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Abstract

Recently, there has been a proliferation of methods investigating functional connectivity as a 

biomarker for mental disorders. Typical approaches include massive univariate testing at each edge 

or comparisons of network metrics to identify differing topological features. Limitations of these 

methods include low statistical power due to the large number of comparisons and difficulty 

attributing overall differences in networks to local variation. We propose a method to capture the 

difference degree, which is the number of edges incident to each region in the difference network. 

Our difference degree test (DDT) is a two-step procedure for identifying brain regions incident to 

a significant number of differentially weighted edges (DWEs). First, we select a data-adaptive 

threshold which identifies the DWEs followed by a statistical test for the number of DWEs 

incident to each brain region. We achieve this by generating an appropriate set of null networks 

which are matched on the first and second moments of the observed difference network using the 

Hirschberger-Qi-Steuer algorithm. This formulation permits separation of the network’s true 

topology from the nuisance topology induced by the correlation measure that alters interregional 

connectivity in ways unrelated to brain function. In simulations, the proposed approach 

outperforms competing methods in detecting differentially connected regions of interest. 

Application of DDT to a major depressive disorder dataset leads to the identification of brain 

regions in the default mode network commonly implicated in this ruminative disorder.
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1 | INTRODUCTION

In recent years, graph theoretical tools have become increasingly important in the analysis of 

brain imaging data. In particular, evaluations of the associations between spatially distinct 
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regions have led to valuable insights into the brain’s organization in health and disease. 

Functional connectivity (FC), which measures the coherence between neurophysiological 

time series (Friston, 1994), has been extremely valuable in identifying disease-induced 

modifications to cortical and subcortical (SUB) communication. In fact, altered cortical 

activity has been observed in major depressive disorder (MDD) (Craddock, Holtzheimer, 

Hu, & Mayberg, 2009; Drysdale et al., 2017), Alzheimer’s disease (Stam, Jones, Nolte, 

Breakspear, & Scheltens, 2006), and schizophrenia (Liu et al., 2008; Rubinov & Sporns, 

2010). While Pearson correlation is a widely used FC measure, alternate association metrics 

such as partial correlations (Wang, Kang, Kemmer, & Guo, 2016), mutual information 

(Salvador et al., 2005), and coherence (Bassett et al., 2011) are finding favor. Brain networks 

have become particularly important since the FC measures offer different perspectives on 

coactivation between brain regions, and many studies agree that psychiatric disorders and 

neurodegenerative diseases manifest as disruptions in local and global FC (Pandya, Altinay, 

Malone, & Anand, 2012).

Recently, Simpson and Laurienti (2016) classify the growing literature on network 

connectivity methods into two categories based on the intentions to compare connectivity 

differences locally at the edge level or network-wide topological features. Many of the 

developed methods investigate differences at the edge level. In fact, the earliest approach 

tests for group differences at each edge in the network (Nichols & Holmes, 2002). For a 

network with N regions, this requires multiple testing corrections since N(N-1)/2 unique 

edges must be assessed. Unfortunately, controlling the familywise error rate or false 

discovery rate (FDR) leads to a reduction in power to detect group differences at the edge 

level. The sum of powered score (SPU), adaptive SPU test (Pan, Kim, Zhang, Shen, & Wei, 

2014), and PARD (Chen, Kang, Xing, & Wang, 2015) leverage edge level differences to 

assess overall deviation in the networks (Kim, Wozniak, Mueller, & Pan, (2015). While they 

can lead to highly powered tests, there are practical difficulties in selecting the optimal 

tuning parameter. Furthermore, the tests do not specifically identify edges, regions, or 

structures contributing to overall network differences, which complicate interpretation of the 

results. Shehzad et al. (2014) propose a distance-based framework for detecting voxels 

associated with a phenotypic outcome such as disease status. Unlike the previous 

approaches, the authors use clustering to select statistically meaningful voxels which avoids 

the power reduction inherent in multiple testing correction procedures.

Other approaches assume differences in brain connectivity contribute to coordinated, 

connected disruptions across multiple brain subsystems. The popular network-based statistic 

(NBS) (Zalesky, Fornito, & Bullmore, 2010) identifies collections of differentially weighted 

edges (DWEs) forming interconnected subcomponents but has limited exploratory value. A 

key assumption is that altered edges form connected subnetworks (Kim et al., 2015). The 

NBS is severely underpowered to detect differences in the networks if this assumption is 

violated (Zalesky et al., 2010). Furthermore, the NBS does not provide a principled 

approach for thresholding significant DWEs. As shown in Kim, Wozniak, Mueller, Shen, 

and Pan (2014), the NBS performance is reported across a grid of thresholds. In simulations, 

one can heuristically tune the threshold to produce the best performance. However, threshold 

selection becomes substantially more difficult in real data applications. In simulations and 

real data applications, we find that the NBS (extent) is unable to detect connected 
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components spanning the difference network across a wide range of thresholds. We note that 

the NBS is fundamentally different from the DDT. Whereas the NBS detects fully connected 

components comprised of DWEs, the DDT is attuned to local clustering of DWEs at each 

node.

Other methods (Rudie et al., 2013; Wang et al., 2015) have focused on comparing graph 

metrics across networks, using two sample t tests to test for differences. Unfortunately, these 

tests are often underpowered to detect group differences (Kim et al., 2014), and there are 

doubts on the suitability of two-sample t tests to compare some network metrics (Fornito, 

Zalesky, & Bullmore, 2010). Alternatively, nonparametric approaches utilize permutation 

tests (Simpson, Lyday, Hayasaka, Marsh, & Laurienti, 2013; Zalesky et al., 2010) to assess 

differences in the networks’ topological features or generate random networks (Bassett et al., 

2009) in order to construct distributions for network metrics of interest under the null 

hypothesis and then use these reference distributions to evaluate the significance of the 

observed network features. However, generating an appropriate null network is nontrivial. 

Existing approaches attempt to randomly rewire edges while preserving the degree 

distribution and the clustering coefficient (Bansal, Khandelwal, & Meyers, 2009; Maslov & 

Sneppen, 2002; Volz, 2004). Unfortunately, the network generation schemes are sensitive to 

the desired network measure (see Fornito, Zalesky, and Breakspear (2013) for an overview) 

and may not provide a complete picture of the network differences reflected by alternate 

summary measures.

In this article, we propose a difference degree test (DDT) to identify brain regions 

contributing to local and global disruptions in cortical communication. The DDT is 

composed of two steps: (a) identify edges that are differentially weighted across populations 

and (b) identify hub nodes incident to a statistically significant number of such edges. 

Despite the naming convention, the difference degree is not the difference of the nodal 

degree in the connectivity matrices. Rather, it assesses the incongruency of the observed 

number of DWEs incident to a region with the expected count in a network replicating only 

nuisance structures. Our approach relies on accurate estimation of the difference network, 

referred to in earlier literature as the differential statistical parametric network (Ginestet, 

Fournel, & Simmons, 2014). Edge weights in the difference network represent the statistical 

significance of between-group comparisons between all region pairs. The Hirschberger–Qi–

Steuer (HQS) algorithm (Hirschberger, Qi, & Steuer, 2007) allows us to perform the two 

steps of the DDT using the derived difference network. The algorithm produces null 

networks which follow the first and second moment characteristics of the observed 

difference network. Such networks preserve the nuisance topology present in the observed 

network while simultaneously annihilating all intrinsic structure. We identify important 

edges by leveraging distributional properties of the HQS-generated null networks. The cutoff 

value defining the suprathresholded edges ensures the null and observed networks attain a 

common density. This is especially important given the well-reported positive relationship 

between many network features and the network’s density. From the adjacency matrices, we 

subsequently identify brain regions incident to a statistically significant number of such 

edges.
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HQS is paramount to both steps of the DDT. Notably, the algorithm generates random 

networks that are appropriately matched to the observed network. In contrast, naively 

generated random networks, that is, random edge rewiring and random edge sampling, 

produce nulls which annihilate intrinsic and nuisance topologies present in the observed 

network. Although these approaches can quickly generate random network configurations, 

the graphs are inappropriate benchmarks for the observed network. Any inference based on 

this collection of nulls will be severely impacted. Further, conclusions about the sources of 

disrupted cortical communication are likely erroneous.

Through extensive simulations, we illustrate that the proposed method has greater power to 

detect differentially connected nodes across networks compared to standard multiple testing 

procedures, while also maintaining reasonable control over false positives. Furthermore, the 

adaptive threshold selection procedure leads to increased power to detect DWEs across the 

network as compared to Bonferroni and FDR correction procedures. Additionally, the 

adaptive threshold approach under the proposed method can automatically adapt to different 

network settings and hence is more generalizable compared to “hard” thresholding 

approaches assuming a fixed threshold. Finally, we apply the proposed approach to a MDD 

dataset, which leads to meaningful findings regarding disrupted brain connectivity attributed 

to the disorder.

The rest of this article is organized as follows. In Section 2, we discuss the construction of 

null difference networks, the proposed procedure, simulated data setting for the numerical 

studies, and functional magnetic resonance imaging (fMRI) preprocessing details. We 

present simulation and real data results in Sections 3.1 and 3.2, respectively. Section 4 

presents a discussion of practical and clinical significance.

2 | METHODS

2.1 | Data application

Existing literature has identified multiple brain regions implicated in MDD. For example, 

patients exhibit reduced connectivity in the frontoparietal network (FPN) as well as modified 

activity in areas such as the insula (Deen, Pitskel, & Pelphrey, 2010), amygdala (Sheline, 

Gado, & Price, 1998), hippocampus (Lorenzetti, Allen, Fornito, & Yuücel, 2009; 

Schweitzer, Tuckwell, Ames, & O’brien, 2001), dorsomedial thalamus (Fu et al., 2004; 

Kumari et al., 2003), subgenual, and dorsal anterior cingulate cortex (Mayberg et al., 1999). 

We apply the DDT to an MDD resting-state (rs) fMRI study (Dunlop et al., 2017) to 

investigate brain regions contributing to differences in overall functional network 

organization in the affected population.

To construct brain network, we choose the 264-node system defined by Power et al. (2011). 

Each node is a 10 mm diameter sphere in standard MNI space representing a putative 

functional area consistently observed in task-based and rs-fMRI meta-analysis. We focus 

upon 259 nodes located in cortical and subcortical regions, excluding a few nodes lying in 

the cerebellum. Each node is assigned to one of 12 functional modules defined in Power et 

al. (2011): sensor/somatomotor (SM), cingulo-opercular task control (CIO), auditory (AUD), 

default mode network (DMN), memory retrieval (MEM), visual (VIS), FPN, salience 
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(SAL), subcortical (SUB), ventral attention network (VAN), dorsal attention network 

(DAN), and uncertain (UNC).

We measure the functional association between all pairs of brain regions with Pearson 

correlation and partial correlation. Partial correlations are estimated using the DensParcorr R 

package (Wang et al., 2016). For both correlation measures, we conduct the between-group 

tests on the Fisher Z-transformed correlation coefficient at each edge and derive both the 

unadjusted p-values when confounding variables are not accounted for and also the adjusted 

p-values when they are accounted for. We construct the difference networks based on the 

model-free and model-based between-group test p-values for connectivity measured by both 

Pearson correlation and partial correlation. We apply the two variations of the proposed 

DDT to identify brain regions incident to a statistically significant number of DWEs. 

Subsequently, we investigate the distribution of the DWEs across the networks as well as 

between and within functional modules. Although the NBS is widely used, it did not detect 

any group differences over a wide range of thresholds, including that suggested by Zalesky 

et al. (2010).

2.1.1 | Subjects and preprocessing—The data consists of rs-fMRI scans from 20 

MDD subjects and 19 healthy subjects. MDD patients are on average 45.8 years old (SD: 9.6 

years) and 50% male. The matched healthy participants are 47% male and 43 years old (SD: 

8.9 years). MDD patients exhibited severe symptoms (mean score 19 (SD: 3.4)) as measured 

by the 17-item, clinician-rated Hamilton Rating Scale for Depression (Brown et al., 2008).

During rs-fMRI scans, participants were instructed to rest with eyes closed without an 

explicit task. Data were acquired on a 3T Tim Trio MRI scanner with a 12-channel head 

array coil. fMRI images were captured with a z-saga sequence to minimize artifacts in the 

medial prefrontal cortex and orbitofrontal cortex due to sinus cavities (Heberlein & Hu, 

2004). Z-saga images were acquired interleaved at 3.4 × 3.4 × 4 mm3 resolution in 30 4-mm 

thick axial slices with the parameters field of view = 220 × 220 mm2, repetition time = 2,920 

ms, echo time = 30 ms for a total of 150 acquisitions and total duration 7.3 min. Several 

standard preprocessing steps were applied to the rs-fMRI data, including despiking, slice 

timing correction, motion correction, registration to MNI 2 mm standard space, 

normalization to percent signal change, removal of linear trend, regressing out the 

cerebrospinal fluid, white matter, and six movement parameters, band-pass filtering (0.009–

0.08), and spatial smoothing with a 6 mm Full Width Half Maximum Gaussian kernel.

2.2 | Numerical studies

We conduct extensive simulation studies to assess the performance of the DDT. Our primary 

interest is how well the DDT detects regions incident to many DWEs. Additionally, we 

assess the performance of the DDT’s thresholding procedure for identifying DWEs. Unless 

otherwise noted, the generated networks contain N = 35 nodes, and we consider sample 

sizes of 20 and 40 for each of the two groups. For the first set of simulations, we consider 

the case where there is only one node in the network incident to a specified number of 

DWEs. Without loss of generality, we refer to it as Node 2, and assess whether the proposed 

DDT can accurately identify this node. We consider both DDT methods, that is, aDDT based 
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on parametric percentiles and eDDT based on empirical percentiles in the adaptive 

thresholding step. Three network structures are considered in the simulation: (a) random, (b) 

small world, and (c) hybrid. Random networks contain edges that are equally likely to be 

positive or negative for all connections. We generate this structure by sampling edge weights 

independently from an N (0, .04) distribution, which produces a connectivity matrix with no 

structural zeros. The small world network retains the cliquishness of the regular lattice and 

the short path length of the random network. Additionally, it retains small world properties 

observed in functional and structural brain networks (Bassett & Bullmore, 2006; Hilgetag & 

Goulas, 2016; Salvador et al., 2005). The hybrid network seeks to fuse the block diagonal 

structure observed in real brain networks, while maintaining the small worldness inherent to 

human brains. The “blocks” correspond to functional modules observed in the brain such as 

the DMN and VIS networks.

In order to evaluate the performance of our method, we simulate data similar to that of Chen 

et al. (2015) and Zalesky et al. (2010). All subjects share a common base brain network, B, 

which is a correlation matrix generated according to the random, small world, and hybrid 

network structure. The hybrid network structure is a subset of the interregional correlations 

for one healthy individual in the major depression disorder study. The random correlation 

network structure is generated by cross correlating N time series, where each contains 500 

timepoints sampled from a zero mean multivariate normal distribution with a diagonal 

covariance structure. Finally, the small world correlation structure is generated from inhouse 

functions that define a small world precision matrix. We covert this structure to a partial 

correlation matrix using the transformation proposed by Whittaker (1990).

We perturb the edge weights in B to induce subject-level correlation network while 

controlling the distribution of DWEs across the populations. For subjects i1 = 1,…, n1 and i2 

= 1, …, n2 in the two groups, we generate the subject-level networks, Hi1 and Hi2, as 

follows: for n1 subjects in Group 1, Hi1 = B + Wi1, where Wi1 ∈ RN × N, wij, i1 ~ N(0, .02) for 

1 ≤ i < j ≤ N = 35 and wij, i1 = 0∀i = j; for n2 subjects in population two, Hi2 = B + Wi2 

where Wi2 ∈ RN × N. Let I be the set of differentially connected nodes where l = {2} for the 

first set of simulation. For i ∈ l, we generate q off-diagonal elements corresponding to the 

DWEs in the ith row and column edges connected with i from N(.1, .02) and other edges of i 
from N(0, .02). For i ∉ 1, we have wij, i2 N(0, .02). We consider q = 4, 7, and 11 to assess our 

method’s power to detect differentially connected region(s) when the number of DWEs 

increases. We construct the difference network with model-free p-values, where we conduct 

a two sample t test and record one minus the p-value as the weight for each edge in the 

difference network.

We compare the performance of DDT to that of two other tests. The first comparison method 

(T(10%)) is a standard two sample t test of local nodal degree. For this test, we threshold the 

subject-specific correlation matrices to attain 10% density, evaluate the subject-level degree 

measure at each node and then perform a two sample t test to compare the nodal degree 

across groups. We also investigated but did not include the results obtained from 15% 

density and 1% network density, which were less powerful in detecting differentially 

Higgins et al. Page 6

Hum Brain Mapp. Author manuscript; available in PMC 2020 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



connected regions than 10% density. We also consider two binomial tests which are similar 

to DDT in that they directly assess the number of DWEs incident to a node but differ from 

DDT in that they apply some multiple comparison corrections to detect the DWEs. 

Specifically, the first binomial test, BinB, applies a Bonferroni correction to detect the DWEs 

(Tyszka, Kennedy, Paul, & Adolphs, 2013) and the second binomial test, BinF, implements a 

less stringent FDR multiple testing correction. For both binomial tests, each node’s 

difference degree is the sum of all DWEs incident to it. Finally, we consider the performance 

of the NBS (extent). The method does not detect group differences across a wide range of 

thresholds and significance levels.

In the second set of simulations, we assess the methods’ performances when there are three 

differentially connected regions. We consider two scenarios in this setting. First, the network 

size is fixed while the number of DWEs varies with q = 4, 7, and 11. Second, we fix the 

proportion of DWEs for the differentially connected nodes to be 30% while increasing the 

size of the network. We report various metrics to quantify the methods’ accuracy in 

detecting differentially connected nodes across the simulations. The false positive rate (FPR) 

is calculated as ∑s = 1
S ∑n = 1

N l Rn, s = 1, Rn = 0 / S*N  and quantifies the chance that each 

method incorrectly identifies a differentially connected region. The true positive rate (TPR) 

is calculated as ∑s = 1
S ∑n = 1

N l Rn, s = 1, Rn = 1 / S*N  and measures the correct identification. 

Here, S is the total number of simulations. Rn, s takes the value if region n in simulation s is 

selected as differentially connected and 0 otherwise. Rn is a binary indicator of whether 

region n is differentially connected in the ground truth. We compare accuracy in selecting 

truly differentially connected regions by Matthews correlation coefficient (MCC) 

(Johnstone, Milward, Berretta, Moscato, & Initiative, 2012), which is a popular measure for 

accessing the correspondence between predicted and true class labels. MCC, which is 

computed as TP × TN − FP × FN/ (TP + FP)(TP + FN)(TN + FP)(TN + FN), takes values in [−1,1] 

where 1 indicates perfect agreement between the predicted and true class labels, 0 no 

agreement, and −1 inverse agreement. In this formula, TP, TN, FP, and FN denote the 

number of nodes that are true positives, true negatives, false positives, and false negatives, 

respectively. In a supplementary analysis of the simulation results, we assess the 

performance of the adaptive thresholding procedures presented in Section 2.3.5 in correctly 

detecting DWEs. We compare the MCC in selecting the true DWEs based on the proposed 

aDDT and eDDT thresholding procedures with that based on two hard thresholds at .95 and .

99 as well as based on multiple comparison corrections thresholds using the Bonferroni and 

FDR methods.

In the third set of simulations, we investigate the performance of the DDT when the DWEs 

form a connected component (contrast) as examined in Zalesky et al. (2010). First, we 

sample a random network and estimate the minimal spanning tree (igraph R package) which 

defines the contrast. We modify the settings in the first simulation where the DWEs 

comprising the contrast have unit mean in one group and zero mean in the second group 

(unit variance in both groups). All other edges are sampled from a standard normal 

distribution. We simulate 1,000 datasets where each dataset contains 20 contrast-free 
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networks and 20 contrast-incorporated networks. We report the number of times each node 

is selected as a differentially connected region across all simulation runs.

2.3 | DDT methodology

2.3.1 | Brain network construction—In network analysis of neuroimaging data, the 

brain can be represented as a graph defined by a finite set of nodes (brain regions) and edges 

showing the statistical association between pairs of nodes. For N regions in the node set η, 

the network is represented as a symmetric N × N connectivity matrix, G, which can be 

thresholded to obtain the adjacency matrix A, representing the edge set of the network. For 

selection of the node system, the naive approach is to treat each voxel as a putative region of 

interest. This approach results in an extremely highdimensional connectivity matrix that not 

only poses challenges for subsequent analyses, but also tends to be unreliable and noisy. A 

more common approach is to define nodes based on anatomically defined brain structures, 

for example, automated anatomical labeling atlas (Tzourio-Mazoyer et al., 2002) and 

Harvard–Oxford atlases (Fischl et al., 2004; Frazier et al., 2005). When analyzing brain 

functional networks, it is suggested to parcellate the brain into putative functional areas 

based on clusters of voxels exhibiting similar signals in rs-fMRI data (Craddock et al., 

2009). Some widely used examples of functionally defined node systems are the Power 264 

node system (Power et al., 2011), Yeo (Yeo et al., 2011), and Gordon (Gordon et al., 2014) 

atlases, among others.

For brain networks based on fMRI, the edges represent the coherence in the temporal 

dynamics between the blood oxygen-level-dependent signal between node pairs. In this 

article, we utilize undirected measures of connectivity such as Pearson and partial 

correlation, where Pearson correlation measures the marginal association between two 

regions and partial correlation measures their association conditioned on all other regions in 

the network. Given the heavy debate on the merits and disadvantages of each correlation 

measure in brain network analysis (Kim et al., 2015; Liang et al., 2012), we investigate both 

and compare the findings.

The resulting network, G, is a weighted graph representing undirected statistical associations 

between all pairs of nodes. Often, a thresholding procedure is applied to produce a binary 

adjacency matrix, A, where a value of 1 in the (i,j)th entry indicates a connection between 

the respective regions. This network formulation is particularly advantageous as it simplifies 

calculations of graph metrics and leads to intuitive metric definitions (see Bullmore and 

Bassett (2011); Rubinov and Sporns (2010) for more details).

Since we are interested in between-group differences in functional networks, we consider a 

difference network which is defined on the same node system as the functional network but 

the edges represent the strength of between-group differences in the functional connections. 

Details of the difference network construction are presented in the following section. We 

focus on the number of thresholded edges incident to each region in the difference network, 

which we call the difference degree. Similar to the interpretation of nodal degree in 

connectivity matrices, we focus upon this metric as it suggests regions contributing to local 

differences in the network architecture across diseases or conditions. We believe that a brain 

region incident to a large number of DWEs is potentially responsible for overall differences 
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in brain network topology, without being sensitive to any particular network summary 

measure commonly used to capture connectome differences.

2.3.2 | Difference network construction—Suppose we are comparing networks 

between two groups with nr subjects in group r (r =1, 2). Denote G
kr = gr, i j

kr kr = 1, …, nr

as the estimated brain connectivity matrices for the kr
th subject in the rth group (r = 1,2) and 

gr, ij
kr  denotes the connectivity measure (such as the Pearson or partial correlation) between 

nodes i and j (i, j ∈ η ={1, …, N}) for the krth subject in the rth group. The first step of DDT 

is to construct a N × N difference network D = {dij: i, j ∈ η}, where dij represents the 

statistical significance of population-level differences in the connection strength between 

nodes i and j, that is,

di j = 1 − p g1, i j , g2, i j ∈ [0, 1) (1)

where p g1, i j , g2, i j  is the p-value of a between-group difference test based on the 

estimated connectivity measures at edge (i,j) across subjects in the two groups. For example, 

one can obtain the p-value by applying two-sample t test to gr, i j
k1  and gr, i j

k2 . We will 

provide more detailed discussion on how to derive the p-values from various types of 

between-group tests in Section 2.3.3. From Equation (1), each element in the difference 

network dij serves as our measure of the difference of the edge connectivity gr,ij between the 

two groups, with larger values (i.e., smaller p-values) corresponding to larger group 

differences at the (i,j)th edge, and vice versa. Note that D = {dij} is a symmetric matrix 

where ∀i, j ∈ η, di j = d ji, and di j = 0 for i = j given that we are not interested in the diagonal 

elements.

From the difference network D = {dij}, we can derive the difference adjacency matrix A = 

{aij}, where aij, represents the presence of group differences in the connection between 

nodes i and j, that is,

ai j = l di j > τ (2)

where τ is a threshold for selecting edges which are differentially weighted. When dij 

exceeds the threshold, τ, or equivalently the p-value for the group test is smaller than 1 – τ, 

we obtain aij = 1 indicating the presence of group difference at the edge (i,j). Otherwise, aij = 

0 represents no group difference at the edge (i,j). In the following section, we will present a 

data-driven adaptive threshold selection method for finding τ.

Based on the difference adjacency matrix A, we define the following difference degree 

measure for the ith node (i = 1,…,N),

di = ∑
j ∈ η, j ≠ i

ai j (3)
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The difference degree measure, di, represents the number of connections to node i that are 

significantly different between the two groups as captured by edge-wise p-values without 

multiplicity adjustments. In subsequent steps of the DDT, di will be used as the test statistic 

for investigating node i’s contribution to disrupted communication in the brain. While the 

difference network provides edge-level information on between-group differences, it is 

widely accepted that cognitive deficits in mental diseases are demarcated by disruptions in 

systems (Catani & ffytche, 2005). Thus, collections of connected DWEs are more consistent 

with the system wide disruption paradigm than evaluation of individual DWEs. The DWEs 

incident to each node form a locally connected component and indicate that irregular activity 

at the node of interest contributes to differentiated coactivation with adjacent regions. 

Investigation at the nodal level not only has biological justification, but also substantially 

improves the multiple testing problem. The number of statistical tests scales linearly with the 

network’s size rather than quadratically at the edge level. The notion of disruptions in 

subsystems has also been used in previous work to mitigate the multiplicity problem 

common to network comparisons (Zalesky et al., 2010).

2.3.3 | Deriving p-value from between-group tests—The p-value used to define the 

difference network in Equation (1) can be derived based on various between-group testing 

procedures. The p-values fall into two categories: model-free and model-based. The model-

free p-values are derived based on parametric or nonparametric tests between the two groups 

of subjects without accounting for the subjects’ biological or clinical characteristics. The 

common choices of such tests include the two-sample t test, the nonparametric Wilcoxon 

rank sum test, or the permutation test. The model-based p-values are derived from regression 

models where the subject-specific connectivity measure (or some transformation) is modeled 

in terms of group membership and other relevant factors such as age and gender that may 

affect the brain connectivity. These p-values for between-group difference can then be 

derived based on the test of the parameter in the model associated with the group covariate. 

This model-based p-value reflects the degree of group differences while controlling for 

potential confounding effects. In many neuroimaging studies, subjects’ group memberships 

are not based on randomization but rather based on observed characteristics. In this case, the 

distribution of subjects’ demographic and clinical variables tends to be unbalanced between 

the groups and there often exist some potential confounding factors in between group 

comparisons (Satterthwaite et al., 2014). For such studies, it may not be the case that the 

model-based p-values more accurately reflect group-induced variation in FC as compared 

with model-free p-values.

We note that when computing the difference network in Equation (1), the proposed approach 

does not apply a multiple testing correction to the edge-wise between-group test p-values. 

Such multiplicity adjustment often reduces the power to detect DWEs. Additionally, since 

our goal is to detect differentially expressed nodes in the brain network, a multiplicity 

adjustment on the edge-wise tests is not crucial, provided the falsely identified DWEs are 

more or less uniformly distributed across the nodes without systematic differences. In such a 

case, the threshold τ in Equation (2), which is chosen using an appropriately constructed 

null distribution as in Section 2.3.4, automatically adjusts for falsely identified DWEs 
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occurring across nodes. Indeed, extensive simulation studies where the proposed method is 

able to control false positives at a nominal value.

2.3.4 | Null distribution generation—After constructing the difference network D = 

{dij} and deriving the difference degree measure, di, for each node, the next step in the DDT 

procedure is to conduct a statistical test to evaluate whether there is significant group 

difference in the connections to the node. As a standard strategy in hypothesis testing, we 

will evaluate the test statistic, di, with respect to its null distribution under the hypothesis 

that there are no between-group differences. For this purpose, we first derive the null 

distribution by generating difference networks under the null hypothesis.

We present a procedure for generating null difference networks that maintain some of the 

fundamental characteristics of the observed difference networks but have a random pattern 

of between-group differences which is expected under the null hypothesis. Since the 

elements in the difference network lie within a restricted range, that is, (0,1), we first apply a 

logit transformation, that is,

D = di j:di j = logit di j ∈ ( − ∞, ∞); i < j; i, j ∈ η (4)

We define the first and second moment characteristics for the observed difference network as 

follows:

e = E[d] and v = Var[d] for i < j, e = E[d] for i = j

where e represents the mean of the off-diagonal elements, e represents the mean of the 

diagonal element, and v is the variance of the off-diagonal elements.

In the following, we present a procedure for generating a null difference network 

C ∈ IRN × N whose first and second moment characteristics match that of the observed 

difference network and preserves its true topology. Motivated by the HQS algorithm, we 

propose to generate C based on the multiplication of a random matrix and its conjugate 

transpose

C = L * LT (5)

where L ∈ RN × m. Based on the formulation of Hirschberger et al. (2007), we generate 

li j N μ, σ2  where μ = e/m and σ = − μ2+ μ4 + v
m  and m = min 2, e − e

v , where ⋅  is the 

floor function. Based on this specification, we can show that

E[ci j] = e, Var[ci j] = v, and E[cii] = e,

Please see Equations (A3) and (A4) for details. The generated null difference network C
maintains the first and second moment characteristics of the observed difference network D. 
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Finally, we transform C through the inverse logit function to obtain a null difference network 

C such that cij ∈ (0,1).

The proposed generation procedure has several appealing features. First, it is a very fast 

algorithm for generating null networks. Second, the generated null difference network, C, 

preserve the first and second moment characteristics of the observed difference network D. 

An important advantage in maintaining these fundamental properties of the observed 

network is that it will help make the generated null network a meaningful reference for 

comparison with the observed network. For example, to perform meaningful comparison of 

the connectivity structure between two networks, a critical condition is that the two networks 

must have similar number of edges (Fallani, Richiardi, Chavez, & Achard, 2014). This 

condition would be violated if there exists a significant difference in the average 

connectivity measure between the two networks in the sense that the network with higher 

average connectivity is associated with larger number of edges. By generating null networks 

with the same first and second moment as the observed network, the proposed procedure 

makes sure the comparison between the observed network against the null networks would 

not be confounded by their differences in the fundamental characteristics. More importantly, 

replication of the first and second moments allows the null networks to preserve the 

nuisance topology of the observed difference network while annihilating intrinsic group 

structures of the observed network. As discussed in Zalesky, Fornito, and Bullmore (2012), 

benchmarking against such null networks permits identification of the intrinsic topology in 

the observed network.

2.3.5 | An adaptive threshold selection method—Recall that after obtaining the 

difference network D = di j , we need to threshold it to derive the difference adjacency 

matrix A = ai j . If dij > γ, a = 1, indicating the presence of a group difference at the edge 

(i,j) where γ = logit(τ). Otherwise, ai j = 0 represents no group difference at the edge (i, j).

In the existing between-group network tests, the threshold value is typically selected by a 

multiple comparison method that controls the familywise error rate or the FDR. Others 

select a prespecified cutoff or grid over a range of cutoffs (Zalesky et al., 2010). We propose 

to adaptively select the threshold based on the distribution of the between-group test 

statistic. Specifically, the ci j are independent and identical samples from the mixture 

distribution, H(.),

H ci j = 2σ2

4 T − 2σ2

4 Q (6)

where T and Q are noncentral χ2 and central χ2 random variables, respectively. Each 

variable in the mixture distribution depends only on the mean and variance of the observed 

data (see the Appendix , section). We propose two ways to select the threshold, γ as the 95th 

quantile: (a) aDDT which uses the theoretical critical value based on the parametric mixture 

distribution in Equation (6), and (b) eDDT which uses the empirical critical value based on 

the empirical distribution. The numerical advantages and disadvantages of each of the two 

thresholding methods will be addressed in the simulation studies. Since the null difference 
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network, C, is generated in a way that it matches the first and second moments of the 

observed difference network, D, the selected threshold value γ will automatically adapt to 

the properties of the observed difference network. Compared to hard thresholding 

approaches which use a fixed cutoff value, our threshold selection method can potentially 

provide an adaptive and general approach for choosing suitable threshold values for different 

studies. Once the threshold value γ is computed as above, one can apply it to the generated 

null difference networks C to obtain difference adjacency matrices A = ai j  such that ai j = 1

if c > γ and 0 otherwise.

The proposed threshold selection procedure controls the selection of false positive edges, 

while circumventing the loss of power inherent in existing multiplicity corrections methods. 

This is achieved by adaptively selecting the threshold based on the distribution of the 

elements in the difference network. Similar approaches (Kundu, Mallick, & 

Baladandayuthapani, 2018; Newton, Noueiry, Sarkar, & Ahlquist, 2004) have effectively 

controlled Type I error by using the empirical distribution of edge probabilities to select a 

threshold in order to detect important connections. We do note that this thresholding 

procedure does not guarantee a universally optimal choice. The selected threshold is only 

utilized to control the Type I error in the weak sense at the edge level and may be suboptimal 

with respect to other manual or automatic thresholding procedures. However, simulations 

show that it leads to superior performance in detecting the nodes of interest.

2.3.6 | Difference degree test—In this section, we present a statistical test for the 

difference degree measure, di, for node i based on the generated null difference networks. di

essentially is a count variable representing the number of connections out of a total of N –1 

connections of node i that show between-group difference. Therefore, we can model di with 

a binomial distribution. Under the null, di f null = Binomial N − 1, pi
null  where pi

null  is the 

expected probability for each connection of node i to demonstrate between-group difference 

under the null hypothesis. We can estimate the null probability pi
null  based on the generated 

null difference networks, that is,

pi
null = 1

U(N − 1) ∑u = 1
U ∑

j ∈ η, j ≠ i
ai j

(u)
(7)

where U is the total number of null networks and ai j
(u) are elements of uth thresholded null 

network, A(u). By comparing the observed di against the null distribution, we identify all 

regions incident to more DWEs than is expected by chance. Our proposed procedure is 

summarized in Algorithm (1).

Algorithm 1:

Difference Degree Test

1: Construct difference network D = di j i, j
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2: Obtain first and second moments of D, that is, e = E di j  and σ2 = Var di j

3: Generate U null Difference Networks, Cm(u = 1, …, U) based on e and σ2

4: Apply the adaptive threshold selection method to find the threshold, γ

5: Apply threshold to D to obtain the difference adjacency matrix A = ai j i, j
 and di for node i

6: Generate the null distribution for di Binomial N − 1, pi
null

. See Equation (7) for the form of pi
null

7: Assess the statistical significance of the number of DWEs at node i.

3 | RESULTS AND DISCUSSION

3.1 | Numerical studies

Table 1 displays accuracy measures for identifying one differentially connected node across 

two populations in the first set of simulations. Generally, the proposed DDT methods, that is, 

aDDT and eDDT, exhibit larger TPR than the t tests and the binomial tests across various 

sample sizes and network structures. The binomial tests achieve the lowest FPR, which is 

attributed to the Bonferroni and FDR multiple testing corrections. However, the multiplicity 

corrections reduce the power to detect the correct region. The t test attains the nominal Type 

I error rate (α = .05). For all methods, the TPR improves when the sample size increases and 

the number of differentially connected edges increase. Overall, the two proposed DDT 

approaches exhibit superior performance as compared to the other tests. Among the two 

DDT methods, eDDT typically exhibits higher TPR, but the latter has a slightly higher FPR, 

although the FPR under both approaches is less than the nominal level of .05. In Figure 2, 

we see the significant edges in the true difference network structure as well as those detected 

by eDDT, aDDT, Bonferroni, and FDR multiplicity corrections. Clearly, aDDT and eDDT 

performances identify the same significant edges while the Bonferroni and FDR corrections 

produce many false negatives. Such performance at the edge level permits our methods to 

detect the correct nodes of interest and contributes to the superior TPR and FPR values 

observed in the simulations.

The advantages of the proposed aDDT and eDDT over the alternative methods persist in the 

second set of simulations where three regions are differentially connected. In Figure 1, 

across all network structures with a fixed number of nodes (N = 35) and with 4, 7, or 11 

DWEs incident to each of the three nodes of interest, the DDT methods have the highest 

power to detect the regions of interest while attaining FPR comparable to that of T(10%). We 

note that our method is superior to the multiplicity corrected Binomial tests when the 

differentially connected regions are incident to a small to moderate number of DWEs and is 

comparably powered to detect differentially connected nodes as the FDR corrected tests 

when the number of DWEs is large. Furthermore, as in the first simulation setting, eDDT 

typically exhibits higher TPR than aDDT, but the former has slightly higher FPR compared 

to aDDT. Notably, both methods exhibit FPR values close to the nominal level of 0.05.

We also examine at the performance of the approaches as the number of nodes increases, 

while keeping the proportion of DWEs incident to the region of interest fixed at 30%. Figure 
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3 clearly illustrates the advantages of DDT for detecting regions incident to DWEs, while 

having a comparable or lower FPR as the network’s size increases. Consistent with Table 1 

and Figure 1, eDDT exhibits the best TPR while the multiplicity corrected binomial tests 

have the smallest FPR, although the FPR levels under the DDT approaches are less than or 

equal to the nominal level across varying numbers of nodes. However, the TPR for eDDT 

and aDDT becomes increasingly similar as the number of regions is increased.

Although detection of regions incident to a significant number of DWEs is our primary 

focus, we also investigate the performance of the thresholding procedure for detecting 

DWEs in a supplementary analysis in terms of the MCC values. Figure 4 indicates that 

aDDT’s and eDDT’s adaptive thresholding procedures outperform the Bonferroni and FDR 

multiplicity corrections over varying proportion of DWEs. Moreover, our method also 

exhibits superior MCC than the arbitrary hard threshold of 0.95, and at least one of the 

aDDT and eDDT approaches perform as well as the conservative hard threshold set at 0.99 

as the proportion of DWEs across the network increases. The superior performance of the 

eDDT and aDDT are attributed to the liberal cutoffs selected by the methods’ adaptive 

thresholding procedure (Figure 5.). Specifically, the Bonferroni threshold is 8.4e-5 and FDR 

thresholds have a mean of 6e-4 while the proposed eDDT and aDDT methods select much 

more liberal thresholds (mean threshold: 8e-3 based on eDDT and 1.9e-2 based on aDDT, 

respectively).

Finally, we see that the proposed methods select hub nodes composing a connected 

component that spans the difference network (Figure 6). All of the investigated methods 

correctly identify Node 2 as the key hub node of between-group differences with the largest 

number of DWEs between groups. Other than this common finding, the two binomial tests 

based on multiple comparisons have the smallest number of positive findings across the 

methods, only detecting Nodes 3 and 31 in a small proportion of the 1,000 simulations. 

Therefore, they missed some of the differentially connected hub nodes such as Nodes 8 and 

17. On the other hand, T(10%) has the largest number of positive findings, detecting between-

group differences at every node. T(10%) has the highest FPR, mistakenly detecting nodes 

such as Nodes 21, 30, and 35 that do not have any DWEs with any other nodes and are 

completely disconnected in the contrast structure. The aDDT and eDDT results are between 

these two extremes and detect most of the hub nodes with multiple DWEs in the true 

contrast structure. Specifically, aDDT tends to detect nodes that are incident to at least three 

DWEs while eDDT identifies regions incident to at least two DWEs. Removal of any of the 

hub regions detected by the aDDT and eDDT—particularly Node 2—decomposes the 

structure into smaller, isolated components that are difficult to detect with the NBS. 

Furthermore, our proposed methods (aDDT and eDDT) do not detect any nodes that are 

completely disconnected from the contrast structure nor does it select peripheral nodes that 

have only on DWE (i.e., Node 4).

3.2 | Data application

Table 2a and b lists the top 20 differentially connected nodes for model-based Pearson and 

partial correlations. Pearson correlation generally leads to more DWEs incident to nodes. 

Thirty percent of the regions identified in Table 2a are located in the SM module while 20% 
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are in the DMN. Similarly, Table 2b shows DMN nodes are extremely prominent (35%) as 

well as the FPN and CIO which compose the task control system. These results suggest that 

altered connectivity in the DMN differentiates the brain networks in the MDD population 

from healthy controls. Similar trends are observed for BinB and BinF. We find that the FDR-

corrected binomial test detects 37 regions incident to a statistically significant number of 

DWEs while the Bonferroni-adjusted test identifies 34 regions. Nineteen of these regions are 

also detected by our approach and can be found in Table 2a. The NBS did not detect any 

differences between the brain networks in the healthy and MDD populations across a wide 

range of parameter settings. We note that the NBS relies assumes the DWEs form connected 

components spanning multiple functional subnetworks (Kim et al., 2015). However, the 

method is substantially underpowered to detect differences in the networks if this 

assumption is not met (Zalesky et al., 2010). The poor performance of the NBS on our data 

suggests that connected component assumption is potentially overly restrictive.

Figure 7 displays the distribution of DWEs across the respective difference network. Here, 

we group the nodes based on the functional module assignment provided in Power et al. 

(2011). The diagonal blocks represent within-module connections while the off-diagonal 

blocks represent between-module connections. For Pearson model-free and model-based 

analyses, we identified 793 and 776 DWEs, respectively. For partial correlations, we 

identified 458 DWEs based on model-free p-values and 772 DWEs for model-based p-

values. The Pearson correlation derived difference networks exhibit spatial clustering of 

DWEs, specifically within the SM and between the SUB and VIS functional modules. Table 

3 reports the consistently and inconsistently detected DWEs when comparing the four 

difference networks investigated, that is, model-free/model-based Pearson correlation 

networks and model-free/model-based partial correlation networks. Insignificant edges 

persist across all the difference networks considered and account for as much as 90% of the 

edges in the networks. Generally, the findings are more consistent between the model-free 

and model-based p-values within the same correlation measure and less consistent across 

correlation measure.

The distribution of DWEs within and between functional modules provides insight into 

disrupted communication among functionally segregated subsystems in the brain. We 

conduct analysis to identify functional modules that are associated with higher number of 

DWEs as compared with other modules. Specifically, we propose the following chi-square 

statistic to help identify functional module pairs for which there are unusually high number 

of DWEs than what is expected by chance,

χg1, g2
2 =

Qg1, g2 − Eg1, g2
2

Eg1, g2
(8)

where g1 ∈ 1, …, Z and g2 ∈ 1, …, Z  are indices corresponding to one of the Z =12 

functional modules. When g1 = g2, g1, g2  represents a within module block, whereas it 

represents a between-module block when g1 = g2⋅ Q(g1, g2) represents the observed number of 

DWEs in the g1, g2  block and E(g1, g2) represents the expected number of DWEs in the 
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g1, g2  block when the edges distribute randomly across the module blocks in the network. 

Let |g| represent the total number of nodes within the gth module, and p* represents the 

proportion of DWEs among all the edges across the network. It is straightforward to see that 

Eg1, g2 = p * *
g1 * g2 − 1

2  for within module blocks, that is, g1 = g2, and 

Eg1, g2 = p* * g1 * g2  for between-module blocks.

Figure 8 displays functional modules and module pairs exhibiting a significantly high 

number of DWEs based on the thresholded chi-square test statistic (see Table A1 for raw 

counts). The results are derived from the model-free Pearson correlations (Figure 8a) and 

model-based Pearson correlations (Figure 8b), respectively. Based on model-free Pearson 

correlations (Figure 8a), there are significantly high number of DWEs within the 

sensorimotor module and between the module pairs of sensorimotor–VAN, sensorimotor–

DAN, VIS–AUD, SUB—AUD, and SUB-VIS. After accounting for age and gender, the 

model-based Pearson correlations (Figure 8b) also exhibit a large number of DWEs within 

the sensorimotor module and between the module pairs of sensorimotor–VAN, VIS–AUD, 

and SUB–VIS. However, the model-based Pearson correlations no longer show significantly 

high number of DWEs between the sensorimotor–DAN and SUB–AUD module pairs. 

Instead, the model-based correlations find significant number of DWEs between the SUB-

memory module pair which is not identified by the model-free Pearson correlations.

Many of our findings between and across functional modules have been previously reported 

in the MDD literature. In particular, our method identifies nodes in the frontal cortex and 

cingulate that are consistent with investigations of connectivity features that distinguish 

MDD patients from healthy controls (Menon, 2010; Menon, 2011). In addition, we reveal 

new brain regions connected to these well-established regions. Further, we identify nodes in 

the DMN, executive control network, and SAL network that are well described in previous 

studies (Sheline et al., 2009; Sheline, Price, Yan, & Mintun, 2010; Yu et al., 2019). Our 

results also highlight new findings on hub regions in the association cortex that link to these 

established networks. Thus, our method detects established brain regions that are clinically 

relevant to MDD as well as new brain regions that could further elucidate the mechanisms 

by which MDD disrupts cortical communication.

4 | CONCLUSION

While the estimation of brain networks is gaining increasing attention in the neuroimaging 

literature, the fundamental question of how brains differ in functional organization across 

disease populations is not yet resolved. Our proposed method exhibits two strengths. First, 

our automated threshold selection permits identification of DWEs without sacrificing power 

as is the case with many methods dependent upon multiplicity corrections. Second, we use 

the generated null networks to test if each brain region is incident to more DWEs than would 

be expected by random chance. Finally, we note that the eDDT and aDDT scale well as the 

number of brain regions increases. On a 2.3 GHz Intel Core i5 laptop, neither approach 

exceeds 15 s for up to 500 brain regions. We additionally investigated extremely high 
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dimensional networks containing 1,000 regions. The computation times remained low for 

the eDDT (1.5 min) and the aDDT (1.3 min).

The aDDT and eDDT readily incorporate a broad class of connectivity measures including 

but not limited to correlation coefficients. Specifically, the difference network, D, could be 

derived from testing group differences based on various types of connectivity measures, such 

as correlations or mutual information. Provided we have a valid between-group test, the null 

network scheme is unaffected by the choice of the connectivity measure. For example, to test 

group differences in correlations, we apply the Fisher Z-transformation, which is typically 

applied to this measure prior statistical testing. For other connectivity measures, we 

recommend a similar strategy to appropriately transform it to ensure valid between-group 

test results. We note that the Gaussian distribution used to generate the null network is not 

assumed for the connectivity measure but rather for the difference network derived from the 

between-group test.

We hypothesize that network wide dysconnectivity is driven by brain regions that irregularly 

communicate with other regions. The results from the real data analysis suggest that the 

DDT appropriately identifies problematic brain regions in major depressive disorder. The 

existence of differential connectivity between nodes in the AUD and VIS networks (Figure 

5) has previously been observed (Eyre et al., 2016). Further, multivariate pattern analyses 

have suggested that the most discriminative FC patterns lie within and across the VIS 

network, DMN, and affective network (Zeng et al., 2012). The parahippocampal gyrus, 

which we detect as a problematic region (Table 2), has also been suggested as a region with 

differentiated connectivity patterns in depressed populations. Our simulation results 

demonstrate superior performance of the proposed DDT tests. Although the binomial test’s 

FPR is smaller than DDT, its ability to detect differentially connected nodes is severely 

attenuated. DDT maintains the an acceptable false positive rate while achieving higher TPRs 

than the t test across all network structures and sample sizes considered. Simulations 

indicate DDT’s adaptive threshold selection is superior to conservative FDR and Bonferroni 

adjustments. An obvious limitation to this work is the i.i.d. assumption on edge weights in 

the null networks. However, it is non-trivial to extend our method to account for such 

dependence. One way to account for the dependence is to sample rows of C, the null 

network in Equation (5), from a multivariate normal distribution. Unfortunately, this would 

require a priori specification on the covariance structure between brain regions which is 

often unknown. Furthermore, Equation (6), which is critical to our thresholding procedure 

and node-level inference, would need rederivation since the current results are based on the 

i.i.d. assumption. Thus, extensive methodological developments will be required to generate 

null networks which incorporate edge dependencies. Although the independence assumption 

did not severely impact the method’s performance relative to suitable competitors, it is likely 

that incorporation of interedge dependence structures will lead to better power to detect 

differentially connected nodes.
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APPENDIX

PROOF FOR HQS PROCEDURE

In Section 2.3.4, we suggest that sampling lij N μ, σ2  appropriately allows for the condition 

that that E ci j = e and Var ci j = v. We now provide details for the distribution of 

ci j = ∑k = 1
m lik × lk j. Consider lik, lk j N μ, σ2 for k = 1, …, m. Then,

ci j = ∑
k = 1

m
liklk j = 1

4 ∑
k = 1

m
lik + lk j

2 − 1
4 ∑

k = 1

m
lik − lk j

2 . (A1)

Note that for lik, lk j N μ, σ2 ,

lik + lk j
2σ

N 2μ
2σ

, 1
lik + lk j

2

2σ2 χ1
2 4μ2

2σ2

lik − lk j
2σ

N(0, 1)
lik − lk j

2

2σ2 χ1
2

We can introduce constants and rewrite (A1) as

∑
k = 1

m
liklk j = 1

4 ∑
k = 1

m
lik + lk j

2 − 1
4 ∑

k = 1

m
lik − lk j

2

∑
k = 1

m
liklk j = 2σ2

4 ∑
k = 1

m lik + lk j
2

2σ2 − 2σ2

4 ∑
k = 1

m lik − lk j
2

2σ2

∑
k = 1

m
liklk j = 2σ2

4 T − 2σ2

4 Q

(A2)

where T is a noncentral χ2 with m df and noncentrality parameter m × 4μ2

2σ2  and Q is a 

central χ2 with m df. Utilizing the first moment of noncentral χ2 and central χ2 

distributions, we see that
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E 2σ2

4 T − 2σ2

4 Q = 2σ2

4 E[T] − 2σ2

4 E[Q]

= 2σ2

4 m + 4mμ2

2σ2 − 2σ2

4 m

= mμ2 = e

(A3)

and

Var 2σ2

4 T − 2σ2

4 Q = 2σ2

4 Var[T] − 2σ2

4 Var[Q] − 4σ4

16 Cov(T, Q)

= 4σ4

16 2 m + 2 4mμ2

2σ2 + 4σ4

16 2m

= mσ4 + 2σ2mμ2

= mσ4 + 2σ2mμ2 + mμ4 − mμ4

= m σ2 + μ2 2 − mμ4 = v

(A4)

To see the Cov(T, Q) = 0, we note that (x, y)′ MVN(μ, Σ) where μ = μ × 12m f or 12m a vector 

of one’s in R2m and Σ = diag(Σ, Σ) is a block matrix with Σ = diag σ2, …, σ2 ∈ R2m × 2m. 

Multiplying the multivariate random vector by an appropriate matrix, P, we have 

x1 + y1, …,xm + ym, x1 − y1, …, xm − ym ′ MVN (2μ, …, 2μ, 0, …, 0)′, PΣP′ . By the partitioning 

of the full covariance matrix, we see that x1 + y1, …,xm + ym ′ ⊥ x1 − y1, …, xm − ym ′. 

Consider f (x) = 1
2σ2 x1

2 + … + xm
2 . Since f .  is a continuous function, we have 

f x1 + y1, …, xm + ym ⊥ f x1 − y1, …,xm − ym . By definition of f ( . ), we have T⊥Q which 

implies Cov(T,Q) = 0.

TABLE A1

Within and between functional module, DWE in the major depressive disorder study. Bold 

values indicate statistically significant number of DWE between the respective functional 

modules—Sensory/somatomotor (SM), cingulo-opercular task control (CIO), auditory 

(AUD), default mode network (DMN), memory retrieval (MEM), visual (VIS), 

frontoparietal network (FPN), salience (SAL), subcortical (SUB), ventral attention network 

(VAN), dorsal attention network (DAN), and uncertain (UNC)

(A) Pearson, model-free

SM CIO AUD DMN MEM VIS FPN SAL SUB VAN DAN UNC

SM 55

CIO 11 1
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(A) Pearson, model-free

SM CIO AUD DMN MEM VIS FPN SAL SUB VAN DAN UNC

AUD 14 4 1

DMN 36 22 21 42

MEM 6 0 0 7 0

VIS 29 14 28 32 1 4

FPN 10 1 9 26 1 11 7

SAL 11 2 12 15 1 4 9 2

SUB 20 3 12 6 5 63 2 1 2

VAN 25 6 2 15 0 8 2 2 2 0

DAN 20 0 4 9 0 9 3 2 2 2 0

UNC 22 10 3 43 5 13 11 9 9 4 2 5

(B) Pearson, model-based

SM CIO AUD DMN MEM VIS FPN SAL SUB VAN DAN UNC

SM 46

CIO 9 1

AUD 12 4 1

DMN 27 25 22 45

MEM 3 0 0 5 0

VIS 29 14 27 26 4 3

FPN 9 0 7 30 1 12 7

SAL 10 2 8 16 1 6 12 4

SUB 16 3 9 10 6 54 1 1 2

VAN 23 5 2 15 0 6 2 2 2 0

DAN 17 0 2 9 0 14 3 3 1 2 0

UNC 20 9 1 48 4 14 10 12 9 4 3 5

(C) Partial, model-free

SM CIO AUD DMN MEM VIS FPN SAL SUB VAN DAN UNC

SM 6

CIO 2 0

AUD 2 3 3

DMN 25 6 12 21

MEM 2 1 0 6 0

VIS 12 5 7 16 1 7

FPN 13 4 5 19 1 7 3

SAL 9 6 1 16 0 5 6 1

SUB 4 0 0 11 1 8 5 5 1

VAN 2 3 0 11 0 4 0 3 1 0

DAN 6 3 1 9 0 4 1 5 3 1 1

UNC 15 6 2 32 2 11 10 8 9 2 4 6

(D) Partial, model-based

SM CIO AUD DMN MEM VIS FPN SAL SUB VAN DAN UNC

SM 9

Higgins et al. Page 21

Hum Brain Mapp. Author manuscript; available in PMC 2020 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(A) Pearson, model-free

SM CIO AUD DMN MEM VIS FPN SAL SUB VAN DAN UNC

CIO 7 0

AUD 8 4 3

DMN 47 15 17 36

MEM 3 1 1 9 0

VIS 16 8 11 30 5 11

FPN 20 8 7 40 3 19 7

SAL 14 10 2 22 1 9 11 4

SUB 7 4 2 18 2 12 8 8 1

VAN 8 3 1 19 1 8 2 6 2 0

DAN 6 4 4 17 0 6 4 7 4 3 3

UNC 30 13 7 49 5 22 16 10 13 7 7 10

REFERENCES

Bansal S, Khandelwal S, & Meyers LA (2009). Exploring biological network structure with clustered 
random networks. BMC B/o/nformvt/cs, 10(1), 405.

Bassett DS, & Bullmore E. (2006). Small-world brain networks. The Neurosc/ent/st, 12(6), 512–523.

Bassett DS, Bullmore ET, Meyer-Lindenberg A, Apud JA, Weinberger DR, & Coppola R. (2009). 
Cognitive fitness of cost-efficient brain functional networks. Proceed/ngs of the Nvt/onv/Academy 
of Sciences of the Un/ted States of Amer/cv, 106(28), 11747–11752.

Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, & Grafton ST (2011). Dynamic 
reconfiguration of human brain networks during learning. Proceed/ngs of the Nvt/onv/Academy of 
Sc/ences of the Un/ted Stvtes of Amer/cv, 108(18), 7641–7646.

Brown ES, Murray M, Carmody TJ, Kennard BD, Hughes CW, Khan DA, & Rush AJ (2008). The 
quick inventory of depressive symptomatology-self-report: A psychometric evaluation in patients 
with asthma and major depressive disorder. Annv/s of Allergy, Asthmv & Immunology, 100(5), 
433–438.

Bullmore ET, & Bassett DS (2011). Brain graphs: Graphical models of the human brain connectome. 
Annual Review of Clinical Psychology, 7,113–140.

Catani M, & ffytche DH (2005). The rises and falls of disconnection syndromes. Brain, 128(10), 
2224–2239. [PubMed: 16141282] 

Chen S, Kang J, Xing Y, & Wang G. (2015). A parsimonious statistical method to detect groupwise 
differentially expressed functional connectivity networks. Human Brain Mapping, 36(12), 5196–
5206. [PubMed: 26416398] 

Craddock RC, Holtzheimer PE, Hu XP, & Mayberg HS (2009). Disease state prediction from resting 
state functional connectivity. Magnetic Resonance in Medicine, 62(6), 1619–1628. [PubMed: 
19859933] 

Deen B, Pitskel NB, & Pelphrey KA (2010). Three systems of insular functional connectivity 
identified with cluster analysis. Cerebral Cortex, 21(7), 1498–1506. [PubMed: 21097516] 

Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, … Etkin A. (2017). Resting-
state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine, 
23 (1), 28–38.

Dunlop BW, Kelley ME, Aponte-Rivera V, Mletzko-Crowe T, Kinkead B, Ritchie JC, … Team P. 
(2017). Effects of patient preferences on outcomes in the predictors of remission in depression to 
individual and combined treatments (predict) study. American Journal of Psychiatry, 174(6), 546–
556. [PubMed: 28335624] 

Higgins et al. Page 22

Hum Brain Mapp. Author manuscript; available in PMC 2020 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Eyre HA, Yang H, Leaver AM, Van Dyk K, Siddarth P, Cyr NS, … Lavretsky H. (2016). Altered 
resting-state functional connectivity in late-life depression: A cross-sectional study. Journal of 
Affective Disorders, 189, 126–133. [PubMed: 26433760] 

Fallani FDV, Richiardi J, Chavez M, & Achard S. (2014). Graph analysis of functional brain networks: 
Practical issues in translational neuroscience. Philosophical Transactions of the Royal Society B, 
369(1653), 20130521.

Fischl B, Salat DH, Van Der Kouwe AJ, Makris N, S’egonne F, Quinn BT, & Dale AM (2004). 
Sequence-independent segmentation of magnetic resonance images. Neuroimage, 23, S69–S84. 
[PubMed: 15501102] 

Fornito A, Zalesky A, & Breakspear M. (2013). Graph analysis of the human connectome: Promise, 
progress, and pitfalls. Neuroimage, 80,426–444. [PubMed: 23643999] 

Fornito A, Zalesky A, & Bullmore ET (2010). Network scaling effects in graph analytic studies of 
human resting-state fmri data. Frontiers in Systems Neuroscience, 4, 22. [PubMed: 20592949] 

Frazier JA, Chiu S, Breeze JL, Makris N, Lange N, Kennedy DN … Dieterich, M. E. (2005). Structural 
brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. 
American Journal of Psychiatry, 162(7), 1256–1265. [PubMed: 15994707] 

Friston KJ (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain 
Mapping, 2(1–2), 56–78.

Fu CH, Williams SC, Cleare AJ, Brammer MJ, Walsh ND, Kim J, … Reed LJ (2004). Attenuation of 
the neural response to sad faces in major depressionby antidepressant treatment: A prospective, 
event-related functional magnetic resonance imagingstudy. Archives of General Psychiatry, 61(9), 
877–889. [PubMed: 15351766] 

Ginestet CE, Fournel AP, & Simmons A. (2014). Statistical network analysis for functional MRI: 
Mean networks and group comparison. Frontiers in Computational Neuroscience, 8, 51. [PubMed: 
24834049] 

Gordon EM, Laumann TO, Adeyemo B, Huckins JF, Kelley WM, & Petersen SE (2014). Generation 
and evaluation of a cortical area parcellation from resting-state correlations. Cerebral Cortex, 
26(1), 288–303. [PubMed: 25316338] 

Heberlein KA, & Hu X. (2004). Simultaneous acquisition of gradientecho and asymmetric spin-echo 
for single-shot z-shim: Z-saga. Magnetic Resonance in Medicine, 51(1), 212–216. [PubMed: 
14705064] 

Hilgetag CC, & Goulas A. (2016). Is the brain really a small-world network? Brain Structure and 
Function, 221(4), 2361–2366. [PubMed: 25894630] 

Hirschberger M, Qi Y, & Steuer RE (2007). Randomly generating portfolio-selection covariance 
matrices with specified distributional characteristics. European Journal of Operational Research, 
177(3), 1610–1625.

Johnstone D, Milward EA, Berretta R, Moscato P, & Initiative ADN (2012). Multivariate protein 
signatures of pre-clinical

Alzheimer’s disease in the Alzheimer’s disease neuroimaging initiative (ADNI) plasma proteome 
dataset. PLoS One, 7(4), e34341.

Kim J, Wozniak JR, Mueller BA, & Pan W. (2015). Testing group differences in brain functional 
connectivity: Using correlations or partial correlations? Brain Connectivity, 5(4), 214–231. 
[PubMed: 25492804] 

Kim J, Wozniak JR, Mueller BA, Shen X, & Pan W. (2014). Comparison of statistical tests for group 
differences in brain functional networks. NeuroImage, 101, 681–694. [PubMed: 25086298] 

Kumari V, Mitterschiffthaler MT, Teasdale JD, Malhi GS, Brown RG, Giampietro V, … Williams SC 
(2003). Neural abnormalities during cognitive generation of affect in treatment-resistant 
depression. Biological Psychiatry, 54(8), 777–791. [PubMed: 14550677] 

Kundu S, Mallick BK, & Baladandayuthapani V. (2018). Efficient Bayesian regularization for 
graphical model selection. Bayesian Analysis, 14(2), 449–476.

Liang X, Wang J, Yan C, Shu N, Xu K, Gong G, & He Y. (2012). Effects of different correlation 
metrics and preprocessing factors on small-world brain functional networks: A resting-state 
functional MRI study. PLoS One, 7(3), e32766.

Higgins et al. Page 23

Hum Brain Mapp. Author manuscript; available in PMC 2020 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, … Jiang T. (2008). Disrupted small-world networks in 
schizophrenia. Brain, 131(4), 945–961. [PubMed: 18299296] 

Lorenzetti V, Allen NB, Fornito A, & Yücel M. (2009). Structural brain abnormalities in major 
depressive disorder: A selective review of recent mri studies. Journal of Affective Disorders, 117, 
1):1–1):17. [PubMed: 19237202] 

Maslov S, & Sneppen K. (2002). Specificity and stability in topology of protein networks. Science, 
296(5569), 910–913. [PubMed: 11988575] 

Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, … Lancaster JL (1999). 
Reciprocal limbic-cortical function and negative mood: Converging pet findings in depression and 
normal sadness. American Journal of Psychiatry, 156(5), 675–682. [PubMed: 10327898] 

Menon V. (2010). Large-scale brain networks in cognition: Emerging principles. Analysis and 
Function of Large-Scale Brain Networks, 14, 43–54.

Menon V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. 
Trends in Cognitive Sciences, 15(10), 483–506. [PubMed: 21908230] 

Newton MA, Noueiry A, Sarkar D, & Ahlquist P. (2004). Detecting differential gene expression with a 
semiparametric hierarchical mixture method. Biostatistics, 5(2), 155–176. [PubMed: 15054023] 

Nichols TE, & Holmes AP (2002). Nonparametric permutation tests for functional neuroimaging: A 
primer with examples. Human Brain Mapping, 15(1), 1–25. [PubMed: 11747097] 

Pan W, Kim J, Zhang Y, Shen X, & Wei P. (2014). A powerful and adaptive association test for rare 
variants. Genetics, 197(4), 1081–1095. [PubMed: 24831820] 

Pandya M, Altinay M, Malone DA, & Anand A. (2012). Where in the brain is depression? Current 
Psychiatry Reports, 14(6), 634–642. [PubMed: 23055003] 

Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, … Schlaggar BL (2011). 
Functional network organization of the human brain. Neuron, 72(4), 665–678. [PubMed: 
22099467] 

Rubinov M, & Sporns O. (2010). Complex network measures of brain connectivity: Uses and 
interpretations. NeuroImage, 52(3), 1059–1069. [PubMed: 19819337] 

Rudie JD, Brown J, Beck-Pancer D, Hernandez L, Dennis E, Thompson P, … Dapretto M. (2013). 
Altered functional and structural brain network organization in autism. NeuroImage: Clinical, 2, 
79–94.

Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, & Bullmore E. (2005). 
Neurophysiological architecture of functional magnetic resonance images of human brain. 
Cerebral Cortex, 15(9), 1332–1342. [PubMed: 15635061] 

Satterthwaite TD, Wolf DH, Roalf DR, Ruparel K, Erus G, Vandekar S, … Hakonarson H. (2014). 
Linked sex differences in cognition and functional connectivity in youth. Cerebral Cortex, 25(9), 
2383–2394. [PubMed: 24646613] 

Schweitzer I, Tuckwell V, Ames D, & O’brien J. (2001). Structural neuroimaging studies in late-life 
depression: A review. The World Journal of Biological Psychiatry, 2(2), 83–88. [PubMed: 
12587189] 

Shehzad Z, Kelly C, Reiss PT, Cameron Craddock R, Emerson JW, McMahon K,… Milham MP 
(2014). A multivariate distance-based analytic framework for connectome-wide association 
studies. NeuroImage, 93, 74–94. [PubMed: 24583255] 

Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, & Raichle ME (2009). The 
default mode network and self-referential processes in depression. Proceedings of the National 
Academy of Sciences of the United States of America, 106(6), 1942–1947. [PubMed: 19171889] 

Sheline YI, Gado MH, & Price JL (1998). Amygdala core nuclei volumes are decreased in recurrent 
major depression. NeuroReport, 9(9), 2023–2028. [PubMed: 9674587] 

Sheline YI, Price JL, Yan Z, & Mintun MA (2010). Resting-state functional MRI in depression 
unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the 
National Academy of Sciences of the United States of America, 107(24), 11020–11025. [PubMed: 
20534464] 

Simpson SL, & Laurienti PJ (2016). Disentangling brain graphs: A note on the conflation of network 
and connectivity analyses. Brain Connectivity, 6(2), 95–98. [PubMed: 26414952] 

Higgins et al. Page 24

Hum Brain Mapp. Author manuscript; available in PMC 2020 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Simpson SL, Lyday RG, Hayasaka S, Marsh AP, & Laurienti PJ (2013). A permutation testing 
framework to compare groups of brain networks. Frontiers in Computational Neuroscience, 7, 171. 
[PubMed: 24324431] 

Stam C, Jones B, Nolte G, Breakspear M, & Scheltens P. (2006). Small-world networks and functional 
connectivity in Alzheimer’s disease. Cerebral Cortex, 17(1), 92–99. [PubMed: 16452642] 

Tyszka JM, Kennedy DP, Paul LK, & Adolphs R. (2013). Largely typical patterns of resting-state 
functional connectivity in high-functioning adults with autism. Cerebral Cortex, 24(7), 1894–1905. 
[PubMed: 23425893] 

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, … Joliot M. 
(2002). Automated anatomical labeling of activations in spm using a macroscopic anatomical 
parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289. [PubMed: 
11771995] 

Volz E. (2004). Random networks with tunable degree distribution and clustering. Physical Review E, 
70(5), 056115.

Wang J, Wang X, Xia M, Liao X, Evans A, & He Y. (2015). Gretna: A graph theoretical network 
analysis toolbox for imaging connectomics. Frontiers in Human Neuroscience, 9, 386. [PubMed: 
26175682] 

Wang Y, Kang J, Kemmer PB, & Guo Y. (2016). An efficient and reliable statistical method for 
estimating functional connectivity in large scale brain networks using partial correlation. Frontiers 
in Neuroscience, 10, 123. [PubMed: 27242395] 

Whittaker J. (1990). Graphical models in applied multivariate statistics. Wiley Publishing.

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, … Polimeni JR (2011). 
The organization of the human cerebral cortex estimated by intrinsic functional connectivity. 
Journal of Neurophysiology, 106(3), 1125–1165. [PubMed: 21653723] 

Yu M, Linn KA, Shinohara RT, Oathes DJ, Cook PA, Duprat R, … Sheline YI (2019). Childhood 
trauma history is linked to abnormal brain connectivity in major depression. Proceedings of the 
National Academy of Sciences of the United States of America, 116(17), 8582–8590. [PubMed: 
30962366] 

Zalesky A, Fornito A, & Bullmore E. (2012). On the use of correlation as a measure of network 
connectivity. NeuroImage, 60(4), 2096–2106. [PubMed: 22343126] 

Zalesky A, Fornito A, & Bullmore ET (2010). Network-based statistic: Identifying differences in brain 
networks. NeuroImage, 53(4), 1197–1207. [PubMed: 20600983] 

Zeng L-L, Shen H, Liu L, Wang L, Li B, Fang P, … Hu D. (2012). Identifying major depression using 
whole-brain functional connectivity: A multivariate pattern analysis. Brain, 135(5), 1498–1507. 
[PubMed: 22418737] 

Higgins et al. Page 25

Hum Brain Mapp. Author manuscript; available in PMC 2020 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. 
Comparison of eDDT, aDDT, t test (T(10%)), binomial tests (BinF, BinB) in the second set of 

simulations with three differentially connected nodes incident to 4 (first row), 7 (second 

row), and 11 (third row) DWEs. The TPR, FPR, and MCC are presented for all methods 

across the three network structures considered and the red dashed line demarcates the 

nominal significance level (.05). DDT exhibits superior performance in detecting the 

differentially connected nodes while not exceeding the allowable Type I error rate. DDT, 

difference degree test; DWE, differentially weighted edge; FPR, false positive rate; MCC, 

Matthews correlation coefficient; TPR, true positive rate [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIGURE 2. 
Graphical illustration of the true contrasts containing 4, 7, and 11 DWEs incident to the node 

of interest for a random network of 35 regions. Blue edges are true positives detected by the 

respective method. The Bonferroni correction and FDR are underpowered to detect 

significant edges while the aDDT and eDDT estimates consistently detect the same set of 

significant edges. DDT, difference degree test; DWE, differentially weighted edge; FPR, 

false positive rate [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3. 
Performance of aDDT, eDDT, t test(T10%), and binomial (BinB, BinF) tests in identifying the 

differentially connected node as the network size increases and the proportion of DWEs is 

fixed at 30%. (Note, the results of the BinB, BinF tests are very close and hence the two lines 

overlap) DDT, difference degree test; DWE, differentially weighted edge [Color figure can 

be viewed at wileyonlinelibrary.com]
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FIGURE 4. 
Comparison of thresholding procedures implemented in aDDT and eDDT as well as four 

competitors (.95 and .99 hard threshold; FDR and Bonferroni multiplicity corrections) in 

detecting DWEs. DDT, difference degree test; DWE, differentially weighted edge; FPR, 

false positive rate [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5. 
The density of the selected threshold for identifying differentially weighted edges over 1,000 

simulations. eDDT and aDDT produce more liberal thresholds than the Bonferroni and FDR 

multiplicity corrected thresholds. DDT, difference degree test; FPR, false positive rate 

[Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6. 
Simulation results based on the setting in the NBS paper. The figure shows the true contrast 

structure (truth) where the edges in the contrast structure represent differentially weighted 

edges between groups. The figure shows the edges and nodes that are detected as 

differentially connected between groups based on the proposed aDDT, eDDT methods, and 

the existing t test (T(10%)) and binomial tests with multiple comparison corrections of 

Bonferroni and FDR (BinB, BinF). Nodes are color coded based on the number of times, it 

is selected as a differentially connected node across 1,000 simulations. DDT, difference 

degree test; FPR, false positive rate; NBS, network-based statistic [Color figure can be 

viewed at wileyonlinelibrary.com]
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FIGURE 7. 
Differentially weighted edges detected by eDDT in the major depressive disorder study 

under the four difference network configurations: (a) model-free Pearson and (b) model-

based Pearson, (c) model-free partial (d) model-based partial. Red edges indicate the average 

edge weight in the MDD population is statistically smaller than in healthy adults whereas 

blue edges demarcate the average edge weight is statistically larger in the MDD group. The 

network is decomposed into 12 functional modules: sensor/somatomotor (SM), cingulo-

opercular task control (CIO), auditory(AUD), default mode (DMN), memory retrieval 

(MEM), visual (VIS), frontoparietal task control (FP), salience (SN), subcortical (sub), 

ventral attention (VAN), dorsal attention (DAN), and uncertain (UNC) [Color figure can be 

viewed at wileyonlinelibrary.com]
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FIGURE 8. 
Heat map of the X2 statistic for (a) model-free Pearson correlations and X(g1, g2

) and (b) 

model-based Pearson correlations. Red squares indicate modules with more statistically 

significant differentially weighted edges (DWEs) than would be expected by random chance. 

We control the overall false discovery rate by only selecting module pairs with a multiplicity 

corrected p-value <.05 [Color figure can be viewed at wileyonlinelibrary.com]
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