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Abstract

Objectives—We sought to investigate whether genetic effects on response to TnF inhibitors 

(TNFi) in rheumatoid arthritis (ra) could be localised by considering known genetic susceptibility 

loci for relevant traits and to evaluate the usefulness of these genetic loci for stratifying drug 

response.

Methods—We studied the relation of TNFi response, quantified by change in swollen joint 

counts (∆SJC) and erythrocyte sedimentation rate (∆ESR) with locus-specific scores constructed 

from genome-wide assocation study summary statistics in 2938 genotyped individuals: 37 scores 

for RA; scores for 19 immune cell traits; scores for expression or methylation of 93 genes with 

previously reported associations between transcript level and drug response. Multivariate 

associations were evaluated in penalised regression models by cross-validation.
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Results—We detected a statistically significant association between ∆SJC and the ra score at the 

CD40 locus (p=0.0004) and an inverse association between ∆SJC and the score for expression of 

CD39 on cD4 T cells (p=0.00005). A previously reported association between CD39 expression 

on regulatory T cells and response to methotrexate was in the opposite direction. In stratified 

analysis by concomitant methotrexate treatment, the inverse association was stronger in the 

combination therapy group and dissipated in the TNFi monotherapy group. Overall, ability to 

predict TNFi response from genotypic scores was limited, with models explaining less than 1% of 

phenotypic variance.

Conclusions—The association with the CD39 trait is difficult to interpret because patients with 

RA are often prescribed TNFi after failing to respond to methotrexate. The CD39 and CD40 
pathways could be relevant for targeting drug therapy.

INTRODUCTION

Biologic therapies have transformed the outlook for rheumatoid arthritis (RA). However, for 

the most commonly used class of agent, tumour necrosis factor inhibitors (TNFi), there is 

substantial variability in response to treatment among patients with RA.1 This has spurred 

efforts to discover predictors of response and more generally to understand how to subtype 

this heterogeneous disease to predict which therapies will work.23

Genome-wide association studies (GWAS) of response to TNFi have shown that common 

single nucleotide polymorphisms (SNPs) explain an estimated 40% and 50% of the variance 

of change in swollen joint counts (SJC) and erythrocyte sedimentation rate (ESR), 

respectively; however, no strong associations with individual SNPs have been detected.4 

Thus, as with many complex phenotypes, the genetic architecture of response to TNFi is 

likely to be polygenic with many small genetic effects.5 In this situation, the sample size 

required to learn a predictive model is very large—up to 10 cases per variable6—and it may 

not be feasible to assemble such large sample sizes for studying response to a single drug or 

drug class.

It has been suggested that improving prediction of complex clinical outcomes may be 

possible by incorporating information about the genetics of relevant traits in the prediction 

model.78 One such approach is to use publicly available summary GWAS results of relevant 

traits to compute genotypic scores, which can then be used as variables (‘features’) from 

which to build predictive models. By harnessing the genetic profiles of intermediate traits, 

these scores aggregate the effects of individual SNPs into larger regional or whole-genome 

effects. Relevant traits can include diseases, biomarkers and gene transcription levels. For 

polygenic traits such as RA, for which multiple genetic susceptibility loci have been 

identified, we can construct locus-specific scores allowing us to examine the extent to which 

drug response is related to genetic heterogeneity of the disease.

In the current study, we incorporated available genetic information on susceptibility to RA,9 

immune cell traits from a publicly available bioresource10 and expression or methylation of 

genes implicated in response to TNFi treatment in RA.11 The genotypic scores associated 

with these intermediate traits were then tested for association with response to TNFi; by 
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reducing the number of hypotheses being explored, the thresholds for claiming statistical 

significance are relaxed, which could help identify useful predictors.

MATERIALS AND METHODS

Cohorts

We used a sample of 2938 individuals of European ancestry for whom complete clinical and 

GWAS data were available. This sample comprised individuals from a pre-existing 

international collaboration formed to study the genetics of response to TNFi agents12 and 

individuals recruited to the Biologics in Rheumatoid Arthritis Genetics and Genomics Study 

Syndicate (BRAGGSS) after 2013.4

Table 1 shows sample sizes, phenotypes and clinical variables for each of the data 

collections used in this study. All participants provided informed consent, and institutional 

review board/ethics approvals were in place as described in Cui et al12 and Massey et al.4

Definition of response to TNFi treatment

In RA, response to treatment is quantified by change in the Disease Activity Score (DAS), 

which depends on four measurements: ESR, SJC, tender joint count (TJC) and patient global 

health assessment rated on a visual analogue scale (GHVAS). Previous work has shown that 

only the SJC and ESR measurements have evidence of non-zero heritability4 and correlate 

significantly with synovitis quantified by ultrasound or MRI.1314 Since TNFi were 

developed to control synovitis, we used the two objective components of the DAS (ESR and 

SJC) as primary outcomes for evaluating genetic effects and the two subjective components 

(TJC and GHVAS) and the composite score (DAS28-ESR4) as secondary outcomes. For 

each outcome, a baseline measurement was taken before initiation of TNFi treatment, and a 

follow-up measurement was taken between 3 and 6 months after initiation of TNFi 

treatment. The measurements for each component were transformed in accordance to the 

DAS28-ESR4 formula (see online supplementary methods). Response was modelled as the 

difference between the baseline and the follow-up measurement.

Genotypic risk scores

We used the GENOSCORES platform (https://pm2.phs.ed.ac.uk/genoscores/) to compute 

genotypic risk scores for the intermediate traits. GENOSCORES is a database of published 

SNP to trait associations from a large number of well-powered GWAS, including GWAS of 

disease traits, biomarkers, gene expression and methylation. The database is accompanied by 

a software package implemented in R that can be used to compute genotypic risk scores and 

run downstream statistical analyses in cohorts with SNP data.

We queried the GENOSCORES database for genetic associations with RA risk,9 149 

heritable immune cell traits reported by Roederer et al,10 and whole-blood expression and 

methylation for 93 genes reported in a recent meta-analysis11 as differentially expressed 

before treatment between responder and non-responder patients with RA treated with TNFi. 

GWAS summary statistics reported by Westra et al15 and Gusev et al16 were used for 
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expression quantitative trait loci (eQTLs). GWAS summary statistics reported by Gaunt et 
al17 were used for methylation quantitative trait loci (mQTLs).

GWAS summary statistics for each intermediate trait were filtered at p value<10−5. SNPs 

were then split into trait-associated regions, with regions defined as genomic loci containing 

at least one SNP with p value<10−7. Only 19 of the immune cell traits had a corresponding 

trait-associated region. SNPs not assigned to a region were discarded. For each trait-

associated region, a genotypic score was computed as a sum of SNP genotypes, g, weighted 

by the effect size estimates, β (log OR for binary traits, regression slope for quantitative 

traits) and adjusted for linkage disequilibrium. The regional score, sitr, for an individual i, 

trait t and region r was computed as:sitr = βtr
T Rr

−1gir, where Rr denotes the SNP–SNP 

correlation matrix in genomic region r.

Additional details about the GENOSCORES platform, the score computation and the 

specific regional scores used in this study are given in online supplementary materials (see 

online supplementary methods, online supplementary tables S1–S5, online supplementary 

figure S1).

Predictive modelling

To evaluate genetic prediction of response to TNFi, we compared a model with clinical 

covariates only to a model with clinical covariates and genotypic scores for each type of 

intermediate trait. To avoid numerical instabilities, we removed highly correlated scores 

prior to fitting a model (see online supplementary methods). The number of filtered regional 

scores for each type of intermediate trait is shown in table 2.

We expected that only a subset of genotypic scores would be relevant for prediction of 

response to TNFi, and thus used a hierarchical shrinkage prior for the score coefficients. We 

implemented the prediction models in STAN18 using a horseshoe prior distribution and 

performed inference with Markov chain Monte Carlo sampling.1920 To rank the importance 

of genotypic scores in a model, we applied projection predictive variable selection, an 

approach that projects posterior draws from the high-dimensional model to lower 

dimensional subspaces.21

We used a statistical model with the following clinical covariates: measurements for the four 

DAS components before initiation of TNFi treatment, gender, whether the patient was 

concomitantly treated with any non-biologic disease-modifying antirheumatic drugs 

(DMARDs), cohort (which is also a proxy for country), genotyping array and the 10 first 

principal components computed from the genotypic data of the full data set. We used 

individuals with complete measurements in the statistical analyses of each TNFi response 

outcome (see online supplementary table S6).

Evaluation of prediction

We used two measures to quantify improvement in prediction: the difference in log-

likelihood between a model with clinical covariates and genotypic scores and a model with 

clinical covariates only (measured in natural log units (nats)); and the per cent of residual 
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variance explained by the genotypic scores. Both measures were computed on the testing 

data from 10-fold cross-validation on the full data set.

For readers who prefer a frequentist interpretation, the asymptotic equivalence of model 

choice by cross-validation and Akaike’s information criterion (AIC)22 implies that a p value 

of 0.01 for comparison of nested models is equivalent to a difference in test log-likelihood of 

2.3 nats (likelihood ratio of 10) for models differing by one extra parameter. The large 

sample size of this study means that small robust increments in predictive performance can 

be detected.

Univariate associations

For models with a test log-likelihood difference of at least two nats, we further examined the 

univariate associations between genotypic scores and the TNFi response outcomes. We used 

the full data set to test the univariate association and included the same clinical covariates as 

in the multivariate prediction, in addition to a score.

For genotypic scores significantly associated with TNFi response at the Bonferroni-

corrected p value threshold, we compared the estimated effects among groups receiving 

different TNFi agents. We considered etanercept, adalimumab and infliximab, where a large 

enough sample size was available. Additionally, we tested if the associations held when we 

adjusted for additional covariates: anticitrullinated protein antibodies (ACPA) status and 

smoking status. These covariates have been reported to influence TNFi response but were 

only available for a third of the samples, and thus were not included in the full models.

A diagram of the statistical analysis pipeline is given in online supplementary figure S2.

RESULTS

In the following sections, we focus on the results for the primary TNFi response outcomes. 

The results for secondary outcomes are discussed in the online supplementary results (see 

online supplementary table S7).

RA genotypic scores

Prediction of response to TNFi as quantified by ∆SJC improved by including the regional 

genotypic scores for RA risk in a penalised regression model (table 2). The test log-

likelihood increased by 5.3 nats, suggesting that some of the genetic drivers for RA are also 

influencing response to TNFi; however, the absolute improvement in prediction was small, 

with less than 1% of phenotypic variance being explained by the RA genotypic scores.

The regional score at the CD40 locus had the highest explanatory power for both response 

phenotypes (figure 1). The direction of the effect was consistent for response as measured by 

both phenotypes, with higher RA load at the CD40 locus being associated with better TNFi 

response. The univariate association of the RA score at the CD40 locus with ∆SJC passed 

the p value threshold corrected for the number of RA scores and two response phenotypes 

(table 3).
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The regional score for RA at the CD40 locus was correlated with a cis-acting eQTL score 

for CD40 expression in whole blood (correlation=0.65) and a cis-acting mQTL score for 

methylation of CD40 in whole blood (correlation=−0.70). The strongest association between 

response to TNFi and genotypic scores at the CD40 locus was with the score for RA (table 

3). The estimated effect did not change when we stratified by TNFi agent and when we 

adjusted for ACPA and smoking status (see online supplementary tables S8 and S9).

Genotypic scores for immune cell traits

Prediction of response to TNFi as measured by ∆ESR improved by adding penalised 

genotypic scores for immune cell traits in the model (table 2). In univariate analyses, the 

regional scores for a number of immune cell traits at the ENTPD1 locus (which codes for 

CD39) had suggestive associations with ∆SJC (table 3). The association of ∆SJC with the 

genotypic score for ‘CD39 on CD4 T cells’ at the ENTPD1 locus passed the p value 

threshold corrected for the number of immune cell trait scores tested (470) and two response 

phenotypes. This score was correlated with the cis-acting eQTL score for ENTPD1 
(correlation=0.65). Higher score for ‘CD39 on CD4 T cells’ at the ENTPD1 locus was 

associated with worse TNFi response as quantified by ∆SJC. There was no association 

between ∆ESR and genotypic scores at the ENTPD1 locus (table 3) and no association 

between either ∆ESR or ∆SJC and a genotypic score for cell subset frequency of CD73, 

which is the second ectonucleotidase involved in adenosine production in regulatory T cells 

(see online supplementary results).

Previously, Peres et al23 showed that low expression of CD39 on peripheral regulatory T 

cells was associated with worse response to methotrexate (MTX) in patients with RA. We 

note that the direction of the effect is reversed, but this is not unlikely since we considered 

response to TNFi. To further investigate the effect of ‘CD39 on CD4 T cells’ expression on 

TNFi response, we performed two analyses stratified by concomitant treatment. Information 

on whether a patient was receiving a concomitant non-biologic DMARD was available for 

all samples, while information on whether a patient was specifically receiving concomitant 

MTX treatment was available for a subset of patients from the BRAGGSS cohort. Table 4 

shows the effect of the genotypic score for expression of ‘CD39 on CD4 T cells’ on ∆SJC 

for patients receiving TNFi treatment stratified by concomitant treatment with either any 

non-biologic DMARD (top) or specifically with MTX (bottom). The effect became stronger 

in the groups receiving concomitant treatment and attenuated in the group receiving TNFi 

monotherapy; the CIs among all groups overlapped. Similarly, we did not detect statistically 

significant differences when we stratified by TNFi agent and when we adjusted for ACPA 

status (see online supplementary tables S8 and S9).

eQTl and mQTl scores

Prediction of response to TNFi as quantified by both ∆SJC and ∆ESR improved by adding 

eQTL and mQTL scores of implicated genes in a penalised regression model (table 2). Of 

the 93 genes reported in Kim et al11 as differentially expressed between responders and non-

responders to TNFi in RA, 54 genes had at least one eQTL, 54 genes had at least one mQTL 

and 36 had both. The test log-likelihood increased by 3.4 and 2.9 nats for ∆SJC and ∆ESR, 
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respectively, by adding the eQTL scores in the model. We did not see a further improvement 

by adding genotypic scores for mQTLs.

DISCUSSION

In the largest international study of TNFi response to date, we have shown how using 

methods that leverage information from relevant intermediate traits can identify predictors of 

TNFi response. In a recent crowdsourced effort to use machine learning to construct a 

predictor of response to TNFi in RA, including SNP genotypes did not improve prediction 

beyond that obtained with clinical covariates alone.24 Genotypic prediction of psychiatric 

disorders and related phenotypes has been shown to improve by exploiting genetic 

correlations among multiple related traits,725 and methods have been extended to incorporate 

polygenic scores for multiple traits.8

In the current study, we have combined these approaches and implemented them in a newly 

developed platform, called GENOSCORES, which contains GWAS data for multiple traits 

and automates construction of genotypic scores. For polygenic traits with multiple trait-

associated loci, such as RA, locus-specific scores can be constructed to examine how genetic 

heterogeneity of the intermediate trait can influence the trait of interest. Our approach 

reduces the dimensionality of the prediction task from about 2 million common SNPs to a 

few hundred or a few thousand genotypic scores, depending on how relevant traits are 

selected. The score constructions are a type of feature engineering, a task commonly used in 

machine learning applications.

Understanding the pathogenic mechanisms that initiate and perpetuate RA could give rise to 

informative biomarkers of prognosis, therapeutic response and toxicity.26 However, in 

agreement with earlier studies,27 we did not find strong predictors of TNFi response among 

alleles linked to the development of RA. A strength of the current study is the large sample 

size which allowed us to detect small robust increments in predictive performance. Our 

methodological approach was to first establish the predictive value for a set of genetic 

markers using a multivariate model and then to examine univariate associations between 

each marker and the outcome. Using this approach, we showed that a model including RA 

scores led to a small robust improvement in prediction, with the regional score at the CD40 
locus driving the predictive signal.

Higher RA risk at the CD40 locus, higher CD40 transcription and lower CD40 methylation 

were associated with better TNFi response. CD40 is a transmembrane protein which belongs 

to the TNF receptor superfamily, critically important in modulating immune-(auto-immune) 

responses.28 CD40 is expressed by B cells and antigen-presenting cells (APCs), whereas 

CD40L is induced on CD4+ T cells following T-cell antigen receptor (TCR) with major 

histocompatability complex (MHC) molecule interaction. Engagement of the CD40–CD40L 

axis leads to B cell activation, proliferation and (auto)-antibody production, while activation 

of APCs by CD40L on CD4+ T cells induces upregulation of CD80, CD86, MHC class I 

and MHC class II, as well as secretion of proinflammatory cytokines such as interleukin 

(IL)-12, IL-23 and TNF-α.2930
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The risk allele associated with RA is associated with elevated CD40 expression in whole 

blood.31 As high CD40 expression is associated with elevated TNF-α production and CD40 
and CD40L transcripts are increased in the disease tissue in both early and established 

disease,32 it is not surprising that patients with the CD40 risk allele respond better to TNFi 

therapies.

Overall, if there are genetic loci that predict TNFi response, these are mostly different to the 

known RA risk loci. However, we note that patients who receive TNFi therapy are likely to 

have more severe disease and to have failed on other treatments. It is therefore possible that 

our study sample has been selected with respect to genetic load for RA, thus limiting the 

heterogeneity in genetic RA risk profiles compared with a sample of newly diagnosed cases.

The genotypic score for the expression of the ectonucleotidase CD39 on CD4 T cells was 

inversely associated with TNFi response. The SNPs contributing to this score are in the 

ENTPD1 gene which encodes CD39. In stratified analyses, the inverse association with 

response was stronger in the groups receiving TNFi concomitantly with MTX or another 

non-biologic DMARD compared with the group receiving TNFi monotherapy and was 

stronger in the group receiving infliximab compared with the groups receiving adalimumab 

or etanercept. The CIs of the estimated effects among all groups overlapped. This effect on 

response to TNFi agents is in the opposite direction to the association reported between low 

expression of CD39 on regulatory T cells and resistance to MTX in RA.23

Interpreting the association between drug response and the CD39 trait is difficult both 

epidemiologically and mechanistically. The reasons for this being that in the UK and most 

European countries TNFi are usually prescribed only after patients have had a poor response 

to MTX and, unless of intolerance, always in combination with MTX. Therefore, these 

patients are likely to represent a selected group; this, together with the almost universal use 

of combination MTX/TNFi therapy, hinders progress in dissecting the potential mechanisms 

responsible for the divergence. Nonetheless, as RA is a highly heterogeneous disease, it is 

plausible to speculate that different cellular and molecular networks may be involved in 

driving diverse immune/inflammatory responses in different patients to different drugs. For 

example, as mentioned above, the poor response to MTX has been associated with low 

CD39 expression by regulatory T cells, while increased CD39 expression has been reported 

to be important in the expansion of Th17 cells driven by IL-6 and TGF-β via Stat3 and Gfi-1 

transcription factors.33 In turn, the expansion of Th17 cells has been reported to be 

associated with incomplete response to TNFi.34 It remains to be established whether 

measurements of CD39/ENTPD1 expression or genotype may be useful in the choice of 

MTX, TNFi agent or concomitant treatment as first-line therapy for patients who need a 

DMARD.

Using previously reported associations between transcripts and TNFi response to select 

relevant genes, we have shown evidence that eQTL scores for these genes contain 

information that predicts TNFi response, even though the proportion of variance explained 

was low and no single genes associated with response could be identified.
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Improved genomic prediction of treatment response requires measuring response more 

precisely to capture the molecular in addition to the clinical phenotype. The detected 

associations between genotypic scores and TNFi response were not the same for the two 

measures of response—change in SJC and change in ESR—suggesting that the two 

measures reflect different aspects of disease activity affected by TNFi. To derive refined 

measures of drug response, large data sets with multiple inflammatory biomarkers, joint 

imaging and clinical variables before and after treatment are needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key messages

What is already known about this subject?

• To date, no strong associations of individual genetic loci with response to 

tumour necrosis factor inhibitors (TNFi) in rheumatoid arthritis (RA) have 

been identified, despite recent large efforts based on conventional genome-

wide association studies and a crowdsourcing initiative.

What does this study add?

• We introduced a new methodological approach for localising genetic effects 

by using genotypic risk scores based on known genetic loci for related traits 

and likely biomarkers.

• We identified two genetic loci strongly associated with TNFi response in RA 

and demonstrated that the genetic determinants of TNFi response are different 

to the known susceptibility loci for RA.

How might this impact on clinical practice or future developments?

• Measurements of expression of CD40 and CD39 and their corresponding 

pathways could be relevant for targeting drug therapy in RA.

• Our new methodological approach could be useful for localising genetic 

effects in traits for which assembling large sample sizes is not feasible, such 

as drug response.
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Figure 1. 
Contribution of top 10 RA regional scores to prediction of response to TNFi phenotypes, 

starting from a model containing only clinical covariates. The curve gradually converges to 

one with the addition of all remaining scores. ESR, erythrocyte sedimentation rate; RA, 

rheumatoid Arthritis; SJC, swollen joint count; TNFi, tumour necrosis factor inhibitors.
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Table 2

Prediction of response to TNFi using penalised regional genotypic scores for different types of intermediate 

traits

Intermediate trait type no of regional scores no of filtered scores Prediction of ∆SJC (%) Prediction of ∆ESR (%)

Rheumatoid arthritis 37 37 5.3 (0.26) −1.6 (0)

Immune cell traits 508 470 −0.7 (0) 2.9 (0.17)

eQTLs 94 87 3.4 (0.16) 2.9 (0.17)

eQTLs and mQTLs 268 228 2.5 (0.11) 1.6 (0.09)

Prediction performance is quantified by the difference in test log-likelihood (in nats) between a model with clinical covariates and genotypic scores 
and a model with clinical covariates only and by the per cent of phenotypic variance explained (in parenthesis). Results from 10-fold cross-
validation.

eQTL, expression quantitative trait loci; mQTL, methylation quantitative trait loci.ESR, erythrocyte sedimentation rate; SJC, swollen joint count; 
TNFi, tumour necrosis factor inhibitors
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Table 3

Univariate associations between response phenotypes and regional genotypic scores of interest

Response phenotype Genetic score Coefficient P value

Genotypic scores at the CD40 locus

∆SJC RA score at CD40 0.07 0.0004

∆SJC CD40 eQTL 0.06 0.002

∆SJC CD40 mQTL −0.05 0.009

∆ESR RA score at CD40 0.05 0.01

∆ESR CD40 eQTL 0.03 0.06

∆ESR CD40 mQTL −0.03 0.07

Genotypic scores for immune cell traits at the ENTPD1 locus

∆SJC CD39 on CD4 T −0.07 5e–05

∆SJC mDC:%32+ −0.02 0.2

∆SJC CD8:%39+ −0.06 0.001

∆SJC CD4:%Treg(39+) −0.07 0.0001

∆SJC CD4:%Treg(39+73−) −0.07 0.0001

∆SJC CD4:%Treg(39+73+) −0.07 0.0002

∆SJC NKeff:%314−158a+ −0.04 0.02

∆SJC CD4 T:%CD39+CD38+PD1− −0.07 8e–05

∆ESR CD39 on CD4 T −0.003 0.9

∆ESR mDC:%32+ −0.01 0.5

∆ESR CD8:%39+ −0.008 0.7

∆ESR CD4:%Treg(39+) −0.004 0.8

∆ESR CD4:%Treg(39+73−) −0.004 0.8

∆ESR CD4:%Treg(39+73+) 0.006 0.8

∆ESR NKeff:%314−158a+ 0.04 0.04

∆ESR CD4 T:%CD39+CD38+PD1− −0.004 0.8

The coefficients are the effect sizes of the standardised score on the standardised phenotype.

eQTL, expression quantitative trait loci; mTQL, methylation quantitative trait loci.ESR, erythrocyte sedimentation rate; RA, rheumatoid arthritis; 
SJC, swollen joint count
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Table 4

Univariate association between ∆SJC and genotypic score for the expression of ‘CD39 on CD4 T cells’ at the 

ENTPD1 locus stratified by concomitant treatments

Patient group Coefficient (sE) P value sample size

All samples, adjusted for concomitant DMARD −0.07 (0.02) 5e–05 2922

All samples, no adjustment for DMARD −0.08 (0.02) 2e–05 2922

Samples not on concomitant DMARD −0.02 (0.04) 0.5 691

Samples on concomitant DMARD −0.09 (0.02) 1e–05 2231

Samples on concomitant MTX −0.1 (0.03) 0.002 958

The coefficients are the effect sizes of the standardised score on the standardised phenotype. The phenotype is adjusted for covariates: baseline 
DAS components, gender, cohort, genotyping array, 10 genetic principal components.

DAS, Disease Activity Score; DMARD, disease-modifying antirheumatic drug; MTX, methotrexate; SJC, swollen joint count.
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