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Abstract

Purpose: Performance of the preconditioned alternating projection algorithm (PAPA) using 

relaxed ordered subsets (ROS) with a non-smooth penalty function was investigated in positron 

emission tomography (PET). A higher order total variation (HOTV) regularizer was applied and a 

method for unsupervised selection of penalty weights based on the measured data is introduced.

Methods: A ROS version of PAPA with HOTV penalty (ROS-HOTV-PAPA) for PET image 

reconstruction was developed and implemented. Two-dimensional PET data were simulated using 

two synthetic phantoms (geometric and brain) in geometry similar to GE D690/710 PET/CT with 

uniform attenuation, and realistic scatter (25%) and randoms (25%). Three count levels (high/

medium/low) corresponding to mean information densities IDs  of 125, 25, and 5 noise equivalent 

counts (NEC) per support voxel were reconstructed using ROS-HOTV-PAPA. The patients’ brain 

and whole body PET data were acquired at similar IDs on GE D690 PET/CT with time-of-fight 

and were reconstructed using ROS-HOTV-PAPA and available clinical ordered-subset expectation-

maximization (OSEM) algorithms.

A power-law model of the penalty weights’ dependence on ID was semi-empirically derived. Its 

parameters were elucidated from the data and used for unsupervised selection of the penalty 

weights within a reduced search space. The resulting image quality was evaluated qualitatively, 
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including reduction of staircase artifacts, image noise, spatial resolution and contrast, and 

quantitatively using root mean squared error (RMSE) as a global metric. The convergence rates 

were also investigated.

Results: ROS-HOTV-PAPA converged rapidly, in comparison to non-ROS-HOTV-PAPA, with no 

evidence of limit cycle behavior. The reconstructed image quality was superior to optimally post-

filtered OSEM reconstruction in terms of noise, spatial resolution, and contrast. Staircase artifacts 

were not observed. Images of the measured phantom reconstructed using ROS-HOTV-PAPA 

showed reductions in RMSE of 5 – 44% as compared with optimized OSEM. The greatest 

improvement occurred in the lowest count images. Further, ROS-HOTV-PAPA reconstructions 

produced images with RMSE similar to images reconstructed using optimally post-filtered OSEM 

but at one-quarter the NEC.

Conclusion: Acceleration of HOTV-PAPA was achieved using ROS. This was accompanied by 

an improved RMSE metric and perceptual image quality that were both superior to that obtained 

with either clinical or optimized OSEM. This may allow up to a four-fold reduction of the 

radiation dose to the patients in a PET study, as compared with current clinical practice. The 

proposed unsupervised parameter selection method provided useful estimates of the penalty 

weights for the selected phantoms’ and patients’ PET studies. In sum, the outcomes of this 

research indicate that ROS-HOTV-PAPA is an appropriate candidate for clinical applications and 

warrants further research.

Keywords

Image reconstruction; maximum likelihood estimation; positron emission tomography; single 
photon emission computed tomography; total variation

I. INTRODUCTION

Total variation (TV) regularization via the gradient favors images with sparse gradients1,2, 

which tends to remove noise while preserving edges. As such, it has been very successful in 

image denoising because it preserves details. This has made it an interesting candidate for 

emission tomography. However, in images without sparse gradients, TV regularization can 

create piecewise constant artifacts, often referred to as “staircase” artifacts. Unfortunately, 

images reconstructed from positron emission tomography (PET) and single photon emission 

computed tomography (SPECT) often have non-sparse gradients, due to a number of factors, 

including large point spread functions, and partial volume effects from coarse reconstruction 

grids. To deal with this problem, a number of researchers3–5 have shown that using higher 

order gradients can reduce or remove these “staircase” artifacts. In particular, Li & Zhang et 
al.5 applied it to penalized-likelihood SPECT image reconstruction. The TV regularizer 

creates several other challenges, including not being differentiable everywhere, slow 

reconstruction convergence, and sensitivity of resulting images to regularization weights.

The problem of non-differentiability is especially acute because it takes place where the 

penalty is active, making it difficult to avoid and making convergence slow when using 

conventional gradient descent schemes. A number of algorithms have been proposed to 

address this, including those derived from the augmented Lagrangian framework, e.g., 

Schmidtlein et al. Page 2

Med Phys. Author manuscript; available in PMC 2019 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Alternating Direction Method of Multipliers (ADMM)6–8, others derived from a primal-dual 

framework, e.g., Chambolle-Pock9–11, and those derived from a fixed-point proximity 

framework12,13, e.g., Preconditioned Alternating Projection Algorithm (PAPA)5,14,15.

PAPA, in particular, is suitable for optimization problems with three convex terms.1 

Furthermore, PAPA’s explicit form is easily derived, unlike ADMM, where the 

minimizations of the alternating directions are unspecified and must be implemented by the 

user. It is noted that a well implemented version of ADMM, which allows the use of the 

PAPA preconditioner, can be derived via fixed-point methods and has similar convergence 

properties with PAPA. In the context of PET and SPECT imaging this includes a convex and 

differentiable Kullback-Leibler (KL) divergence fidelity term, along with convex non-

differentiable functions (first- and second-order TV in this case), and a non-negativity 

constraint.

Algorithm convergence can be accelerated through the use of data subsets. Examples include 

ordered-subset expectation-maximization (OSEM)16 and sequential frame subsets used in 

list-mode EM17–19, both of which use disjoint subsets of the data to update images. 

Unfortunately, after initial improved convergence, these methods almost always become 

“stuck” at a limit cycle and fail to converge to the minima of the objective function20. 

Bertsekas21 introduced a convergent class of incremental gradient methods to address this. 

These incremental gradient methods can use ordered subsets (OS) or other data subsets to 

produce convergent algorithms. In particular, a number of convergent algorithms for gradient 

descent have been developed22–27. Of these, block sequential regularized expectation 

maximization (BSREM)23,24 has been used in a recent clinical implementation. However, 

even using data subsets, it still requires a large dedicated computer in order to make the 

computing time clinically viable.

It is also known that the convergence of these algorithms is both data- and penalty weight-

dependent, making their assessment complex. Further until recently, given a particular class 

of imaging problem (i.e., a typical image for a particular patient size, disease, region, etc.), 

data from that class member, and a particular image quality metric, there were no simple 

theoretical means with which to choose the optimal penalty weights. At present, several 

researchers have developed theoretical frameworks based on the discrepancy principle (DP) 

given Gaussian and Poisson noise for estimating the penalty weights of single 

parameters28–31.

The DP is the idea that the uncertainty of the data should match the variability of the object 

or penalty function. However, it has been pointed out by several researchers that this match 

does not necessarily result in a minimum mean squared error (MMSE) image32,33, nor if 

MMSE is necessarily the right goal34. Nevertheless in estimating MMSE penalty weights, 

Eldar32 has developed a generalized framework that does not require knowledge of the true 

distribution. However, it is computationally intensive, and optimal penalty selection remains 

a difficult task, making the adoption of regularized algorithms even more challenging.

1More precisely the PAPA algorithm is suitable for two proper lower semi-continuous convex functions and a differentiable convex 
function with a Lipschitz continuous gradient.
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In this paper, these problems are addressed together and the resulting algorithm is applied to 

both simulation and clinical data. That is, we demonstrate the performance of a relaxed 

ordered subsets (ROS) version of PAPA (KL-divergence) using optimized penalty weights at 

three realistic count levels, first by simulation and then using patient data are demonstrated. 

In each case, the optimized penalties are first determined using an empirical methodology, 

with connections to the DP, for a simple image quality metric for quantitative tasks: root 

mean squared error (RMSE). The results are then used with ROS-PAPA to demonstrate 

convergence acceleration and show improved image quality relative to conventional 

unpenalized image reconstruction. In this way, the simulations provide support and insight 

for the clinical results.

II. METHODOLOGY

II.A. Objective Function Description

Let f ∈ ℝd denote the true activity distribution in d volume elements of the reconstruction 

space, g ∈ ℝN the detected coincidence events at N pairs of detector elements, γ ∈ ℝN the 

additive background counts (i.e., random, scatter, and cascade counts that are independently 

estimated), and A ∈ ℝN × d the system matrix modeling the geometrical mapping, 

attenuation, and detector blurring. Following the notation used by Krol et al.14, the penalized 

Poisson-likelihood optimization model for PET reconstruction is as follows

argmin
f ∈ ℝ+

d
A f , 1 − ln A f + γ , g + λR f . (1)

The KL data fidelity A ⋅ , 1 − ln A ⋅ + γ , g , denoted by F in subsequent sections, measures 

the discrepancy between the estimated and the observed data. The penalty term λR is 

introduced to regularize the estimate to our prior knowledge. Here, λ is a positive penalty 

weight; its selection is of practical importance.

The TV regularizer often introduces undesirable “staircase” artifacts when reconstructing 

images without sparse gradients. However, the first-order discontinuity of TV can be relaxed 

by including higher-order discontinuity penalties. This can be achieved by using higher-

order gradients of the image, leading to the higher order total variation (HOTV) 

regularization method5. This work uses the HOTV regularization method, where a second-

order TV penalty is added to the TV regularizer. This results in the penalty term λR(f) in (1) 

being given by

R f = λ1φ1 B1 f + λ2φ2 B2 f , (2)

where B1 and B2 are the first- and second-order difference matrices, respectively, and φ1, φ2 

are both sums of isotropic vector norms (see5 or appendix A for their precise definitions).
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Because the minimization of both first- and second-order gradients of an image forces a 

compromise between the piecewise constant and the piecewise linearly varying solutions it 

results in solutions with substantially reduced “staircase” artifacts, as compared with only 

first-order TV regularization.

II.B. Relaxed Ordered-Subset High-Order Total Variation PAPA (ROS-HOTV-PAPA)

The nondifferentiable optimization model in equation (1) can be solved by the PAPA. 

Because the details of PAPA and its extension to a HOTV-regularized reconstruction 

problem have been previously discussed in5,14, only a selection of interesting and useful 

features of PAPA have been given here. First, it allows us to deal with the functions involved 

in the optimization model, either through their proximity operators12 or through their 

gradients. In fact, for nondifferentiable functions, the proximity operator can be a very 

powerful tool (for smooth functions the gradient may be simpler to implement). Second, 

PAPA does not require matrix inversion, which is an advantage when solving large-scale 

reconstruction problems that can be quite expensive. Finally, PAPA suggests the search 

direction for the solution to follow the classical EM algorithm, and thus speeds up the 

convergence. Using the notation in Li & Zhang et al.5, and the HOTV-PAPA iterative 

scheme reads

h k = max f k − βS k ∇F f k +B1
⊤b k + B2

⊤c k , 0

b k + 1 = ρ1 I − prox λ1
ρ1

φ1

1
ρ1

b k + B1h k

c k + 1 = ρ2 I − prox λ2
ρ2

φ2

1
ρ2

c k + B2h k

f k + 1 = max f k − βS k ∇F f k +B1
⊤b k + 1 + B2

⊤c k + 1 , 0 .

(3)

In scheme (3), b and c are dual variables, β is the step size, and S denotes a preconditioning 

matrix. The operator max{·, 0} is a projection onto the first octant that is calculated 

component-wise. The gradient of the data fidelity term has the form ∇F f = A⊤ 1− g
A f + γ , 

and the proximity operators of φ1 and φ2 have closed forms that are described in Appendix 

A.

To meet the time constraints due to tight clinical work-flow, an (OS) version of PAPA is 

proposed. The assumption is made that the data fidelity term F can be decomposed into M 
smaller KL divergences F1, …, FM, which satisfies the subset balance condition: 

∇F f ≈ M ∇F1 f ≈ ⋯ ≈ M ∇FM f . For OS acceleration, ∇F is replaced in (3) by M ∇Fm

and the updates in (3) are incrementally performed M times to obtain a complete outer 

iteration24, leading to a ROS-PAPA,
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h k, m
= max f k, m − 1 − βkS k, m − 1 ∇Fm f k, m − 1

+B1
⊤b k, m − 1 + B2

⊤c k, m − 1 , 0

b k, m = ρ1 I − prox λ1
Mρ1

φ1

1
ρ1

b k, m − 1 + B1h k, m

c k, m = ρ2 I − prox λ2
Mρ2

φ2

1
ρ2

c k, m − 1 + B2h k, m

f k, m
= max f k, m − 1 − βkS k, m − 1 ∇Fm f k, m − 1

+B1
⊤b k, m + B2

⊤c k, m , 0

(4)

with f k, 0 = f k  and f k + 1 = f k, M . The subset gradients are computed by 

∇Fm f = Am
⊤ 1−

gm
Am f + γm

 with Am, gm, and γm the mth subsets of the system matrix A, 

detected coincidence events g, and background counts γ, respectively. The diagonal 

elements of EM-induced preconditioning matrix are given by

S j j
k, m − 1 =

M f j
k, m − 1 / A⊤1 j, A⊤1 j > 0

M f j
k, m − 1 . A⊤1 j ≤ 0

(5)

OS techniques can greatly speed up the algorithm convergence. However, they generally 

exhibit limit cycle behavior when using a constant step size β. Following the relaxation 

strategy proposed in24, a diminishing step size is adapted,

βk =
β0

ζk + 1 (6)

to suppress the limit cycle and push updates to further approach the minimizer. In the 

relaxation parameter, βk, ζ is a constant that depends on the number of subsets, and β0 is 

usually set to 1. Recalling the sufficient condition of algorithm convergence for PAPA14,

ρ j = 1
2 B j 2

2max S k, m − 1 , j = 1, 2, (7)

is set. A more detailed description of the parameters is located in Appendix A.
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II.C. Image Quality Assessment

RMSE was used as the image quality metric due to its relationship to the goals of the DP 

(i.e., achieving an MMSE image) and PET’s quantitative nature. This metric is appropriate 

for quantitative tasks, balancing the reconstructed image’s bias and variance. Further, it is 

simple to compute and is in the same units as the image, making its interpretation clear. In 

all image quality comparisons, unpenalized images were post-filtered using RMSE-optimal 

filtering parameters after being iterated to convergence (i.e., relative change of the objective 

function < ~10−5 −10−8 for patient and simulated images, respectively.

II.D. Penalty Weight Selection and the Discrepancy Principle

II.D.1. Relation to the Discrepancy Principle—Several researchers have shown that 

the DP can be used to guide penalty weight selection. In particular, Guerit et al.31 have 

shown via KL-divergence, that a penalty sub-update can be added to Poisson denoising 

algorithms. However, this method relies on the Poisson discrepancy metric for image quality, 

which may not be optimal in the MMSE sense, and its extension to a two parameter model is 

unclear.

To avoid these problems, an empirical model based on fitted data whose functional form is 

consistent with the DP was chosen. This model’s connection to the DP is illustrated using a 

simple minimization problem for sparse representation shown by Elad33. Consider the 

denoising problem:

min x 1subject to ‖y − Dx‖2
2 ≤ ϵ, (8)

where the noisy image y ∈ ℝN is contaminated with independent and identically distributed 

Gaussian noise σy. This problem seeks to represent y with a unitary matrix D ∈ ℝN × M and 

sparse coefficient vector x ∈ ℝM. A natural choice for the error threshold is ϵ = Nσy
2, where 

N is the number of voxels in y. This problem can also be represented as

min1
2 y − Dx 2

2 + λ‖x‖1, (9)

where a particular penalty weight, λ, will produce the same result as equation (8).

In the original form of the problem the interpretation of ϵ was clear and setting its value was 

straight forward. In the new problem, the parameter λ is more difficult to interpret, but as 

suggested by the DP, it can be set as λ = σy/σx, where σx is the variability (ensemble 

standard deviation) of the coefficient vector x. This is motivated by thinking of the penalty 

weight as balancing between the energy of the residual and the regularization term.

The problem here is to match the discrepancy of KL-divergence with HOTV penalties in 

equation (1). The standard deviation of our data from this equation is given by g, but it is 
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complicated by the additive noise γ. Likewise, the variability of the image is complicated by 

the HOTV penalty. As a result, we use a functional form that is consistent with the ratio of 

data noise to image variability.

Noise equivalent counts (NEC)35–37, defined by NEC = T2
T + S + R  (T + R + S, true, random, 

and scatter), is good candidate function for data variance. For scale independence, the mean 

information density in a patient image is defined as the NEC per total voxels within the 

patient

ID ≜ NEC
∑ j = 1

d ℓ f j

, (10)

where ℓ f , is the indicator vector of voxels within the patient (0 or 1) that can be estimated 

from a suitability scaled and thresholded CT image set. From this it is observed that σy
2 ∝ ID.

Thus, given the definition in equation (10), projection data (g = T + R + S), and an estimate 

of the randoms and scatter counts (γ = R + S, necessary for reconstruction), the ID can be 

estimated by

ID ≈ 1
∑ j = 1

d ℓ f j

∑i = 1
N gi − γi ℓμ i

2

∑i = 1
N gi ℓμ i

, (11)

where ℓμ i
 is the ith component of the indicator vector of projection attenuation (lines of 

response that pass through the object).

For the image variability component, σx, it is noted that its scale is related to the NEC (or 

here ID), and can be thought of as σx being a function of ID for some particular activity 

distribution. Using a power-law approximation for σx, the penalty weight is given as

λ = aIDb, (12)

with free parameters a and b. Also, the use of a power-law allows for the absorption of σy 

into the overall functional form, and the object’s variability and choice of penalty function to 

be accounted for by the free parameters. Further, although the DP does not necessarily 

guarantee MMSE, the fits using equation (12) will use it as the optimization criterion.

II.D.2. Multi-Parameter Penalty Weight Selection—Using equation (12), penalty 

weights were chosen using a two-part optimization strategy. This strategy both reduced the 

search space to 1D and suppressed “staircase” artifacts from the first-order TV term. It is 
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noted that the first-order term is slightly more effective in achieving MMSE and will 

otherwise dominate a 2-term minimization.

In the first step, at several different count levels, the first- and second-order penalties were 

independently optimized for RMSE using a golden search. These single MMSE penalty fits 

for a1, a2 and b1, b2 can be written as

λ1* = a1ID
b1, and λ2* = a2ID

b2, (13)

Next, using these relations to constrain the scale between the penalty weights, a combined 

MMSE penalty weight correction fit for a* and b* is performed using

λ1, 2* = a1ID
b1a*IDb* = λ1*a*IDb*, and

λ2, 2* = a2ID
b2a*IDb* = λ2*a*IDb*,

(14)

where a* rescales the magnitude and b* alters the slope of the two individual MMSE 

penalties. This process was repeated at several count levels, and regression uncertainties 

were computed using a linear approximation via Taylor’s expansion.

II.D.3. Optimization Surrogate for Patient Scans—In the case of patient images, 

the true activity distribution is unknown. Because of this, the cold rod region of the ACR 

phantom (Flangeless Esser PET Phantom, Data Spectrum Corp.) was used as a surrogate. 

This region has the largest amount of variability of any commonly used PET phantom and 

includes cold structures which are well known to have poor contrast and slow convergence 

in reconstructed images.

The ACR phantom was filled in accordance with the ACR guidelines38 and scanned at one 

dwell position for 30 minutes with the cold rod (solid plastic rods) section centered in the 

camera. Projection data with differing ID were generated by replaying the scans for different 

acquisition durations (3, 6, 10, 30 minutes). For each replay the ID were calculated from the 

projection data using equation (11).

The CT-derived reference activity distribution of the cold rod section was generated using 

the accompanying CT images (co-registered by default), where threshold segmentation of 

the air, water, and plastic defined the activity distribution. These reference images, for both 

300 and 700 mm FOV, are shown in the results section. The water portion of the phantom 

was assigned an activity concentration value from the reconstructions of the uniform region 

of the phantom (the high contrast cylinders were ignored). Calibration bias, the use of under 

converged images in clinical calibration, was avoided by individually normalizing to the 

mean of the activity distribution for each reconstruction.

The calibration of the ACR phantom proceeded in a manner similar to that of the 

simulations. Using the CT derived reference activity distribution, the minimum RMSE 
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penalty weights were determined individually for both the first and second order penalties. 

These results were fitted using equation (13). Next, the combined minimum RMSE penalty 

images were found, and fitted using equation (14). This procedure was used for each 

reconstructed field of view size.

II.E. Simulated PET Images and Phantoms

Initially 2D PET-like data were generated to characterize the performance of the PAPA/OS-

PAPA algorithms39 using Matlab (Version 2014b) in an “inverse crime” study. Simple 2D 

images with variable intensity were created and forward-projected via a projection matrix 

built with a ray-driven model using 32 rays per detector pair. This was based on a similar 

geometry to the GE D690/710 PET/CT, e.g., 6.3 mm detectors on a 256 × 256 matrix 

interleaved with 288 views over a 300 mm FOV. Uniform water attenuation was simulated 

using the PET image support. Scatter was added by forward-projecting a highly smoothed 

version of the images. This was added to the attenuated image sinograms scaled by an 

assumed scatter fraction SF = S
T + S

39. Random counts were simulated by adding a uniform 

uptake to these sinograms scaled by the random fraction RF = R
T + S + R

39. The subsequent 

image was scaled to a number of total counts and Poisson noise realizations were performed 

at each count level.

Three count levels (high/medium/low) were used based on observed count data from patient 

studies in the clinic. For high, medium, and low counts 18FDG-brain (370 MBq injected, 10-

minute acquisition one-hour post-injection), 18FDG-whole body (444 MBq injected, 3-

minute per bed position acquisition 1-hour post-injection), and antibody, (185 MBq of 89Zr 

injected, 5-minute per bed position acquisition 3-days post-injection), respectively, were 

used. These scans roughly corresponded to ID‘s of 125, 25, and 5 counts per support voxel. 

The counts, using scatter and random fractions of 25%, for the scans were scaled to match 

these ID‘s using the 2D phantom described below.

Two phantoms were simulated for the study. For the first, referred to hereafter as the Sinc+ 

phantom, a 2D sinc function with some uniform and constant slope inserts were used (see 

Fig. 1a and b). The sinc portion of the phantom provided a variable background, whereas the 

inserts provided edges and regions where staircase artifacts would likely manifest. The 

inserts were spread radially and azimuthally to aide the analysis. These simulations were 

performed using penalty weights optimized for RMSE. The second phantom, Fig. 1c, was 

taken from a slice of a PET Brain scan and was subsequently denoised using the Rudin-

Osher-Fatemi model1 with HOTV.

The simulated data was reconstructed using TV(1)-OS-PAPA (first-order only), TV(2)-OS-

PAPA (second-order only), and HOTV-OS-PAPA using a modified version of the PETSTEP 

platform39 described above. Additive noise was included in the loop. Both projectors 

included attenuation, and back-projection was performed using the matrix transpose of the 

forward-projection to ensure it being the adjoint forward-projection operator. Simulations 

were stopped after 50 to 100 iterations.
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II.F. Patient Brain and Whole Body Scans

All patients’ were acquired with a GE D690 PET/CT with time-of-flight information and 

reconstructed on a 256 × 256 matrix with point spread function information. The PET brain 

and whole body patients were injected with 370 and 444 MBq (nominal) of 18FDG and 

scanned ~1 hour post-injection for 10 and 3 minutes, respectively. The antibody patient was 

injected with 176 MBq of 89Zr-Df-IAB2M (ImagineAb)40 scanned ~3 days post-injection 

for 5 minutes per bed position. The patient data were additionally reconstructed using 

conventional OSEM. For the brain patient, 3 × 32 (iterations × subsets) with a field of view 

of 300 mm with “standard” z-axis (3-point smoothing, [1 4 1]/6) and 2.6 mm FWHM 

Gaussian transaxial post-filters was used. For whole body and antibody patients 2 × 16 

(iterations × subsets) with a field of view of 700 mm with “heavy” z-axis (3-point 

smoothing, [1 2 1]/4) and 6.4 mm FWHM Gaussian transaxial post-filters was used.

The ROS-HOTV-PAPA reconstructions were performed using a modified version of the GE 

PET Toolbox release 2.041. Similar to GE’s Q.Clear reconstruction 25 × 24 iterations and 

subsets were used.

III. RESULTS

III.A. Simulation Penalty Weight Selection

Figure 2 shows the RMSE-optimal penalty weights as a function of ID (see Table I for the 

ID values). The solid red and blue lines represent the individual 1st-and 2nd-order TV 

penalty fits, which show excellent agreement with the suggested power-law relationship with 

correlation coefficients greater than 0.98.

In Figure 2 the dashed red and blue lines represent the penalty weights for the combined 

HOTV penalties. These fits result from a combined second optimization process where the 

ratio of the individual fits is fixed as described by equations (14). The resulting fits again 

show correlation coefficients near or greater than 0.98. This suggests that the resulting 

penalty weights are a reasonable estimate for minimum RMSE.

The BSREM algorithm (the blue line in Fig. 2) was added using a simple quadratic 

difference penalty to show that this methodology works for that type of penalty as well.

III.B. Staircase Artifact Reduction

TV-penalties are known to produce “staircase” artifacts that are dependent on the ratio of the 

penalty weights. As shown in Fig. 3, the addition of a TV second-order gradient can reduce 

these artifacts while preserving edges using the minimum RMSE penalty weights derived 

from the fixed-ratio fits in Fig. 2.

III.C. Comparison of Relative Penalty Performance

The fitted penalty weights for TV(1), TV(2), and HOTV image reconstructions exceeded the 

performance of optimally post-filtered, fully converged OSEM reconstruction (in the RMSE 

sense). This is shown in Table I for both the Sinc+ phantom and the brain phantom for a 
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wide range of IDs where each increment represents a factor of four over increase of the prior 

value.

Fig. 4 shows the normalized RMSE improvement for HOTV compared with optimally post-

filtered maximum-likelihood expectation-maximization (ML-EM). For each of these 

phantoms HOTV-PAPA outperforms, in the RMSE sense, post-filtered OSEM, suggesting 

that HOTV-PAPA can reconstruct equivalent image quality at almost one quarter of the 

counts as conventional ML-EM.

III.D. Performance of OS-PAPA without Relaxation

Using the previously determined optimal penalty weights, we show the convergence 

behavior of the various algorithms for the low-, medium-, and high-ID images (Fig. 5). 

Overall, using the normalized difference of the objective function 
Φ∞ − Φn
Φ∞ − Φ1

 where 

Φ∞ ≜ Φ2000 × 1 (iterations × subsets), the behavior is as expected; images converge more 

quickly and then stop (indicating limit cycle behavior), with higher-count studies initially 

converging more quickly and lower-count studies stopping sooner; showing that large 

subsets do accelerate TV-OS-PAPA and HOTV-OS-PAPA in a similar way to more 

conventional algorithms. Larger subsets showed limit-cycle behavior with fewer iterations. 

In all cases, when subsets were used, limit cycle behavior was eventually observed.

III.E. Convergence of Relaxed (R)OS-PAPA

The relative convergence rates of OS-PAPA with and without relaxation are shown, using the 

normalized difference of the objective function, in Fig. 6. Notice that for the medium- and 

low-count images the number of subsets were reduced to 12 and 6, respectively. These 

reductions were based on the observation in Fig. 5 that for lower count data the smaller 

subset division converged almost as rapidly as the larger subset division. Note that, even 

with small subset division, very low-count images showed some convergence instability, 

which is most evident when the second-order TV penalty was used alone (not shown). No 

limit-cycle behavior was observed when subset relaxation was used (Figure 6).

III.F. Patient Images Using OS-HOTV-PAPA

For the clinical images, the penalties were set using the methodology described in section II 

II.D, where the cold rod region of the ACR phantom was used as a surrogate for the patients. 

These results are shown in Fig. 7. Power-law fits of the cold rod region of the ACR phantom 

were performed using the 300 and 700 mm FOVs that are used for brain and whole body 

patients. The overall range of these fits covered most of the typical clinical range 

ID = 15 − 100  where extrapolation was used for ID outside the ranges of the fits.

Fig. 8 shows patient images generated with ROS-HOTV-PAPA and the clinical algorithm, 

post-filtered OSEM. The improved image sharpness and reduced noise are readily apparent. 

These used 25 × 24 (iterations × subsets) with a relaxation constant of one twenty-fourth on 

a 256 × 256 matrix and a field of view of 300 mm for brain images, and 700 mm for whole 

body images, time-of-flight and point spread function correction were also used. The mean 
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measured ID and its [minimum to maximum] was: brain-102, 18F-FDG whole body (8 

frames)-17.4 [12.7 to 28.6], and 89Zr-antibody (9 frames)-12.3 [4.73 to 23.9] NEC per 

voxel. The convergence, using OS with several different relaxation constants along with 

images normalized relative error, are shown in Fig. 9.

Four other Brain PET patients were reconstructed with similar results. Perturbations of the 

penalty weights from the determined values by altering the scaling parameter (c*a1,2 from 

(14) by small factors (±20%) showed a consistent detail/variance trade-off for each patient 

(results not shown).

Finally, with respect to the surrogate ACR phantom data the resulting RMSE values show 

that the HOTV penalty improves image quality when compared with optimally (in the 

RMSE sense) Gaussian post-filtered, fully converged, images. The results are shown in 

Table II.

IV. DISCUSSION

The main purpose of this paper is to demonstrate the improved performance of image 

reconstruction using non-smooth penalties with parameters optimized using simple image 

quality metrics (RMSE) under clinically realistic conditions. In this case, ROS-HOTV-PAPA 

is used. This necessitated that realistic simulation over a wide count and noise range be 

performed to show that similar results hold for clinical data. For noise control, the HOTV 

penalty that suppresses a well known problem referred to as “staircase” artifacts was used 

and a methodology for selecting fixed-ratio minimum RMSE penalty weights, which uses 

information available in the scan data, was presented. Finally, after these pieces were 

combined ROS-HOTV-PAPA was compared with optimally post-filtered ML-reconstruction 

(in the RMSE sense).

What is striking is that the net combination of these pieces leads to such large improvements 

in image quality when compared with the unpenalized reconstruction that is typically used in 

the clinic. It is noted that TV-denoising has been around for ~30 years1, which implies that 

the use of more recent penalty methods will likely allow for even larger improvements.

The comparison to unpenalized reconstruction was limited because, at present only one 

vendor offers penalized-likelihood image reconstruction, and it is not the purpose of this 

study to make a more specific or detailed comparison. To make such a comparison fair, an 

equivalent means of penalty optimization should be available for the other algorithm. To our 

knowledge this is not the case. However, Fig. 2 suggests that the technique described in this 

study should be applicable to other types of penalties.

The incremental subgradient extension, via ROS-HOTV-PAPA is quite straight forward and 

follows the methodology described by Ahn and Fessler24. Here we have shown that our 

results are consistent with the asymptotic approach to the minima of the objective function 

and a unique image (i.e., convergence), which is absent when relaxation is not used. Though 

not shown, we have also noted that the convergence rates of HOTV-PAPA, ROS-HOTV-

PAPA are very similar to those of row-action maximum likelihood algorithm (RAMLA) and 

BSREM (quadratic penalty), which is easily verifiable with a simple simulation. Further, 
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although in this study was focused on a HOTV penalty, any matrix parameter product that is 

a proper lower semi-continuous convex function can be used, including l1-norm 

minimization problems with sparse coefficients.

To optimize the algorithms performance a heuristic method based on a power-law, which 

uses the data’s NEC divided by the image’s computation support, was used. This quantity is 

referred to as ID because counts can be considered bits of information and the NEC, which 

is known to correlate with image quality37, can be considered a measure of the total 

information recovered from the scan. The normalization to voxel support results in less 

dependence on patient size. Further, this heuristic is consistent with the observation in a 

related problem (DP) that the optimal penalty weight, in an MMSE sense, is given by the 

ratio of the data noise to the object variability33.

The use of the HOTV penalty function requires setting two penalty weights, which is an 

additional complication. Rather than attempt a direct 2D minimization, we decided to 

individually optimize each weight and then optimize the combined individually optimized 

power-law relations. This second optimization adds a scale and slope factor to the initial 

optimized power-law relations. Given this power-law representation, the results show that as 

few as two acquisitions (for a particular class of patient), with differing IDs, can be used to 

estimate minimum RMSE penalty weights for similar patients, thus automating the penalty 

selection process. In practice, the combined fixed-ratio penalty weights were very close to 

simply dividing the individual ones by two, which is consistent with the DP (i.e., the penalty 

weight serves to balance the tradeoffs between the data uncertainty and object variability).

The decision to forgo a 2D direct search was based on two observations. The first is that a 

2D search requires much more computational effort compared with a simpler 1D search, 

whereas the second observation is that individual penalty searches establish a relative scale 

between the penalty weights that avoids artifacts. This is due to a weakness in the MMSE 

optimization goal; that the MMSE image may be perceptually inferior despite having the 

same or smaller RMSE34. This is the case with first- and second-order TV, where first-order 

TV is more effective at achieving MMSE despite poorer perceptual image quality. These 

improvements are consistent with the results of Li & Zheng et al.5, but now using minimum 

RMSE penalty weights.

As the results show, this relationship holds over a large range of ID that encompass most 

clinical situations. However, if two objects have sufficiently different activity variability or 

distributions (like the Sinc+ and Brain simulation phantoms), then different power-law 

parameters are likely necessary. Thus, the parameters can be learned for several patient 

classes (based on size, location, tracer, etc…) and used thereafter for similar patients. 

However, how sufficiently different the patient distributions can be is an open question, 

although initial evidence shows some robustness with respect to visual perception, as seen 

when using the surrogate phantom for patient images in Figure 8 (although we cannot claim 

the resulting images as having lowest RMSE). This result is consistent with what has been 

seen previously42,43: the power-law relationship for HOTV penalty weights with brain 

patients held for both RMSE and visual assessment (two experienced nuclear medicine 

physicians) using the ACR phantom as a surrogate for patient data. The confidence from the 
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visual assessment, our simulation experience, the excellent correlation coefficients of the 

ACR phantom penalty weight fits supports our use of extrapolation with respect to the brain 

images. The incorporation of object variability into the power-law is under investigation.

Only RMSE was used for assessing image quality because this simple metric represents the 

overall quantitative accuracy of the images. Although it is a good place to start, clearly it is 

insufficient for task based assessment34. In the future we intend to test the penalty selection 

scheme with more advance structural metrics34 or model-observers44,45. However, because 

these results held for visual assessment of human brain patients42,43, it is possible that it will 

work for more sophisticated observer models.

Finally, when compared with conventional maximum likelihood imaging, even using an 

optimal post-filter, the reduction of noise, improved conspicuity, and apparent improvement 

in resolution are consistent with the simulation results, indicating that equivalent image 

quality should be possible with fewer NEC. Both simulation and clinical results showed that 

RMSE equivalent images could be achieved with almost one-quarter the NEC used with 

conventional maximum-likelihood reconstruction. In addition, the cold rod region of the 

ACR phantom shows improved quantitative accuracy (RMSE) of up to 44% (Table II) when 

compared with optimally post-filtered MLEM. These results are especially interesting for 

very low count rates, such as late imaging with long half-lives in antibody studies, and in 

dose reduction. However, at very low counts ID = 4  the second order penalty term, when 

used alone, had some instability, which slowed convergence and achieved poor RMSE 

(Table I). This is not surprising where the mean relative uncertainty of the counts is ~ 50%. 

First-order TV did not show this problem and seemed to regularize the the second-order 

term when used together (bottom-right Figure 6).

At the end of this study several questions have been left unanswered. At present, there is no 

convergence proof for subset relaxation. The results show that this appears to be the case (or 

at least it is in any practical sense), but its rate is relaxation parameter-dependent, which is 

also an open question. Also, there is no theoretical guidance on how to select the “best” 

relaxation rate. However, the clinical and simulation results show that a value of ζ between 

1/12 and 1/24 work over a wide range of counts. With respect to penalty weight selection, 

we note that the power-law’s dependence on local image characteristics, such as contrast 

heterogeneity, remains to be studied. Thus observations indicate that for similar patients the 

power-law parameters are similar enough that they can be ignored, but we have not 

investigated which differing patient characteristics have important image quality 

implications. In addition, we have only tested our penalty calibration procedures on one type 

of scanner (GE Discovery 690/710) and expect that due to differing resolution, sensitivity, 

and time-of-flight that this procedure will need to be performed at least once for each type of 

scanner and class of image.

V. CONCLUSION

This study presents a combination of several advances in penalized likelihood image 

reconstruction, namely the development of relaxation for a convergent OS version of PAPA 

with non-smooth convex penalties (HOTV in this case) and a simple empirical automatic 
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means for selecting penalty weights. This combination resulted in improved RMSE-image 

quality and showed that equivalent image quality when compared with conventional post-

filtered OSEM, was possible with reduced NEC. In fact, low-count phantom data suggests 

that similar image quality is achievable with only one-quarter the counts when compared 

with optimal post-filtered, unpenalized image reconstruction, which indicates that it may be 

possible to reduce the injected dose by a similar factor. Further, by first demonstrating these 

results through simulation, and then with patients, we showed that this combination has the 

potential for clinical use.

With respect to the use of ROS with PAPA, the results of both simulated and patient 

reconstructions showed that ROS-HOTV-PAPA greatly accelerated convergence, without 

which the algorithm would be clinically infeasible. The algorithm PAPA that was used is a 

special case of a fixed-point framework for minimizing non-differentiable convex functions. 

It is our hope that it and other algorithms developed from the fixed-point framework will 

allow further improved performance using other advanced sparse representations.

To emphasize clinical relevance a promising methodology for automatically estimating 

RMSE penalty weights for TV-type and quadratic penalties was demonstrated. It was further 

illustrated that this methodology requires as few as two baseline scans for a particular class 

of image (i.e., uptake variability) and is a very promising candidate for automatically 

choosing optimal penalty weights for improved image quality metrics.

These advances represent a step toward the clinical adoption of advanced non-smooth 

penalties and algorithms that are feasible for the current generation of scanners with existing 

penalized likelihood computing platforms. In future work, both of these advances will be 

applied to more sophisticated image quality metrics, penalty types, and improved fixed-point 

algorithms for faster image reconstruction using new sparse representation penalties.
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Appendix A: Higher Order Total Variation

In this appendix, the definitions of 3D higher order isotropic total variation as well as the 

proximity operator are given5.

In Section II II.A, it was mentioned that first-order and second-order TV semi-norm can be 

written as convex functions φ1 composed with matrix B1 and φ2 composed with matrix B2, 
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respectively. To write these explicitly Dn is first defined as the n×n first-order difference 

matrix as

Dn ≜

0
−1 1

⋱ ⋱
−1 1

. (A1)

It is assumed that an image considered in this paper has a size of p × p × q. The image is 

treated as a vector in ℝp2q, and its i jkth voxel corresponds to the i + j − 1 p + k − 1 p2 th

element of the vector. Setting d = p2q and denoting In as the n×n identity matrix, the 3d×d 
matrix B1 and 9d×d matrix B2, are defined through the matrix Kronecker product ⊗, by

B1 ≜

Iq ⊗ I p ⊗ Dp

Iq ⊗ Dp ⊗ I p

Dq ⊗ I p ⊗ I p

, and (A2)

B2 ≜ Dxx; Dxy; Dxz; Dyx; Dyy; Dyz; Dzx; Dzy; Dzz , (A3)

where

Dxx ≜ Iq ⊗ I p ⊗ −Dp
⊤ Dp,

Dxy ≜ Iq ⊗ −Dp
⊤ ⊗ Dp,

Dxz ≜ −Dq
⊤ ⊗ Ip ⊗ Dp,

Dyx ≜ Iq ⊗ Dp ⊗ −Dp
⊤ ,

Dyy ≜ Iq ⊗ −Dp
⊤ Dp ⊗ I p,

Dyz ≜ −Dq
⊤ ⊗ Dp ⊗ I p,

Dzx ≜ Dq ⊗ I p ⊗ −Dp
⊤ ,

Dzy ≜ Dq ⊗ −Dp
⊤ ⊗ I p,

Dzz ≜ −Dq
⊤ Dq ⊗ Ip ⊗ I p .

(A4)

Note that B1 2 ≤ 2 3 and B2 2 ≤ 12 (and B1 2 ≤ 2 2, B2 2 ≤ 8 for 2D).

The first-order isotropic TV (FOITV) and second-order isotropic TV (SOITV) of a 

vectorized image f ∈ ℝd can now be defined by
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f FOITV ≜ ∑
i = 1

d
B1 f

i
2 + B1 f

i + d
2 + B1 f

i + 2d
2 ,

and f SOITV ≜ ∑
i = 1

d
∑
j = 0

8
B2 f

i + jd
2 ,

(A5)

respectively. This implies that for x ∈ ℝ3d and y ∈ ℝ9d, φ1:ℝ3d ℝd and φ2:ℝ9d ℝd are 

defined by

φ1 x ≜ ∑
i = 1

d
∑
j = 0

2
xi + jd

2 , and φ2 y ≜ ∑
i = 1

d
∑
j = 0

8
yi + jd

2 , (A6)

for FOITV and SOITV, respectively5.

Krol et al.14 used the closed form of proximity operator of φ1 and φ2 to address the 

nondifferentiability of TV semi-norm. For a convex function ψ :ℝn ℝ, its proximity 

operator is defined by

proxψ x ≜ argmin 1
2‖u − x‖2

2 + ψ u :u ∈ ℝn . (A7)

Using the above definitions, by letting u = proxω1φ1
x , v = proxω2φ2

y , as shown in12, their 

closed form solution is written as

ui, ui + d, ui + 2d
⊤ = max ∑

j = 0

2
xi + jd
2 − ω1, 0 ×

xi, xi + d, xi + 2d
⊤

∑ j = 0
2 xi + jd

2 , and

vi, vi + d, …, v8d + i
⊤ = max

j = 0

8
yi + jd

2 − ω2, 0 ×

yi, yi + d, …, yi + 8d
⊤

j = 0
8 yi + jd

2
,

(A8)

for i = 1, 2, …, d.
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FIG. 1. 
Two simulation phantoms are shown. a) The Sinc+ phantom with 4 uniform square inserts 

and 4 larger sloped square inserts. b) The intensity image of the Sinc+ phantom. Dashed 

lines show where intensity profiles are measured. c) The denoised brain phantom (shown 

cropped from the simulated 300 mm FOV).
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FIG. 2. 
Minimum RMSE penalty weights as a function of information density for the simulated Sinc

+ phantom are shown. The lines show the power-law fits of the individual penalties with 

RMSE-optimal penalty weights as a function of ID for the Sinc+ phantom. The first- and 

second-order individual penalties use the TV(1) and TV(2) prefixes, respectively (and 

similarly for the combined penalty using the HOTV prefixes). The dashed lines show the 

minimum RMSE fit for the combined penalties using the same ID dependent scaling term, 

where the individual penalty fits provide the relative penalty weight scaling. Ten realizations 

over a wide range of values (see Table I) were used (error bars smaller than marker size) for 

each penalty weight estimate.
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FIG. 3. 
Images (top) and profiles (bottom) from the simulated Sinc+ phantom for (left to right) low, 

medium, and high count data are shown. The columns from left to right represent the low, 

medium and high count data of the Sinc+ phantom. The top three image rows are optimal 

Gaussian post-filtered (GPF-)MLEM, TV(1)-PAPA, and HOTV-PAPA reconstructions. Each 

column of plots on the remaining rows represents segments of the 4 profiles shown in 

dashed red in Fig. 1b.
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FIG. 4. 
Normalized RMSE as a function of information density is shown for the simulated 

phantoms. The improvement in RMSE of HOTV-PAPA compared with optimally Gaussian 

post-filtered ML-EM for both the Sinc+ and brain phantoms. The ID is increased by a factor 

of four for each sequential marker.

Schmidtlein et al. Page 25

Med Phys. Author manuscript; available in PMC 2019 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 5. 
Normalized difference of the objective function as a function of iteration for different 

numbers of subsets for the simulated Sinc+ phantom are shown. Ordered subset convergence 

rates are shown for top: low-ID (ID = 5, antibody imaging) convergence rates, middle: 

medium-ID (ID = 25, whole body imaging) convergence rates, bottom: high-ID (ID = 125, 

brain imaging) convergence rates. Left to right the figure shows first- and second-order TV 

and HOTV-PAPA for each count number.
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FIG. 6. 
Normalized difference of the objective function as a function of iteration for relaxed and 

unrelaxed reconstructions of the simulated Sinc+ phantom are shown with 50 iterations. The 

relative convergence for low-, medium-, and high-counts are shown left to right for HOTV-

PAPA using single subset, unrelaxed, and relaxed ordered subsets reconstruction. The 

appended numbers in the legends (24, 12, and 6) represent the number of subsets used.
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FIG. 7. 
RMSE-optimal penalty weights curve fits as a function of information density for the cold 

rod section of the ACR phantom are shown. The upper plot shows the fits for 300 mm FOV, 

while the lower plot shows those of the 700 mm FOV. In addition, to emphasize the inverse 

effect the FOV has on concentrating counts, the uncropped CT-derived PET images of the 

ACR phantom, which were used as the reference distributions, are shown for each plot.
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FIG. 8. 
PET Images for three patients are shown. A) The top two rows show a 18F-FDG PET brain 

scan of 52 year old male with brain metastases. The upper row was reconstructed with our 

clinical brain reconstruction protocol (post-filtered OSEM) and the lower with ROS-HOTV-

PAPA. The bottom row show maximum intensity projection images of two different patients, 

B) an 18F-FDG whole body scan of a 59 year old male with non-Hodgkin’s lymphoma, and 

C) an 89Zr-antibody whole body scan of a 62 year old male with metastatic prostate cancer, 

both patients were reconstructed with clinical whole body (post-filtered OSEM) and ROS-

HOTV-PAPA reconstructions (left and right, respectively). Note the improved sharpness and 

detail of the brain, and the improved contrast in the whole body and antibody patients’ 

images. The red arrows indicate lesions that are especially conspicuous in the ROS-HOTV-

PAPA images. Intrapatient images were identically windowed and leveled.
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FIG. 9. 
The convergence of the brain patient shown in Figure 8A using 24 subsets using the 

normalized relative difference of both the objective function (left plot) and images (right 

plot) are compared using different amounts of relaxation. The left plot Φ∞ ≜ Φ100 × 24
shows that objective function convergence is fastest using a relaxation constant between one 

twenty-fourth and one-twelfth. This plot also shows the convergence of the non-OS 

reconstruction. The right plot f ∞ ≜ f 100 × 24  shows that unrelaxed OS causes the images to 

stop converging despite the objective function continuing to decrease (see left plot). For 

assured convergence it is necessary for both normalized relative differences to continue to 

decrease.
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TABLE I.

Percent improvement in RMSE of PAPA with TV(1), TV(2), and HOTV penalties using minimum RMSE fit 

penalty weights when compared to optimally Gaussian post-filtered fully converged ML-EM is shown for a 

wide range of information densities for both the Sinc+ and brain phantoms.

ID
Sinc+

4.3 17.1 68.4 273.3 1093

∆RMSETV (1) 13.9% 21.7% 28.2% 31.5% 28.3%

∆RMSETV (2) 0.5% 9.4% 11.3% 12.2% 9.9%

∆RMSEHOTV 15.1% 20.0% 21.3% 24.4% 22.2%

ID
Brain Phantom

4.4 17.5 69.8 279.2 1116

∆RMSETV (1) 5.3% 7.7% 9.3% 9.1% 9.7%

∆RMSETV (2) 6.9% 9.1% 10.2% 10.4% 10.2%

∆RMSEHOTV 9.0% 10.8% 14.5% 14.3% 13.8%
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TABLE II.

Percent improvement in RMSE of PAPA with an HOTV penalty using near optimal weights compared with 

optimal Gaussian post-filtered (GPF) fully converged ML-EM is shown for a series of information densities 

for cold rod region of ACR Phantom.

ID
Cold Rod Region (300 mm FOV)

5.8 12.4 20.4 57.6

RMSEGPF*
0.340 0.279 0.250 0.215

RMSEHOTV*
0.236 0.223 0.213 0.199

%Improvement 44.1% 25.2% 17.5% 8.4%

ID
Cold Rod Region (700 mm FOV)

30.2 64.3 106.0 299.2

RMSEGPF*
0.326 0.257 0.230 0.190

RMSEHOTV*
0.239 0.217 0.204 0.184

%Improvement 36.4% 18.7% 12.6% 3.5%
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