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Summary
Two recent experimental observations pose a challenge to many cortical models. First, the activity
in the auditory cortex is sparse, and firing rates can be described by a lognormal distribution. Second,
the distribution of non-zero synaptic strengths between nearby cortical neurons can also be described
by a lognormal distribution. Here we use a simple model of cortical activity to reconcile these
observations. The model makes the experimentally testable prediction that synaptic efficacies onto
a given cortical neuron are statistically correlated, i.e. it predicts that some neurons receive stronger
synapses than other neurons. We propose a simple Hebb-like learning rule which gives rise to such
correlations and yields both lognormal firing rates and synaptic efficacies. Our results represent a
first step toward reconciling sparse activity and sparse connectivity in cortical networks.
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Introduction
The input to any one cortical neuron consists largely of the output from other cortical cells
(Benshalom and White, 1986; Douglas et al., 1995; Suarez et al., 1995; Stratford et al., 1996;
Lubke et al., 2000). This simple observation, combined with experimental measurements of
cortical activity, impose powerful constraint on models of cortical circuits. The activity of any
cortical neuron selected at random must be consistent with that of the other neurons in the
circuit. Violations of self-consistency pose a challenge for theoretical models of cortical
networks.

A classic example of such a violation was the observation (Softky and Koch, 1993) that the
irregular Poisson-like firing of cortical neurons is inconsistent with a model in which each
neuron received a large number of uncorrelated inputs from other cortical neurons firing
irregularly. Many resolutions of this apparent paradox were subsequently proposed (van
Vreeswijk and Sompolinsky, 1996; Troyer and Miller, 1997; Shadlen and Newsome, 1998;
Salinas and Sejnowski, 2002). One resolution (Stevens and Zador, 1998)—that cortical firing
is not uncorrelated, but is instead organized into synchronous volleys, or “bumps”—was
recently confirmed experimentally in the auditory cortex (DeWeese and Zador, 2006). Thus a
successful model can motivate new experiments.

Two recent experimental observations pose a new challenge to many cortical models. First, it
has recently been shown (Hromadka et al., 2008) that activity in the primary auditory cortex
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of awake rodents is sparse. Specifically, the distribution of spontaneous firing rates can be
described by a lognormal distribution (Figure 1A and B). Second, the distribution of non-zero
synaptic strengths measured between pairs of connected cortical neurons is also well-described
by a lognormal distribution (Figure 1C and D; (Song et al., 2005)). As shown below, the
simplest randomly connected model circuit that incorporates a lognormal distribution of
synaptic weights predicts that firing rates measured across the population will have a Gaussian
rather than a lognormal distribution. The observed lognormal distribution of firing rates
therefore imposes additional constraints on cortical circuits.

In this paper we address two questions. First, how can the observed lognormal distribution of
firing rates be reconciled with the lognormal distribution of synaptic efficacies? We find that
reconciling lognormal firing rates and synaptic efficacies implies that inputs onto a given
cortical neuron must be statistically correlated—an experimentally testable prediction. Second,
how might the distributions emerge in development? We propose a simple Hebb-like learning
rule which gives rise to both lognormal firing rates and synaptic efficacies.

Methods
Generation of lognormal matrices

Weight matrices in Figures 2–4 were constructed using the MATLAB random number
generator. Figure 2 displays a purely white-noise matrix with no correlations between elements.
To generate the lognormal distribution of the elements of this matrix we first generated a matrix

 whose elements are distributed normally, with zero mean and a unit standard deviation. The
white-noise weight matrix  was then obtained by evaluating exponential of the individual
elements of , i.e. Wij = exp(Nij). Elements of the weight matrix obtained with this method
have a lognormal distribution since their logarithms (Nij) are distributed normally. To obtain
the column-matrix (Figure 3A) we used the following property of the lognormal distribution:
The product of two lognormally distributed numbers is also lognormally distributed. The
column matrix can therefore be obtained by multiplying the columns of a white-noise
lognormal matrix Aij, which is generated using the method described above, by a set of
lognormal numbers vj, i.e.

(1)

Both logarithm of Aij and logarithm of vj had zero mean and a unit standard deviation. Similarly,
the row-matrix in Figure 4A was obtained by multiplying each row of the white-noise matrix
Aij with the set of numbers vi:

(2)

As in equation (1) both logarithm of Aij and logarithm of vj were normally distributed with
zero mean and unit standard deviation.

Lognormal firing rates for row-matrices
Here we explain why the elements of the principal eigenvector of row-matrices have a broad
lognormal distribution (Figure 4D). Consider the eigenvalue problem for the row-matrix
represented by equation (10). It is described by
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(3)

Equation (3) can be rewritten in the following way

(4)

Thus the vector yi = fi / vi is the eigenvector of the column-matrix Aij vj [cf. equation (1)]. As
such, it is a normally distributed quantity with a low coefficient of variation (CV) as shown in
Figure 3.

(5)

This approximate equality becomes more precise as the size of the weight matrix goes to
infinity. Therefore we conclude that

(6)

Because Aij and vj are lognormal, both Wij = viAij and its eigenvector fi ≈ vi are also lognormal.

Non-linear learning rule
Here we show that the non-linear Hebbian learning rule given by equation (11) can yield row-
matrix as described by equation (2) in the state of equilibrium. In equilibrium  and
equation (11) yields

(7)

Here Cij is the adjacency matrix (Figure 5B) whose elements are equal to either 0 or 1 depending
on whether there is a synapse from neuron number j to neuron i. Note that in this notation the
adjacency matrix is transposed compared to the convention used in the graph theory. The firing
rates of the neurons fi in the stationary equilibrium state are themselves components of the
principal eigenvector of Wij as required by equation (10). After substituting equation (7) into
equation (10) simple algebraic transformations lead to

(8)

Because the elements of the adjacency matrix are uncorrelated in our model the sum in equation
(8) has Gaussian distribution with small coefficient of variation vanishing in the limit of large
network. Therefore the variable ξi describing relative deviation of this sum from the mean
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( ) for neuron i is approximately normal with variance much smaller than one. Taking the
logarithm of equation (8) and taking advantage of the smallness of variance of ξi we obtain

(9)

Because ξi is normal, fi is lognormal (Figure 5B). In the limit α+β→1 the variance of the
lognormal distribution of fi diverges according to equation (9). Thus even if ξi has small
variance, firing rates may be broadly distributed with the standard deviation of its logarithm
reaching unity as in Figures 5 and 7. The non-zero elements of the weight matrix are also
lognormally distributed, because, according to equation (7) weight matrix is a product of
powers of lognormal numbers fi. These conclusions are discussed in more detail in the
Supplementary Material 1.

Details of computer simulations
To generate Figures 5-7 we modeled the dynamics described by equation (11). Temporal
derivatives were approximated by discrete differences  with time step Δt = 1,
as described in more detail in Supplementary Material 1. The simulation included 1000 iterative
steps. We verified that the distributions of firing rates and weights saturated and stayed
approximately constant at the end of the simulation run. For every time step the distribution
of spontaneous firing rates was calculated from equation (10) taking the elements of the
principal eigenvector of matrix Wij. Since the eigenvector is defined up to a constant factor,
the vector of firing rates was normalized to yield zero average logarithm of its elements. This
normalization was performed on each step and was intended to mimic the homeostatic control
of the average firing rate in the network. A multiplicative noise of 5% was added to the vector
of firing rates on each iteration step. The parameters used were α = β = 0.4, γ = 0.45, ε1 =
8.2·10-3, ε2 = 0.1 in Figures 5 and 6 , and α = β = 0.36, γ = 0.53, ε1 = 6.9·10-3, ε2 = 0.1, in Figure
7. Parameters α, β, and γ were adjusted to yield approximately unit standard deviations of the
logarithms of non-zero synaptic weights and firing rates. As α+β→1 the variance of the
logarithm of synaptic weights increases [equation (9)]. Because in the case of inhibitory
neurons (Figure 7) the adjacency matrix had negative elements and had therefore larger
variance than in the case of no inhibition (Figures 5 and 6), parameters α and β had to be
decreased slightly in Figure 7 compared to Figures 5 and 6 as described above. Parameters
ε1 and ε2 provide the overall normalization of the weight matrix. These parameters could be
regulated by a slow homeostatic process controlling the overall scale of the synaptic strengths.
Their values listed above have been chosen to yield approximately unit principal eigenvalue
of the weight matrix (cf. Supplementary Material 1, Section 3).

Before iterations started random adjacency matrices were generated with 20% sparseness
(Figures 5B and 7B). These matrices contained 80% of zeros and 20% of elements that were
either +1 or -1 depending on whether the connection was excitatory or inhibitory. In Figure 5
only excitatory connections were present. In Figure 7 the adjacency matrix contained 15% of
‘inhibitory’ columns representing axons of inhibitory neurons. In these columns all of the non-
zero matrix elements of the adjacency matrix were equal to -1. The weight matrices were
initialized to the absolute value of the adjacency matrix divided by the principal eigenvalue.
All simulations were performed in MATLAB (Mathworks, Natick, MA).
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Results
Recurrent model of spontaneous cortical activity

To model the spontaneous activity of the ith neuron in the cortex, we assume that its firing rate
fi is given by a weighted sum of the firing rates fj of all the other neurons in the network:

(10)

Here Wij is the strength of the synapse connecting neuron j to neuron i. This expression is valid
if the external inputs, such as thalamocortical projections, are weak (for example, in the absence
of sensory inputs, when the spontaneous activity is usually measured), or when recurrent
connections are strong enough to provide significant amplification of the thalamocortical inputs
(Douglas et al., 1995; Suarez et al., 1995; Stratford et al., 1996; Lubke et al., 2000). Throughout
this study we will use a linear model for the network dynamics, both because it is the simplest
possible approach that captures the essence of the problem and because cortical neurons often
display threshold-linear input to firing rate dependences over substantial range of firing rates
(Stevens and Zador, 1998; Higgs et al., 2006; Cardin et al., 2008).

Equation (10) defines the consistency constraint between the spontaneous firing rates fj and
the connection strengths Wij. mentioned in the introduction. Indeed, given the weight matrix,
not all values of spontaneous firing rates can satisfy this equation. Conversely, not any
distribution of individual synaptic strengths (elements of matrix Wij) is consistent with the
particular distribution of spontaneous activities (elements of fj). It can be recognized that
equation (10) defines an eigenvector problem, a standard problem in linear algebra (Strang,

2003). Specifically, the set of spontaneous firing rates represented by vector  is the principal
eigenvector (i.e. the eigenvector with the largest associated eigenvalue) of the connectivity
matrix  (Rajan and Abbott, 2006). The eigenvalues and eigenvectors of a matrix can be
determined numerically using a computer package such as MATLAB.

Before proceeding, we note an additional property of our model. In order for the principal
eigenvector to be stable, the principal eigenvalue must be unity. If the principal eigenvector is
greater than one then the firing rates grow without bound to infinity, whereas if the principal
eigenvalue is less than one the firing rates decay to zero. Mathematically, it is straightforward
to renormalize the principal eigenvalue by considering a new matrix formed by dividing all
the elements of the original matrix by its principal eigenvalue. Biologically such a
normalization may be accomplished by global mechanisms controlling the overall scale of
synaptic strengths, such as the homeostatic control (Davis, 2006), short-term synaptic
plasticity, or synaptic scaling (Abbott and Nelson, 2000). Our model is applicable if any of the
above mechanisms is involved.

Recognizing that equation (10) defines an eigenvector problem allows us to recast the first
neurobiological problem posed in the introduction as a mathematical problem. We began by
asking whether it was possible to reconcile the observed lognormal distribution of firing rates
(Figure 1A) with the observed lognormal distribution of synaptic efficacies (Figure 1B).
Mathematically, the experimentally observed distribution of spontaneous firing rates

corresponds to the distribution of the elements fi of the vector of spontaneous firing rates ,
and the experimentally observed distribution of synaptic efficacies corresponds to the
distribution of non-zero elements Wij of the synaptic connectivity matrix  . Thus the
mathematical problem is: Under what conditions does a matrix  whose non-zero elements
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Wij obey a lognormal distribution has a principal eigenvector  whose elements fi also obey
a lognormal distribution?

In the next sections we first consider synaptic matrices with non-negative elements. Such
synaptic matrices describe networks containing only excitatory neurons, with positive
connection strengths corresponding to synaptic efficacies between excitatory cells and zeros
corresponding to no synaptic connection. The properties of the principal eigenvalues and
eigenvectors of such matrices are described by the Perron-Frobenius theorem (Varga, 2000).
This theorem ensures that the principal eigenvalue of the synaptic matrix is a positive real
number, that there is only one solution for the principal eigenvalue and eigenvector, and that
the elements of the eigenvector representing in our case spontaneous firing rates of individual
neurons are all positive. These properties are valid for the so-called irreducible matrices which
describe networks in which activity can travel between any two nodes (Varga, 2000). Because
we will consider either fully connected or sparse networks with connectivity above the
percolation threshold (Stauffer and Aharony, 1992; Henrichsen, 2000), our matrices are
irreducible. Later we will include inhibitory neurons by making some of the matrix elements
negative. Although the conclusions of the Perron-Frobenius theorem do not apply directly to
these networks, we have found experimentally that they are still valid, perhaps because the
fraction of inhibitory neurons was kept small in our model (see below).

Randomly connected lognormal networks do not yield lognormal firing
We first examined the spontaneous rates produced by a “white-noise” matrix in which there
were no correlations between elements (Figure 2A). The values of synaptic strengths in this
matrix have been generated using random number generator to have a lognormal distribution
(Figure 2B) similarly to the experimental observations (Figure 1A) (Song et al., 2005). The
standard deviation of the natural logarithm of non-zero connectivity strengths was set to one,
consistent with experimental observations. The distribution of the spontaneous firing rates
obtained by solving the eigenvector problem for such matrices is displayed in Figure 2D. The
spontaneous firing rates had similar values for all cells in the network, with a coefficient of
variation of about 5%. It is clear that this distribution is quite different from the experimentally
observed one (Figure 1), in which the rates varied over at least one order of magnitude.

To understand why the differences in the spontaneous firing rates between cells were not large
with white noise connectivity, consider two cells in a network illustrated by red and blue circles
in Figure 2C. Width of connecting edges is proportional to connection strength, and the circle
diameters are proportional to firing rates. All inputs into these two cells came from the same
distribution with the same mean as specified by the white-noise matrix. Since each cell received
a large number of such inputs, the differences in the total inputs between these two cells were
small, due to the central limit theorem. The total inputs were approximately equal to the mean
input values multiplied by the number of inputs. Therefore one should expect that the firing
rates of the cells were similar, as observed in our computer simulations.

The connectivity matrix with no correlations between synaptic strengths therefore is
inconsistent with experimental observations of dual lognormal distributions for both
connectivity and spontaneous activity. We next explored the possibility that introducing
correlations between connections would yield the two lognormal distributions.

Presynaptic correlations do not yield lognormal firing
We first considered the effect of correlations between the strengths of synapses made by a
particular neuron. These synapses are arranged columnwise in the connectivity matrix shown
in Figure 3A (column-matrix). To create these correlations we generated a white-noise
lognormal matrix and then multiplied each column by a random number chosen from another
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lognormal distribution. The elements of resulting column-matrix were also lognormally
distributed (Figure 3B) as products of two lognormally distributed random numbers (see
Methods).

As shown in Figure 3, presynaptic correlations did not resolve the experimental paradox
between the distributions of spontaneous firing rates and synaptic strengths. Although the
connectivity matrix was lognormal (Figure 3B), the spontaneous activity had a distribution
with low variance (Figure 3D). A different type of correlations was needed to explain high
variances in both distributions.

The reason why the column-matrix failed to produce dual lognormal distributions is essentially
the same as in the case of white-noise matrix. Each neuron in the network received connections
taken from the distributions with the same mean. With large number of inputs, the differences
between total inputs into individual cells become small due to the central limit theorem, with
the total input being approximately equal to the average of the distribution multiplied by the
number of inputs. Thus two cells in Figure 3C received a large number of inputs with the same
mean. There were correlations between inputs from the same presynaptic cell but these
correlations only increased the similarity in firing rates between two postsynaptic cells. For
this reason the variance of the distribution of the spontaneous firing rates was even smaller in
the case of column-matrix (Figure 3D) than in the case of white-noise connectivity (Figure
2D). This is also shown in the Supplementary Materials 1 (Section 5). A different type of
correlation is therefore needed to resolve the apparent paradox defined by the experimental
observations.

Postsynaptic correlations yield lognormal firing
We finally tried network connectivity in which synapses onto the same postsynaptic neuron
were positively correlated. Because such synapses impinged upon the same postsynaptic cell,
their synaptic weights were arranged row-wise in the connectivity matrix (“row-matrix,”
Figure 4A). The row-matrix was obtained by multiplying rows of white-noise matrix by the
same number taken from the lognormal distribution (see Methods). This approach was similar
to the generation of the column-matrix. It ensured that the non-zero synaptic strengths had a
lognormal distribution (Figure 4B).

The resulting distribution of spontaneous firing rates was broad (Figure 4D). It had all the
properties of the lognormal distribution, such as the symmetric Gaussian histogram of the
logarithms of the firing rates (Figure 4D). One can also prove that the distribution of
spontaneous rates as defined by our model is lognormal for the substantially large row-
correlated connectivity matrix (see Methods). We conclude that the row-matrix is sufficient to
generate the lognormal distribution of spontaneous firing rates.

The reason why the row-matrix yielded a broad distribution of firing rates is illustrated in Figure
4C. Two different neurons (blue and red) received a large number of connections in this case.
But these connections were multiplied by two different factors, each depending on the
postsynaptic cell (compare the different widths of lines entering the blue and red cells in Figure
4C). Therefore the average values of the strengths of the synapses onto this neuron were
systematically different. Since both non-zero matrix elements and the spontaneous firing rates
in this case followed a lognormal distribution, the positive correlations between strengths of
synapses on the same dendrite could underlie the dual lognormal distributions observed
experimentally.
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Hebbian learning rule may yield lognormal firing rates and synaptic weights
In the previous section we showed that certain correlations in the synaptic matrix could yield
lognormal distribution for spontaneous firing rates given lognormal synaptic strengths. A
sufficient condition for this to occur is that the strengths of the synapses onto a given
postsynaptic neuron must be correlated. To prove this statement we used networks that were
produced by a random number generator (see Methods). The spontaneous activity then was
the product of predetermined network connectivity. The natural question is whether the
required correlations in connectivity can emerge naturally in the network through one of the
known mechanisms of learning, such as Hebbian plasticity. Since Hebbian mechanisms
strengthen synapses that have correlated activity, the synaptic connections become products
of spontaneous rates too. Thus, network activity and connectivity are involved into mutually-
dependent iterative process of modification. It is therefore not immediately clear if the required
correlations in the network circuitry (row-matrix) can emerge from such an iterative process.

Rules for changing synaptic strength (learning rules) define the dynamics by which synaptic
strengths change as a function of neural activity. We use the symbol  to describe the rate
of change in synaptic strength from cell number j to i. In the spirit of Hebbian mechanisms,
we assume that this rate depends on the presynaptic and postsynaptic firing rates, denoted by
fj and fi respectively. In our model, in contrast to conventional Hebbian mechanism, the rate
of change is also determined by the value of synaptic strength Wij itself, i.e.

(11)

where as above fi and fj are firing rates of the post- and presynaptic neurons i and j, respectively,
and ε1, ε2, α, β, and γ are parameters discussed below. This equation implies that the rate of
synaptic modification is a result of two processes: one for synaptic growth (the first term on
the right hand side) and another for synaptic decay (the second term). The former process
implements Hebbian potentiation, while the latter represents a passive decay. The relative
strengths of these processes are determined by the parameters ε1 and ε2.

The Hebbian component is proportional to the product of pre- and postsynaptic firing rates and
the current value of synaptic strength. Each of these factors is taken with some powers α,β,γ,
which are essential parameters of our model. When the sum of exponents α+β exceeds 1 a
single weight dominates the weight matrix. The sum α+β of the exponents must be below 1 to
prevent the emergence of winner-takes-it-all solutions. The learning rule considered here is
therefore essentially non-linear.

When the sum of exponents α+β approaches 1 from below, the distribution of synaptic weights
becomes close to lognormal (see Methods for details). In our simulations (Figure 5) we used
α+β=0.8, i.e. value close to one.

In addition to a lognormal distribution of synaptic weights, the learning rule also yielded a
lognormal distribution of spontaneous firing rates (Figure 5D). When the structure of synaptic
matrix was examined visually, it revealed both vertical and horizontal correlations (Figure 5A).
The resulting weight matrix therefore combined the features of row- and column-matrices. The
lognormal distribution of spontaneous rates arose, as discussed above (Figure 4), from the
correlations between inputs into each cell, i.e. from the row-structure of the synaptic
connectivity matrix. The correlations between outputs (column-structure) emerged as a
byproduct of the learning rule considered here. Because of the combined row-column
correlations we call this type of connectivity patterns a “plaid” connectivity.
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The proposed learning rule [equation (11)] preserved the adjacency matrix. This implies that
if two cells were not connected by a synapse, they do not become connected as a result of the
learning rule. Similarly the synapses are not eliminated by the learning rule. Therefore,
although the synaptic connectivity matrix appears to be symmetric with respect to its diagonal
(Figure 5A) the connectivity is not fully symmetric as shown by the distribution of non-zero
elements in Figure 5B. Our Hebbian plasticity therefore preserves the sparseness of
connectivity. In the Methods section we analyze the properties of plaid connectivity in greater
detail. We conclude that multiplicative non-linear learning rule can produce correlations
sufficient to yield dual lognormal distributions.

Experimental predictions
Here we outline mathematical methods for detecting experimentally the correlations predicted
by our model. Our basic findings are summarized in Figure 6A. For the lognormal distributions
of both synaptic strengths and firing rates (dual lognormal distributions) it is sufficient that the
synapses of the same dendrite are correlated. This implies that the average strengths estimated
for individual dendrites are broadly distributed. Thus, the synapses of the right dendrite in
Figure 6A are stronger on average than the synapses on the left dendrite. This feature is
indicative of the row-matrix correlations shown in Figures 6 and 5. In addition, if the Hebbian
learning mechanism proposed here is implemented, the axons of the same cells should display
a similar property. This implies that the average synaptic strength of each axon is broadly
distributed. We suggest that these signatures of our theory could be detected experimentally.

Modern imaging techniques permit measuring synaptic strengths of substantial number of
synapses localized on individual cells (Kopec et al., 2006; Micheva and Smith, 2007). These
methods allow monitoring the postsynaptic indicators of connection strength in a substantial
fraction of synapses belonging to individual cells. Therefore these methods could allow
detecting the row-matrix connectivity (Figure 4) using the statistical procedure described
below. The same statistical procedure could be applied to presynaptic measures of synaptic
strengths to reveal plaid connectivity (Figure 5).

We illustrate our method on the example of postsynaptic indicators. Assume that the synaptic
strengths are available for several dendrites in a volume of cortical tissue. First, for each cell
we calculate the logarithm of average synaptic strength (LASS). We obtain a set of LASS
characteristics matching in size the number of cells available. Second, we observe that the
distribution of LASS is wider than expected for the white-noise matrix (Figure 6B, gray
histogram). A useful measure of the width of distribution is its standard deviation. For the
dataset produced by the Hebbian learning rule used in the previous section the width of
distribution of LASS is about 0.64 natural logarithm units (gray arrow in Figure 6C). Third,
we use the bootstrap procedure (Hogg et al., 2005) to assess the probability that the same width
of distribution can be produced by the white-noise matrix, i.e. with no correlations present. In
the spirit of bootstrap we generate the white noise matrix from the data by randomly moving
the synapses from dendrite to dendrite, either with or without repetitions. The random
repositioning of the synapses preserves the distribution of synaptic strengths but destroys the
correlations, if they are present. The distribution of LASS is evaluated for each random
repositioning of synapses of dendrites (iteration of bootstrap). One such distribution is shown
for the data in the previous section in Figure 6B (black). It is clearly narrower than in the
original dataset. By repeating the repositioning of synapses several times one can calculate the
fraction of cases in which the width of the LASS distribution in the original dataset is smaller
than the width in the reshuffled dataset. Smallness of this fraction implies that the postsynaptic
connectivity is substantially different from the white-noise matrix. For the connectivity
obtained by the Hebbian mechanism in the previous section, after 106 iterations of bootstrap
we observed none with the width of distribution of LASS larger than in the original non-
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permuted dataset (Figure 6C). We conclude that it is highly unlikely that the data in Figure 5
describe the white-noise matrix (p-value < 10-6).

A similar bootstrap analysis could be applied to axons, if sets of synaptic strengths are measured
for several axons in the same volume. A small p-value in this case would indicate the presence
of column-matrix. The latter may be a consequence of the non-linear Hebbian mechanism
proposed in the previous section.

Inhibitory neurons
Cortical networks consist of a mixture of excitatory and inhibitory neurons. We therefore tested
the effects of inhibitory neurons on our conclusions. We added a small (15%) fraction of
inhibitory elements to our network. Introduction of inhibitory elements was accomplished
through the use of an adjacency matrix. The adjacency matrix in this case described both the
presence of a connection between neurons and the connection sign. Thus an excitatory synapse
from neuron j to neuron i was denoted by an entry in the adjacency matrix Cij equal to one;
inhibitory/missing synapses were described by entries equal to -1 or 0 respectively (Figure
7B). The presence of inhibitory neurons was reflected by the vertical column structure in the
adjacency matrix (Figure 7B). Each blue column in Figure 7B represented the axon of a single
inhibitory neuron. We then assumed that the learning rules described by equation (11) applied
to the absolute values of synaptic strengths of both inhibitory and excitatory synapses with
Wij defining the absolute value of synaptic strength, and the adjacency matrix Cij its sign. The
resulting synaptic strengths and spontaneous firing rate distributions are presented in Figure
7C, D after a stationary state was reached as a result of the learning rule (11). Both distributions
were close to lognormal. In addition the synaptic matrix Wij displayed the characteristic plaid
structure obtained previously for purely excitatory networks (Figure 5). We conclude that the
presence of inhibitory neurons does not change our previous conclusions qualitatively.

Discussion
We have presented a simple model of cortical activity to reconcile the experimental observation
that both spontaneous firing rates and synaptic efficacies in the cortex can be described by a
lognormal distribution. We formulate this problem mathematically in terms of the distribution
of eigenvalues of the network connectivity matrix. We show that the two observations can be
reconciled if the connectivity matrix has a special structure; this structure implies that some
neurons receive many more strong connections than other neurons. Finally, we propose a
simple Hebb-like learning rule which gives rise to both lognormal firing rates and synaptic
efficacies.

Lognormal distributions in the brain
The Gaussian distribution has fundamental significance in statistics. Many statistical tests such
as the t-test require that the variable is question have a Gaussian distribution (Hogg et al.,
2005). This distribution is characterized by bell-like shape and an overall symmetry with
respect to its peak. The lognormal distribution on the other hand is asymmetric and has much
heavier “tail”, i.e. decays much slower for large values of the variable than the normal
distribution. A surprising number of variables in neuroscience and beyond are described by
the lognormal distribution. For example the interspike intervals (Beyer et al., 1975), the
psychophysical thresholds for detection of odorants (Devos and Laffort, 1990), the cellular
thresholds for detection of visual motion (Britten et al., 1992), the length of words in the English
language (Herdan, 1958), and the number of words in a sentence (Williams, 1940) are all united
by the fact that their distributions are close to lognormal.
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The present results were motivated by the observation that both spontaneous firing rates and
synaptic strengths in cortical networks are distributed approximately lognormally. The
lognormality of connection strengths was revealed in the course of systematic simultaneous
recordings of connected neurons in cortical slices (Song et al., 2005). The lognormality of
spontaneous firing rates was observed by monitoring single unit activity in auditory cortex of
awake head-fixed rats (Hromadka et al., 2008) using cell attached method. In the traditional
extracellular methods cell isolation itself depends upon the spontaneous firing rate: cells with
low firing rate are less likely to be detected. During cell attached recordings, cell isolation is
independent on the spontaneous or evoked firing rate. Thus cell attached recordings with glass
micropipettes permit a relatively unbiased sampling of neurons.

Lognormal distributions of spontaneous firing rates and synaptic strengths were observed
experimentally in different cortical areas and in different preparations. The former distribution
was observed in primary auditory cortex in vivo (Hromadka et al., 2008), while the latter was
revealed from in vitro recording in slices obtained from rat visual cortex (Song et al., 2005).
We base our study on the assumption of uniformity of properties of cortical networks, i.e. that
functional form of the distributions of spontaneous firing rates and synaptic weights can be
generalized from area to area.

Novel Hebbian plasticity mechanism
Spontaneous neuronal activity levels and synaptic strengths are related to each other through
mechanisms of synaptic plasticity and network dynamics. We therefore asked the question of
how could lognormal distributions of these quantities emerge spontaneously in the recurrent
network? The mechanism that induces changes in synaptic connectivity is thought to conform
to the general idea of Hebbian rule. The specifics of the quantitative implementation of the
Hebbian plasticity mechanism are not clear, especially in the cortical networks. Here we
propose that a non-linear multiplicative Hebbian mechanism could yield lognormal distribution
of connection strengths and spontaneous rates. We propose that the presence of this mechanism
can be inferred implicitly from another correlation in the synaptic connectivity matrix. We
argued above that the lognormal distribution in spontaneous rates may be produced by
correlations between strengths of synapses on the same dendrite. By contrast, the signature of
the non-linear Hebbian plasticity rule is the presence of correlations between synaptic strengths
on the same axon. Exactly the same test as we proposed to detect dendritic correlations could
be applied to axonal data. The presence of both axonal and dendritic correlations leads to the
so-called “plaid” connectivity, named so because both vertical and horizontal correlations are
present in the synaptic matrix (Figure 5 and 6).

The biological origin of the nonlinear multiplicative plasticity rules is unclear. On one hand,
the power-law dependences suggested by our theory [equation (11)] are sublinear in the
network parameters, which corresponds to saturation. On the other hand the rate of
modification of the synaptic strengths is proportional to the current value of the strength in
some power, which is less than one. This result is consistent with the cluster models of synaptic
efficacy, in which the uptake of synaptic receptor channels occurs along a perimeter of the
cluster of existing receptors (Shouval, 2005). In this case the exponent of synaptic growth is
expected to be close to 1/2 [β =1 / 2, see equation (11)].

Other possibilities
We have proposed that the lognormal distribution of firing rates emerges from differences in
the inputs to neurons. An alternative hypothesis is that the lognormal distribution emerges from
differences in the spike generating mechanism that lead to a large variance in neuronal input-
output relationship. However, the coefficient of variation of the spontaneous firing rates
observed experimentally was almost 120% (Figure 1A). There are no data to suggest that
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differences in the spike generation mechanism would be of sufficient magnitude to account for
such a variance (Higgs et al., 2006).

Another, more intriguing possibility is that the lognormal distribution arises from the
modulation of the overall level of synaptic noise (Chance et al., 2002) which can sometimes
change neuronal gain by a factor of three or more (Higgs et al., 2006). However, in vivo
intracellular recordings reveal that the synaptic input driving spikes in auditory cortex is
organized into highly synchronous volleys, or “bumps” (DeWeese and Zador, 2006), so that
the neuronal gain in this area is not determined by synaptic noise. Thus modulation of synaptic
noise is unlikely to be responsible for the observed lognormal distribution of firing in auditory
cortex.

Broad distributions of synaptic strengths, resembling the one studied here, was observed in
hippocampal cultured cells (Murthy et al., 1997). Because these cells were grown in isolation
on small “islands” of substrate, they predominantly formed synapses with themselves i.e.
autapses. Because in our study we considered the network mechanism, finding wide
distribution of autaptic strengths in isolated neurons should require a different explanation.
However, a mathematically similar Hebbian mechanism, applied to individual branches of a
non-isopotential neuron (Brown et al., 1992; Perlmutter, 1995; Losonczy et al., 2008), may
provide an alternative explanation.

Conclusions
The lognormal distribution is widespread in economics, linguistics, and biological systems
(Bouchaud and Mezard, 2000; Limpert et al., 2001; Souma, 2002). Many of the lognormal
variables are produced by networks of interacting elements. The general principles that lead
to the recurrence of lognormal distributions are not clearly understood. Here we suggest that
lognormal distributions of both activities and network weights in neocortex could result from
specific correlations between connection strengths. We also propose a mechanism based on
Hebbian learning rules that can yield these correlations. Finally, we propose a statistical
procedure that could reveal both network correlations and Hebb-based mechanisms in
experimental data.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Lognormal distributions in cerebral cortex.
(A, B) Distribution of spontaneous firing rates in auditory cortex of unanesthetized rats follows
a lognormal distribution (Hromadka et al., 2008). Measurements with the cell-attached method
show that spontaneous firing rates in cortex vary within several orders of magnitude. The
distribution is fit well by a lognormal distribution with some cells displaying firing rate above
30 Hz and an average firing rate of about 3 Hz (black arrow). (C, D) The distribution of synaptic
weights for intracortical connections (Song et al., 2005). To assess this distribution, pairs of
neurons in the network were chosen randomly and the strength of the connections between
them is measured using electrophysiological methods (Song et al., 2005). Most connections
between pairs are of zero strength: the sparseness of cortical network is about 20% even if the
neuronal cell bodies are close to each other so that the cells have a potential to be connected
(Stepanyants et al., 2002; Thomson and Lamy, 2007). This implies that in about 80% of such
pairs there is no direct synaptic connection. The distribution of non-zero synaptic efficacies is
close to lognormal (Song et al., 2005), at least, for the connectivity between neurons in layer
V of rat visual cortex. This implies that the logarithm of the synaptic strength has a normal
(Gaussian) distribution.
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Figure 2.
Randomly connected “white noise” network connectivity does not yield lognormal distribution
of spontaneous firing rates.
(A) Synaptic connectivity matrix for 200 neurons. Because synaptic strengths are uncorrelated,
the weight matrix looks like a “white-noise” matrix.
(B) Distribution of synaptic strengths is lognormal. The matrix is rescaled to yield a unit
principal eigenvalue.
(C) Synaptic weights and firing rates of 12 randomly chosen neurons tended to be similar.
Every circle corresponds to a single neuron, with diameter proportional to the neuron’s
spontaneous firing rate. Thickness of connecting lines is proportional to strengths (synaptic
weights) of incoming connections for each neuron. Red and blue circles and lines show
spontaneous firing rates and incoming connection strengths for two neurons with maximum
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and minimum firing rates from the sample shown. Because incoming synaptic weights are
similar on average the spontaneous firing rates (circle diameters) tend to be similar.
(D) Spontaneous firing rates given by the components of principal eigenvector of matrix shown
in (A). The distribution of spontaneous firing rates in not lognormal, contrary to experimental
findings (see Figure 1A and B). The spontaneous firing rates are approximately the same for
all neurons in the network.
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Figure 3.
Correlated synaptic weights on the same axon (output correlations) do not lead to lognormal
distribution of spontaneous firing rates.
(A) Synaptic weight matrix for 200 neurons contains vertical “stripes” indicating correlations
between synapses made by the same presynaptic cell (the same axon).
(B) Distribution of synaptic weights is lognormal.
(C) Firing rates and synaptic weights tended to be similar for different neurons in the network,
as illustrated on an example of 12 randomly chosen neurons. Red and blue circles show neurons
with maximum and minimum firing rates (out of the sample shown), with their corresponding
incoming connections.
(D) Column-matrix fails to yield broader distribution of spontaneous firing rates than the “white
noise” matrix (Figure 2).
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Figure 4.
Correlations among synaptic weights on the same dendrite (input correlations) lead to
lognormal distribution of spontaneous firing rates.
(A) Synaptic connectivity matrix for 200 neurons. Note the horizontal “stripes” showing input
correlations.
(B) Distribution of synaptic weights is set up to be lognormal.
(C) Inputs into two cells, red and blue are shown by the thickness of lines in this representation
of the network. Because synaptic strengths are correlated for the same postsynaptic cell, the
inputs into cells marked by blue and red are systematically different, leading to large differences
in the firing rates. For the randomly chosen subset containing 12 neurons shown in this example
the spontaneous firing rates (circle diameter) vary widely due to large variance in the strength
of incoming connections (line widths).
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(D) Distribution of spontaneous firing rates is lognormal and has a large variance for row-
matrix.
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Figure 5.
Multiplicative Hebbian learning rule leads to wide network connectivity and firing rate
distributions.
(A) Synaptic connectivity matrix for 200 neurons resulting from 1000 iterations of
multiplicative Hebbian learning rule. This matrix displays “plaid” structure (horizontal and
vertical “stripes”) indicating both input and output correlations. This feature is similar to both
column- and row-matrices introduced in previous sections.
(B) The adjacency matrix for the weight matrix shows the connections that are present (non-
zero, black) or missing (equal to zero, white). Adjacency matrix defined here is transposed
compared to the standard definition in graph theory. The adjacency matrix is 20% sparse and
is not symmetric, i.e. synaptic connections formed a directed graph. (C), (D) Distributions of
synaptic weights resulting from the non-linear Hebbian learning rule (C) and spontaneous firing
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rates (D) were approximately lognormal, i.e. appeared as normally distributed on logarithmic
axis.
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Figure 6.
Experimental predictions of this theory.
(A) The presence of row connectivity (Figure 4–5), sufficient for generation of dual lognormal
distributions, implies correlations between synaptic strengths on each dendrite (the diameter
of the red circle). In addition, if the non-linear Hebbian mechanism is involved in generation
of these correlations, the synapses on the same axon are expected to be correlated (plaid-
connectivity, Figure 5).
(B) To reveal these correlations, the logarithm of average synaptic strengths (LASS) was
calculated for each dendrite. The distribution of these averages for individual dendrites (rows)
from Figure 5 is shown by gray bars. The standard deviation of this distribution is about 0.64
in natural logarithm units. The black histogram shows LASS distribution after the synapses
were “scrambled” randomly, with their identification with particular dendrites removed. This
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bootstrapping procedure (Hogg et al., 2005) builds a white-noise matrix with the same
distribution of synaptic weights, but much narrower distribution of bootstrapped LASS.
(C) Distribution of standard deviations (distribution widths) of LASS for many iterations of
bootstrap (black bars). The widths were significantly lower than the width of the original LASS
distribution (0.64, gray arrow). This feature is indicative of input correlations.
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Figure 7.
The results of non-linear multiplicative learning rule when inhibitory neurons are present in
the network.
(A) The absolute values of the weight matrix display the same ‘plaid’ correlations as in the
network with excitatory neurons only (Figure 5A).
(B) The adjacency matrix contains inhibitory connections. The presence of non-zero
connection is shown by black points (20% sparseness). Positions of the inhibitory neurons in
the weight matrix are indicated by the vertical blue lines (15%).
(C) The distribution of absolute values of synaptic strengths resulting from non-linear Hebbian
learning rule is close to lognormal with small asymmetry.
(D) The spontaneous firing rates are widely distributed with the distribution that is
approximately lognormal.
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