SVM) classifier is a type of supervised machine learning 

model that has become popular for multivariate data analysis. SVMs take labeled training 

data as input, nonlinearly transform the data into a high-dimensional feature space, and then 

in this feature space estimate a linear decision boundary, or hyperplane, based on the input 

features according to a loss-function that seeks to correctly categorize as many training 

points as possible. The subset of training data points that constrain and straddle the 

estimated hyperplane are referred to as support vectors. A trained SVM model can then be 

used to classify novel, unobserved data points. Complicated patterns in the data can be 

learned by applying the so-called “kernel trick” in which a kernel function assists with an 

otherwise potentially intractable mapping of the data to feature space. Support vector 

regression (SVR) extends the technique to regression (Cortes & Vapnik, 1995) which can 

operate on continuous variables such as the behavioral measures associated with a lesion-

symptom mapping study. When applied to lesion-symptom mapping, the voxelwise lesion 

statuses in a predefined mask region are collapsed into a column vector for each subject and 

combined so that rows correspond to unique spatial locations across the sample of lesion 

maps. These data are used as input to train an SVR model to predict the behavioral data 

under investigation. To recover the relevant anatomical locations, the trained model’s 

predictive hyperplane is back projected into the input data space, which can then be overlaid 

onto a standard brain image for interpretation. The behavior of the SVR algorithm utilized 

here (ε-SVM; epsilon-insensitive SVM) is determined by two hyperparameters. The first is 

epsilon, which defines a range around the hyperplane margins within which the model is not 

penalized for misclassified data points. The second is cost, which specifies the penalty for 

misclassified data points, where a higher penalty encourages more support vector points and 

a more complex fit to the data. In addition to these two hyperparameters, the use of a 

nonlinear radial basis function (Gaussian) kernel introduces a third hyperparameter, kernel 
scale (also referred to as sigma or gamma) corresponding to the width of the Gaussian kernel 

function. Hyperparameters are chosen prior to running the SVR, and choices are often 

optimized based on properties of the data at hand. The mathematical equations underlying 

the core SVR-LSM functionality were described by Zhang and colleagues (2014) and will 

not be described again here. The original implementation of SVR-LSM by Zhang and 

colleagues (2014) is available for free from the SPM website 

(www.fil.ion.ucl.ac.uk/spm/ext/#SVRLSMtbx) and the author’s github website (github.com/

yongsheng-zhang/SVR-LSM). Procedures are implemented in MATLAB scripts and rely on 

both SPM (Wellcome Institute of Imaging Neuroscience, London, UK) functions for basic 
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image manipulation and LibSVM (Chang & Lin, 2011), a third-party package, for SVR 

functionality. Analyses are configured by editing a MATLAB script file such that relevant 

variable values reflect a user’s analysis choices. The software allows up to one behavioral 

covariate, and correction for lesion volume may be incorporated into an analysis via dTLVC 

(Zhang et al. 2014). The software generates a map of SVR-β values which are then 

converted to P values via permutation testing at the voxel level, and optionally applies a 

FDR correction threshold to the permutation analysis results. Although this existing 

implementation of SVR-LSM supports a minimum cluster size threshold, this arbitrary value 

is provided by the user.

The original SVR-LSM software employed fixed hyperparameter values, with a cost of 30 

and a gamma of 5. These parameters are recommended by the authors of the initial SVR-

LSM publication (Zhang et al., 2014), in which a metric of prediction accuracy and an index 

of reproducibility were derived from their large dataset to determine optimal parameters for 

performing lesion-symptom mapping using SVR. Specifically, they state “...there is no 

golden standard for choosing the optimal [gamma and cost] values, they were chosen to have 

a compromised high reproducibility and prediction accuracy. ...while the optimal values 

were determined using the 106 patients’ data, similar values should work for other data too 

as we empirically tested (data not shown).” Based on this recommendation, the analyses in 

this manuscript also utilize these recommended hyperparameter values. The default epsilon 
value in LibSVM (0.1) was used.

2.2 New implementation

We have adapted the pre-existing implementation of SVR-LSM, and provide several 

upgrades to the original software to improve usability and to allow for more flexible analysis 

designs, as detailed below. The free software may be downloaded at its github repository 

(github.com/atdemarco/svrlsmgui).

2.2.1 Handling of lesion volume—Although it is recognized that correction for lesion 

volume is important in lesion-symptom mapping, it is not agreed upon how best to perform 

the correction. We introduce a method of removing correlations between lesion volume and 

lesion status at each voxel that affects both the one- and zero-valued voxels in the raw lesion 

data. Specifically, prior to SVR analysis, we perform a linear regression between the lesion 

status values at each voxel and the lesion volume values, residualizing the voxel values with 

respect to their independent relationship with lesion volumes. This has the desirable effect of 

correcting lesion volume biases in both in the lesioned voxels and in unlesioned voxels, 

whose values are zero, which make up much of each dataset. As noted above, transforming 

either the behavioral data or the lesion data prior to lesion-symptom mapping analysis is 

common in current analysis packages. The general approach is analogous to a nuisance 

model commonly used in resting state fMRI analysis (e.g, Poldrack, Mumford, & Nichols, 

2011, p133), and also to hierarchical regression, in which one builds an initial model using a 

set of baseline predictors, and then subsequently adds predictors of interest to determine if 

they predict the dependent variable above and beyond the variables specified in the original 

model.
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As our primary goal is to make a variety of tools available to investigators and not restrict 

methodological choice, in the new software we make available this novel method, in 

addition to previously used methods available for correcting for lesion volume. The five 

options include: 1) no correction for lesion volume, 2) dTLVC correction (Zhang et al., 

2014), 3) regressing lesion volume out of the behavior of interest (Karnath et al., 2004; 

Schwartz et al., 2012), 4) regressing lesion volume out of the lesion voxel data, and finally 

5) regressing lesion volume out of both the behavioral data and lesion data. This last 

approach is nearly equivalent to a regular partial correlation, ANCOVA model, or including 

lesion volume as an additional predictor in a multiple regression, such as is utilized in vlsm2 
(Bates et al., 2003).

To explore the effect that each of the five approaches to lesion volume correction has on the 

stringency of results of lesion-symptom maps, we calculated number of suprathreshold 

voxels for twenty behaviors in a cohort of individuals with chronic left-hemisphere stroke (N 
= 49) using each method. Behaviors investigated included oral and written naming 

performance on the Philadelphia Naming Test (Roach, Schwartz, Martin, Grewal, & 

Brecher, 1996), category and letter fluency scores, subtests from the Western Aphasia 

Battery (Kertesz, 1982) including Spontaneous Speech Content, Spontaneous Speech 

Fluency, Repetition, Auditory Verbal Word Recognition, Auditory Verbal Yes No , and 

Sequential Commands, Pseudoword Repetition (in-house), imageability effect (concrete 

minus abstract word reading, in-house), regularity effect (regular minus exception word 

reading, in-house), lexicality effect (word minus pseudoword reading, in-house), Pyramids 

and Palm Trees (Howard & Patterson, 1992), Digit Span Backward, Picture Pointing, score 

on Complex Ideational Material from the Boston Diagnostic Aphasia Examination 

(Goodglass & Kaplan, 2001), and the Attention and Symbol trails subtest scores from the 

Cognitive Linguistics Quick Test (Helm-Estabrooks, 2001). These measures were chosen to 

sample across a range of lesion effect sizes and potential anatomical loci. Participants were 

drawn from other studies examining lesion-behavior relationships (Lacey, Skipper-Kallal, 

Xing, Fama, & Turkeltaub, 2017; Xing et al., 2016; Xing, Lacey, Skipper-Kallal, Zeng, & 

Turkeltaub, 2017). All participants provided written informed consent and all studies were 

approved by the Georgetown University IRB.

To assess the impact of each method on systematic biases in voxelwise statistics because of 

lesion volume effects, we also examined the effect of the lesion volume correction methods 

on the distribution of unthresholded SVR-β values throughout the brain. All computations 

were conducted on an Intel Xeon (E5–2680 v4) with CPUs at 2.4 GHz and 58 GB of RAM, 

running Ubuntu 16.04, parallelized across the 14 system cores.

2.2.2 Handling of covariates (including multiple covariates)—In the new SVR-

LSM toolbox, an arbitrary number of covariates may be incorporated into an analysis, 

allowing for flexible analysis designs. Nonetheless, as in typical regression models, 

including too many covariates could result in invalid results. Because the valid upper limit of 

number of covariates that may be included is not clear, we emphasize that care should be 

taken in including more than a few. As with controlling for lesion volume, covariates are 

handled using nuisance models and a partialing out strategy, which residualizes the single 

behavioral score under investigation with respect to the specified covariates prior to SVR 
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analysis. Behavioral covariates may also be factored out of the raw lesion data, effectively 

allowing behavioral data to be included in the model in each way the lesion volume may be 

handled (see above). Behavioral covariates are specified through the graphical interface in an 

interactive listbox and incorporated into the analysis by checkboxes indicating whether to 

covary values out of the behavior of interest, the lesion data, or both.

2.2.3 Statistical thresholding—The voxelwise SVR-β values produced by the SVR 

analysis must be converted into P values via permutation testing before they can be 

interpreted. Permutation testing involves randomly reassigning the actual behavioral scores 

in the dataset to the lesion masks in the dataset, simulating the null hypothesis that there is 

only a chance level association between the behavior and the lesion distributions. These 

permutations are first used to generate voxelwise distributions of SVR-β values obtained 

through these chance associations. Importantly, the distribution at each voxel is catalogued 

separately since the distributional properties depend on the number of patients lesioned at a 

given voxel, the volume of those lesions, and other characteristics that differ across voxels. 

This allows a critical SVR-β value to be determined for each voxel that is associated with 

the user-selected uncorrected P-value threshold. A map of the critical SVR-β values at each 

voxel is then assembled and acts as a voxelwise mask to threshold for voxels which are 

statistically significant before correction for cluster extent. The new cluster-level correction 

procedure then evaluates each of the previous permutations, which were saved to disk, first 

applying the voxelwise mask and then recording the size of the single largest cluster 

surviving from each permutation map. The distribution of these cluster sizes provides the 

null distribution from which the FWE-corrected cluster threshold is determined. Adapted 

from functional neuroimaging analysis (Nichols & Holmes, 2002), this procedure has been 

applied to univariate lesion-mapping studies (Mirman et al., 2015; Pillay, Stengel, 

Humphries, Book, & Binder, 2014) and was recently shown to adequately control for false 

positive rate (Mirman et al., 2016). Although permutation-based correction for multiple 

comparisons controls false positives in univariate VLSM, this approach does not control for 

false negative findings. Mass-univariate analyses are still susceptible to mislocalization and 

false negatives when behaviors rely on multiple structures (Zhang et al., 2014; Mah et al., 

2014).

2.2.4 Inclusion of MATLAB SVM—The original implementation of SVR-LSM runs 

within the MATLAB environment, but relies on a popular open-source third-party machine 

learning library for SVR functionality, LibSVM (Chang & Lin, 2011). Thus, when installing 

this implementation of SVR-LSM, a user may be required to compile LibSVM on their 

system from binaries. Although this process is easy in some computing environments, it can 

be burdensome in others due to variable support of compilers across operating systems and 

MATLAB versions. MATLAB (2014) introduced SVR functionality into their Statistics and 

Machine Learning Toolbox™, including the type utilized by the existing implementation of 

SVR-LSM (Zhang, 2014). To alleviate the need to install the LibSVM package, we provide 

the option of using SVR functionality from the Statistics and Machine Learning Toolbox™, 

configurable through a program menu. We retain functionality of LibSVM and leave the cost 

and gamma parameters user-configurable.
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2.2.5 Graphical user interface—We wrap these functions in a graphical interface 

constructed in MATLAB. As shown in Figure 1, the interface consists of a single dialog 

window launched in MATLAB. Within the Analysis Configuration pane, the user specifies a 

directory containing lesion images, a design file containing a list of patients and relevant 

behavioral scores, and an output filename. The directionality of the hypothesis is then 

specified as well as the lesion volume correction method and minimum lesion overlap cutoff 

for voxels to be included in an analysis. Covariates may be specified in the covariates pane, 

and may be regressed out of the lesion data, the behavioral score data, or both. Permutation 

testing can be configured in the top right pane by indicating the number of permutations 

desired and critical values at the voxelwise and clusterwise levels. Once these parameters are 

configured, the user clicks “Run Analysis” and waits for the analysis to conclude. A pane in 

the bottom right of the interface displays progress to the user as the analysis proceeds.

2.2.7 Other new features—In addition to the technical advances outlined above, we 

include other additions that assist in analysis configuration, execution, diagnostics, and 

interpretation. An online reference file details all options within the program. A few notable 

features include:

• Analyses configured through the graphical interface may be saved to disk and 

loaded later, or may be executed from the command line without user interaction.

• To speed up analyses, an option is provided to parallelize the permutation 

procedures through the graphical interface. When enabled, this option will utilize 

the parallel pool with the number of workers specified in the MATLAB Parallel 

Computing Toolbox preferences. A system that supports parallel processing is 

necessary for this functionality.

• To assist with diagnostics and interpretation of results, each analysis produces an 

overview file that may be viewed in the browser which contains a short narrative 

describing the analysis specifications and thumbnails of various output steps. 

Thumbnails include a lesion overlay image delineating a lesion overlap map and 

a mask of voxels to which the analysis was restricted based on the minimum 

lesion overlap threshold, unthresholded SVR-β maps, voxelwise thresholded 

SVR-β maps, and SVR-β maps thresholded at both the voxel and cluster level, 

with numerically labeled clusters. To assist with detection of correlation among 

the main behavioral predictor and covariates specified in the behavioral nuisance 

model, including lesion volume, output also includes a matrix of pairwise scatter 

plots to visualize the correlation matrix of those variables. Each plot displays the 

least squares slope and correlation coefficients, with significant t-statistics 

highlighted red. Finally, the output file also plots the largest observed clusters 

and how they relate to the critical cluster threshold as it changed throughout the 

permutation testing procedure. This last output can help assess when the critical 

cluster threshold has reached a point of stability and can give insight into the 

robustness of observed cluster sizes relative to the permutation testing.
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3. Results

3.1 Comparison between results of different SVR-LSM implementations

To ensure that the new implementation reproduces the results achieved with the prior 

implementation of SVR-LSM, we ran an analysis using WAB Repetition as the behavioral 

score and parameter values cost of 30 and gamma of 5 using both implementations. Because 

MATLAB utilizes a formulation of the Gaussian radial-basis function kernel that differs 

from LibSVM’s formulation, we used the algebraic equivalent of a gamma of 5 (sigma = 

0.316) for MATLAB SVR analyses. As shown in Figure 2, the two implementations produce 

SVR-β maps that are identical (voxelwise r(433) = 1.00, p < .001). Next, to ensure that the 

MATLAB and LibSVM implementations within the new toolbox produce the same result, 

we reran the same analysis using the native MATLAB SVR functionality. The results were 

nearly identical, with negligible differences in exact SVR-β values (voxelwise r(433) = .94, 

p < .001). Voxelwise correlations were restricted to voxels that were nonzero in any of the 

three analyses.

3.2 Computing time

The time required to run an analysis will depend on the resolution of the lesion maps, the 

sample size of individuals in the analysis, the number of permutations used for statistical 

thresholding, and the specifications of the computer on which the analysis is run. To provide 

rough estimates of the time required for typical analyses, we timed several analyses varying 

the parameters of parallelization (on/off), method of correcting for lesion volume (no 

correction, dTLVC, Regression on both behavior and lesion), number of permutations 

computed (1,000, 5,000, 10,000), and sample size (50, 100, 150). Analyses were carried out 

on an Intel Xeon (E5–2680 v4) with CPUs at 2.4 GHz and 58 GB of RAM, running Ubuntu 

16.04. Parallelized analyses utilized all 14 system cores. Results for these analyses are listed 

in Table 1. Execution time grew with sample size, lasting on average 67/16 minutes 

(unparallelized/parallelized) for a sample size of 50, 217/66 minutes for a sample size of 

100, and 445/132 minutes for a sample size of 150. Likewise, execution time grew with the 

number of permutations, lasting on average 47/14 minutes for 1,000 permutations, 227/68 

minutes for 5,000 permutations, and 455/131 minutes for 10,000 permutations. Enabling 

parallelization resulted in analyses completing on average 6 times faster, with at least a 2-

fold decrease and at most a 9-fold decrease in execution time. Duration of analyses using 

dTLVC correction was 131/16 minutes, which was comparable to analyses with no 

correction applied, 128/16 minutes. Regressing out lesion volume resulted in slower 

execution time, lasting on average 470/181 minutes. Regressing out lesion volume results is 

slower analyses because the SVR takes longer to converge, and this extra time accumulates 

over the permutation portions of the analysis.

3.3 Distribution of bias related to lesion volume

To explore the distribution of bias related to lesion volume in a hypothetical lesion-symptom 

mapping analysis, we examined the average lesion volumes of those with and without 

lesions at each voxel in a cohort of left-hemisphere stroke survivors (N = 48). These maps 

revealed that the presence of lesions at most locations was associated with large lesion 

volume (Figure 3a), while the absence of lesions at the same voxels was associated with 
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small lesion volume (Figure 3b). Larger lesions were particularly associated with lesion 

status at the border of middle cerebral artery (MCA) territory, and the largest lesions were 

associated with lesion status in anterior cerebral artery territory. A difference map of average 

lesion volume in those with and without lesions at every voxel reveals large bias throughout 

most of the left hemisphere (Figure 3c), a difference that was statistically significant 

throughout a large portion of MCA territory (Figure 3d).

3.4 Comparison of lesion volume correction methods

To compare the effects of lesion volume correction using the methods available in the new 

SVR-LSM toolbox, we conducted analyses on 20 different behaviors using no correction 

and the four lesion volume correction methods provided. Conducting analyses without lesion 

volume correction produced the greatest number of suprathreshold voxels after voxelwise 

and clusterwise correction. Of the 20 behaviors tested, 16 produced significant results 

(24,887 significant voxels on average). When the dTLVC transform was applied to correct 

for lesion volume, the same 16 behaviors produced significant results, although the average 

volume of significant voxels was reduced (10,718 significant voxels on average). With lesion 

volume regressed out of the behavior, two of 20 analyses produced significant results (3,827 

significant voxels on average). With lesion volume regressed out of the raw lesion data, one 

of the 20 analyses produced significant results (4,095 voxels). Finally, with lesion volume 

regressed out of both behavioral data and raw lesion data, seven of 20 analyses produced 

significant results (2,884 voxels on average). A spaghetti plot of the 20 analyses for five 

correction choices is shown in Figure 4. Table 2 lists the behaviors that were significant for 

each lesion volume correction method. See Supplemental Figure 1 for thumbnails of the 

SVR-β maps for the 20 behaviors across the five lesion-volume correction methods. See 

Supplemental Figure 2 and Supplemental Table 1 for a demonstration that this effect also 

applies to mass-univariate VLSM (for VLSM methods, see Supplemental Methods).

Because the motivation for performing lesion-volume correction is to remove bias in the 

data, we also examined uncorrected SVR-β maps for evidence of this bias and the extent to 

which each lesion-volume correction method addressed it (Figure 5). We examined two 

behaviors, one with significant findings across all methods (WAB Fluency) and one with 

significant findings only without lesion volume correction or with dTLVC (Pyramids and 

Palm Trees). In addition to plotting a histogram of SVR-β values for each lesion correction 

method, we also generated distributions of SVR-β maps resulting from 1,000 permutations 

for each analysis in order to examine the null distributions against which the real data would 

be compared in an SVR-LSM analysis.

The SVR-β values for the permutation data were normally distributed and centered at 0 for 

all analyses of both behaviors. The width of these distributions varied somewhat across 

correction methods with the narrowest distributions (i.e., least variance in SVR-β values) 

observed in the permutations without lesion volume correction.

The SVR-β distributions for both analyses without lesion volume correction were 

substantially shifted leftward, such that nearly all SVR-β values in these analyses were 

negative. This indicates that lesions at most voxels in these analyses were associated with 

negative effects on behavior. DTLVC had only a marginal effect on this leftward bias, with 
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the distributions slightly shifted rightward for both behaviors compared to the analyses 

without lesion volume correction. In contrast, all three regression methods qualitatively 

changed the shape of the distributions compared to no correction or dTLVC. For Pyramids 

and Palm Trees, which did not yield any significant results with lesion volume regressed out 

of analyses, all three methods resulted in normal distributions centered on 0, little different 

than the permutation distributions. For WAB Fluency, which did yield significant results in 

these analyses, the distributions were wider than the permutation distributions and shifted 

leftward such that the left (negative) tail extended beyond the null distributions.

3.5 Lesion correction effects on localization of behaviors

To explore whether controlling for lesions size alters localization in lesion symptom 

mapping analyses, we first examined the SVR-LSM maps of the 20 behavioral scores 

(Section 3.4, Supplemental Figure 1). Several of the analyses without lesion volume 

correction produced similar maps despite examining different behaviors, with large areas of 

significance falling in the region of lesion volume bias shown in Figure 3d. When significant 

clusters survived in the lesion volume corrected maps, they were substantially smaller, but 

not spatially displaced from the uncorrected results. The same effects were also observed 

when the analyses were computed using a mass-univariate VLSM approach (Supplemental 

Figure 2). This suggests that the data transformations required for lesion volume correction 

did not cause mislocalization of the behaviors.

To examine more directly the effect of lesion volume control on localization of behaviors 

strongly or weakly associated with lesion volume, we next performed lesion-symptom 

mapping analyses of two simulated behaviors. Based on the earlier result (Figure 3d), one 

simulated behavior was generated by taking the number of lesioned voxels in a 4mm sphere 

surrounding a voxel strongly related to lesion volume (Figure 6a; MNI = −48, −17, 28; 

SVR-β = 9.47; p < .001 based on 10,000 permutations, 23 overlapping lesions), and one 

behavior was generating using the same approach at a voxel less associated with lesion 

volume (Figure 6b; MNI = −47, −51, 14; SVR-β = 3.12, p = .07 based on 10,000 

permutations, 18 overlapping lesions). We then examined the effect of each lesion correction 

method on the localization of the simulated behaviors. Lesion-symptom mapping of these 

behaviors should ideally produce significant results in a fairly focal area surrounding the 

seed.

As depicted in Figure 6a, lesion symptom mapping of the simulated behavior that was 

strongly related to lesion volume produced significant results in a large area surrounding the 

seed from which the behavior was derived (red). When dTLVC was applied, the region that 

was identified as significantly related to the simulated behavior became less dispersed 

relative to no correction. When regression methods were applied to correct for lesion 

volume, the region that was identified as significantly related to the simulated behavior 

became more focal, and was still centered on the seed location. For the simulated behavior 

that was less correlated with lesion volume (Figure 6b), all correction methods produced 

significant results surrounding the seed voxel without a qualitative difference in the number 

or distribution of significant voxels. See Supplemental Figure 3 for a demonstration that this 

effect also applies to mass-univariate lesion-symptom mapping.
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3.6 Case studies of the effect of lesion-volume correction on multivariate lesion-symptom 
mapping

To illustrate the effects of lesion volume correction on a hypothetical lesion-symptom 

mapping analysis, we focus here on SVR-LSM results for two behaviors, specifically 

Pseudoword Repetition and WAB Yes/No. Pseudoword repetition tests phonological 

processing without lexical-semantic support by asking participants to repeat aloud 

pronounceable nonwords that are dictated by the examiner. WAB Yes/No tests sentence-

level comprehension by asking participants to respond yes or no to a series of question 

sentences (e.g., “Will paper burn in fire?”). Each analysis was first conducted without 

controlling for lesion volume, and then conducted again with lesion volume regressed out of 

both voxelwise lesion data and behavioral scores.

When lesion volume was not controlled, lesions were associated with impaired Pseudoword 

Repetition in a single large cluster of regions that included portions of left inferior frontal 

gyrus, superior temporal gyrus, ventral premotor cortex, and much of the inferior parietal 

lobe (Figure 7A, left). When lesion volume was regressed out of both behavior and lesion 

data as a covariate, many of these regions were no longer significant. Rather, regions where 

lesions resulted in impaired Pseudoword Reading were contained in single smaller cluster, 

containing posterior superior temporal gyrus, supramarginal gyrus, and ventral post-central 

gyrus, roughly surrounding area Spt in the temporoparietal junction (Figure 7A, right).

When lesion volume was not controlled, lesions were associated with impaired WAB 

Yes/No score in a single large cluster of regions that again included inferior frontal gyrus, 

ventral premotor cortex, insula, ventral post-central gyrus, and a large swath of superior and 

middle temporal gyri, extending subcortically into the parietal lobe (Figure 7B, left). When 

lesion volume was regressed out of both behavior and lesion data as a covariate, lesions were 

associated with impaired WAB Yes/No scores in a single smaller cluster primarily consisting 

of the middle and superior temporal gyri, extending into the insula and posterior inferior 

frontal gyrus (Figure 6B, right).

4. Discussion

Lesion-symptom mapping has become a cornerstone of cognitive neuroscience research, and 

methodological developments have enabled multivariate approaches with benefits over 

traditional mass-univariate methods. Despite the availability of multivariate methods for 

lesion-symptom mapping, these techniques have yet to be widely adopted, perhaps in part 

due to limitations of previously available implementations. Here we have provided new 

methods for SVR-LSM that make it easier to implement and expand on the types of analyses 

that can be conducted. We have also provided tools, such as permutation-based FWE 

correction at the cluster level, to improve the rigor of SVR-LSM analyses.

Lesion volume confounds limit the rigor of lesion symptom mapping analyses, but there is 

no consensus about how to best control for these effects in practice. We compared several 

different approaches here, including a new approach as described above. Although our focus 

was on the comparison using SVR-LSM, we replicated the analyses using mass-univariate 

methods (Supplemental Figures 2 and 3, Supplemental Table 1) to illustrate that the lesion 
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volume problem is similar in univariate VLSM. The results demonstrated that the most 

liberal approach is to ignore lesion volume as a confound. Doing so resulted in significant 

lesion-deficit associations in 16 of 20 behaviors examined, many including large numbers of 

significant voxels. In a simulated behavior strongly related to lesion volume, lack of 

correction resulted in identifying significant lesion-behavior associations in a large area of 

the brain. Using dTLVC was only modestly more conservative, with significant results again 

observed for the same 16 behaviors and somewhat fewer suprathreshold voxels. 

Examination of the SVR-β distributions for both of these approaches revealed that voxelwise 

associations with behavior were dramatically skewed toward negative relationships, a bias 

related to the influence of lesion volume on voxelwise statistical values, as demonstrated by 

the correction of the bias after regressing out lesion volume. Lesion volume has a large 

impact on lesion-symptom maps because the likelihood of any given voxel being lesioned is 

directly proportionate to the size of the lesion. Thus, at any given voxel, patients with large 

lesions are more likely to have a lesion at that voxel compared to patients with small lesions. 

In our cohort, this lesion volume difference was present throughout most of the perisylvian 

tissue as well as much of the underlying white matter, demonstrating how widespread these 

effects are in the brain. The voxelwise lesion volume difference means that statistical values 

at most voxels in an uncorrected map result from comparisons between groups (lesion 

present and lesion absent) that are mismatched on lesion volume, producing a strong bias 

toward finding lesion-deficit associations in large areas of the brain when behaviors are 

related to lesion volume. This bias was demonstrated here by the similarity of lesion-

symptom maps generated for different behaviors when lesion volume correction was not 

used, and by the analysis of the simulated behaviors, which yielded a large area of 

significance for the behavior associated with lesion volume when this relationship was not 

corrected. DTLVC only partially corrects this bias because it still leaves bias in unlesioned 

voxels, which make up a majority of most lesion maps.

The decision of how to address the lesion volume bias ultimately should be driven by the 

research question. Permitting the bias to remain in the analysis may be appropriate if the 

question is “Where are lesions associated with deficits in behavior X?” since lesions should 

almost always be associated with negative changes in behavior. This may be reasonable for 

clinical questions about expected deficits based on lesion distribution, but results should not 

be taken to indicate that the areas of the brain identified as significant are important for the 

behavior under investigation.

Allowing the lesion volume bias to impact results is not appropriate if the analysis aims to 

localize the substrates for a given behavior by asking “Is behavior X more strongly 

associated with lesions in certain brain areas compared to others?” This is the type of 

question motivating most lesion-symptom mapping studies, and in this case the lesion 

volume bias confounds the association between the behavior and lesion location. As an 

analogy, imagine a hypothetical experiment aiming to determine if the left inferior frontal 

gyrus is important for cognitive control. The experimenters compare two groups of patients, 

one with lesions involving left inferior frontal gyrus and one with lesions elsewhere. The left 

inferior frontal gyrus lesion group performs worse on the cognitive control tasks as 

predicted, but also has larger lesions than the control lesion group. One cannot conclude 

from these results that the left inferior frontal gyrus is associated with cognitive control 

DeMarco and Turkeltaub Page 14

Hum Brain Mapp. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



because the observed behavioral difference may have been driven purely by the difference in 

lesion volume between the groups. Performing lesion-symptom mapping without adequate 

lesion volume correction is like performing similarly biased comparisons at each voxel in 

the brain.

Our analyses of Pseudoword repetition and WAB Yes/No illustrate this principle. Without 

controlling for lesion volume, impaired performance on these measures are associated with 

spatially non-specific regions of the brain that span frontal, parietal, and temporal lobes. 

Controlling for lesion volume reveals that pseudoword repetition relates to more specific 

cortical regions, specifically area Spt and nearby cortical areas. Area Spt is a key component 

of the dorsal stream of modern neuroanatomical language models (Hickok & Poeppel, 

2007), and is believed to perform the sensory-motor transformations that enable direct 

mapping from auditory input to motor output, which is required for behaviors like 

pseudoword repetition. Indeed, this finding is highly congruent with previous functional 

neuroimaging studies of healthy adults, and this region is implicated in conduction aphasia, 

a syndrome in which this skill is particularly impaired (Buchsbaum et al., 2011; Hickok et 

al., 2000; Hickok, Buchsbaum, Humphries, & Muftuler, T., 2003). Controlling for lesion 

volume reveals that poor performance on WAB Yes/No score results from lesions to superior 

and middle temporal gyri, and portions of posterior inferior frontal gyrus. These findings 

also converge with existing work examining regions relevant to auditory comprehension of 

single words and sentences, which are the primary linguistic skills required for this task. 

Many lines evidence from patients with aphasia indicate auditory comprehension is 

associated with superior temporal cortex (Hillis, Rorden, & Fridriksson, 2017), but there is 

also evidence for a broadly distributed network supporting sentence comprehension 

throughout the middle temporal gyrus (Turken & Dronkers, 2011). Recent work on the 

semantic variant of primary progressive aphasia underlines the additional contributions of 

the anterior temporal lobe for language comprehension (e.g., Mesulam et al 2015). These 

two cases illustrate that without controlling for lesion volume, analysis results are broadly 

distributed, whereas more specific and informative results that conform to modern 

neuroanatomical language models are identified with lesion volume control.

For the type of research question described above, statistically controlling for lesion volume 

is necessary in order to interpret a significant result as indicating a role for the identified 

brain structure in the behavior under investigation. DTLVC appears to only partially correct 

for lesion volume biases, based on the residual negative skew in the SVR-β histograms and 

the modest effects of this method on both the analyses of real behaviors and the simulated 

behavior strongly related to lesion volume. In contrast, all three regression methods provided 

more conservative correction, completely addressing the skew in SVR-β histograms and 

improving the spatial specificity for localizing the behavior strongly related to lesion 

volume. Importantly, spatial specificity was not affected by lesion volume correction when 

the behavior was less strongly related to lesion volume, and none of the lesion volume 

correction methods introduced mislocalization of lesion-behavior associations. Together 

these findings suggest that correcting for lesion volume offers a practical benefit of gaining 

greater spatial specificity in localizing a lesion-symptom relationship in regions confounded 

by lesion volume, without negatively influencing localization in regions less confounded 

with lesion volume.
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The cost of rigorously addressing lesion volume is more conservative voxelwise 

thresholding, as demonstrated by the relative paucity of significant results in the analyses 

using any of the three regression approaches. Among the three options examined here, 

regressing lesion volume out of both the behavioral scores and the lesion maps appeared to 

be the most sensitive method. This may be because true lesion-deficit relationships are 

obscured by applying a nuisance model to one variable (i.e., dependent or independent) but 

not the other. In other words, the lesion-symptom relationship was more detectable when 

both the dependent and independent variables were transformed to control for lesion volume 

prior to the analysis, rather than just one or the other. This method is also appealing because 

it is mathematically nearly equivalent to how lesion volume (or any other covariate) is dealt 

with in statistical analyses of studies like the hypothetical one described above. It is notable, 

that given the relatively small sample size used here, identifying significant associations 

between lesion location and deficits for seven out of 20 behaviors suggests that this method 

is conservative, but not overly so.

It should also be noted that correcting lesion volume is likely unnecessary when the 

behavioral variable has no relationship to lesion volume. This is illustrated by the analyses 

of the simulated behavior that was not strongly related to lesion volume (Figure 6b). In this 

case, lesion volume correction did not qualitatively alter the lesion symptom maps. 

Similarly, if behavioral covariates are included that have a similar relationship to lesion 

volume as the test behavior, correcting for lesion volume may be redundant. However, even 

a weak residual relationship between the behavior of interest and lesion volume could 

induce a small brain wide bias, so erring on the side of lesion volume correction seems 

appropriately conservative in general.

Although lesion volume was strongly related to lesion location in our patient sample, it is 

possible that in some cohorts this relationship will be weaker. In these cases, the lesion 

volume confound would still systematically bias the resulting lesion-symptom map toward 

finding large regions of lesion-symptom association, but would cause less dramatic spatial 

displacement in the location of these effects. Unfortunately, it is often difficult to assess the 

degree to which a lesion volume confound might influence the results of existing lesion-

symptom mapping literature. For instance, in reviewing the literature for lesion-symptom 

mapping studies of our example of pseudoword repetition, we found a number of studies that 

examined the behavior (Baldo, Katseff, & Dronkers, 2012; Fridriksson et al., 2010), but in 

only one study (Rogalsky et al., 2015) was it clear that lesion volume was included as a 

covariate. These studies generally converge on consistent findings regarding the role of 

temporoparietal cortex in this task, which may suggest that lesion volume confounds cause 

less severe spatial displacement of results than we observed here.

Multivariate lesion-symptom mapping is still in its infancy and there were a number of 

questions about how to optimize the approach that we were not able to address here. First, 

we did not investigate procedures to optimize our SVR hyperparameters. Rather, we used 

fixed hyperparameter values that were recommended by the initial SVR-LSM publication 

(Zhang et al., 2014). It is likely that optimal hyperparameter values may differ depending on 

analysis characteristics such as voxel size, and future work should examine this issue. 

Although our analyses could have slightly different solutions with optimized 
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hyperparameters, importantly, our findings about lesion volume correction held for both 

multivariate and mass-univariate lesion-symptom mapping analyses. Second, in this toolbox 

we handled covariates by applying nuisance models prior to submitting the data to the SVR. 

Although it is possible to include an arbitrary number of covariates in this way, it is not clear 

how many covariates are too many, and future work should explore this question. 

Furthermore, future work should also explore an alternative approach to controlling for 

lesion volume and behavioral covariates by adding them as additional features directly in the 

SVR model. Finally, this toolbox will continue to be developed to keep abreast with new 

developments in the field of lesion-symptom mapping. For instance, methods we intend to 

add in future releases include hyperparameter optimization for each analysis and innovative 

thresholding procedures such as continuous family-wise error rate correction (Mirman et al., 

2017).

In conclusion, we have provided a new software implementation with a graphical interface 

that may facilitate the adoption of SVR-LSM as a multivariate alternative to traditional 

VLSM. The new implementation takes advantage of MATLAB’s SVR functionality in its 

native Statistics Toolbox, addresses prior limitations and adds new functionality, including 

cluster-level family-wise error correction using permutation testing, highly flexible handling 

of behavioral covariates through nuisance models, and a novel method for lesion volume 

correction that supplements a number of existing methods. We have also demonstrated the 

degree of bias lesion volume effects can induce in lesion symptom maps, and explored the 

impact of several different approaches to handling lesion volume, which may aid 

investigators in selecting the most appropriate approach for their specific research questions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Screenshot of the MATLAB-based graphical user interface for SVR-LSM. The single 

window contains a pane for configuring an analysis, a pane for configuring covariates, a 

pane for permutation testing, and a feedback pane that reports the progress of an analysis.
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Figure 2. 
Comparison of uncorrected SVR-β value output for original SVR-LSM (left; Zhang et al., 

2014), for the new implementation using LibSVM (middle), and MATLAB’s SVM 

functionality (right). For each output, the value is shown at the same sample voxel 

coordinate of MNI = −42, 2, 9 also indicated by crosshairs. This analysis was conducted on 

individuals with chronic left-hemisphere stroke (N = 48) modeling the score for WAB 

repetition and SVR parameters of cost = 30 and gamma = 5, minimum lesion threshold of 

10.
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Figure 3. 
Figure showing the regional bias caused by lesion volume in a cohort of individuals with 

left-hemisphere stroke (N = 48). The panels show maps of average lesion volume in (A) the 

“lesion present” group at each voxel, (B) the “lesion absent” group at each voxel, and (C) a 

difference between average lesion volume in the “lesion present” and “lesion absent” 

groups, and (D) regions where lesion volume was significantly different (red outline, red 

translucent fill). The analysis displayed in panel D was conducted in SVR-LSM treating 

lesion volume as the behavioral variable, thresholded voxelwise at p < .05 (two-tailed) based 

on 10,000 permutations.
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Figure 4. 
Spaghetti plot showing the effect of five lesion volume correction methods on twenty 

behaviors in a group of individuals with left-hemisphere stroke (N = 49). Lesion volume 

methods include (a) none, (b) dTLVC, (c), regression of lesion volume out of the raw voxel 

data, (d) regression of lesion volume out of the behavioral data, and (e) regression of lesion 

volume out of both behavioral data and out of raw voxel data. All analyses were thresholded 

at voxelwise at p < .005 (one-tailed) and clusterwise correction at p < .05, based on 10,000 

permutations.
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Figure 5. 
Histograms of uncorrected SVR-β values after five lesion volume correction methods 

(green) for two behaviors, including Pyramids and Palm Trees (top row) and WAB Fluency 

(bottom row). Also shown is the average histogram of 1,000 permuted SVR-β maps for each 

behavior and correction method (red) and a normal distribution fit to the permutations, 

scaled to the histograms.
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Figure 6. 
Effect of lesion volume correction on SVR-LSM localization for (A) a simulated behavior 

significantly correlated with lesion volume and (B) a simulated behavior less correlated with 

lesion volume. Behaviors were simulated by summing the number of lesioned voxels within 

a 4mm sphere (red) placed based on its correlation with lesion volume. At the left of each 

pane is shown a scatterplot of lesion volume versus the simulated behavior across the patient 

sample. Voxels with statistically significant results at voxelwise p < .001 based on 10,000 

permutations are shown in bright green.
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Figure 7. 
Brain regions where lesions are significantly related to behavioral deficits in (A) 

Pseudoword Repetition and (B) WAB Yes/No prior to lesion-volume correction (left) and 

following lesion volume correction by regressing lesion volume out of both behavior and 

lesion data prior to SVR (right). Resulting statistical maps are corrected voxelwise at p < .

005, and by cluster extent at p < .05 based on 10,000 permutations.
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Table 1.

Analysis duration for SVR-LSM with and without parallelization for three sample sizes (50, 100, 150), three 

numbers of permutations (1,000, 5,000, 10,000) and for three methods of lesion volume correction (no 

correction, dTLVC, and regression on both behavior and lesion volume).

Correction method Sample Size Number of Permutations Analysis Duration (minutes)

Unparallelized Parallelized

No correction for lesion volume

50

1,000 7 1

5,000 33 5

10,000 64 11

100

1,000 22 3

5,000 105 14

10,000 211 27

150

1,000 46 5

5,000 222 26

10,000 443 51

DTLVC

50

1,000 7 1

5,000 32 5

10,000 62 11

100

1,000 22 3

5,000 106 14

10,000 221 27

150

1,000 45 5

5,000 228 26

10,000 458 52

Regress on both behavior and lesion

50

1,000 27 7

5,000 127 34

10,000 248 67

100

1,000 83 33

5,000 396 159

10,000 786 311

150

1,000 161 72

5,000 795 327

10,000 1604 621
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Table 2.

Table listing which of 20 behaviors were significant for each of five lesion volume correction methods. A solid 

bullet (•) indicates that significant findings for a given combination of behavior and lesion volume correction 

method which survived voxelwise thresholding, p < .005 (one-tailed) and clusterwise correction, p < .05 based 

on 10,000 permutations. An empty bullet (○) indicates that the analysis resulted in voxels that survived 

voxelwise thresholding but did not survive cluster correction.

Behavior under investigation
Lesion volume correction method

No correction dTLVC Regress on Lesion Regress on Behavior Regress on Both

Philadelphia Naming Test (Oral) • • ○ ○

Philadelphia Naming Test (Written) • • ○ ○ ○

Category Fluency • • ○ ○ ○

Letter Fluency • • ○ ○ •

Western Aphasia Battery Content • • ○ ○ ○

Western Aphasia Battery Fluency • • ○ ○ •

Backward Digit Span • • ○ ○ ○

Western Aphasia Battery Repetition • • ○ ○ ○

Pseudoword Repetition • • ○ ○ •

Imageability Effect (concrete minus 
abstract) ○ ○ ○ ○ ○

Regularity Effect (regular minus exception) • • • ○ •

Lexicality Effect (word minus pseudoword) ○ ○ ○ ○ ○

Pyramids and Palm Trees • • ○ ○ ○

Western Aphasia Battery Word Recognition • • ○ ○ •

Western Aphasia Battery Yes/No • • • • •

Picture Pointing • • ○

BDAE Complex Ideational Material • • ○ ○ ○

CLQT Attention Score ○ ○ ○ ○

CLQT Symbol Trails Score ○ ○ ○ ○ ○

Western Aphasia Battery Sequential 
Commands • • ○ ○ •
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