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Abstract

Short read aligners predominantly use the FM-index, which is easily able to index one or a few 

human genomes. But it does not scale well to indexing collections of thousands of genomes. 

Driving this issue are the two chief components of the index: (a) a rank data structure over the 

Burrows-Wheeler Transform (BWT) of the string that will allow us to find the interval in the 

string’s suffix array (SA), and (b) a sample of the SA that — when used with the rank data 

structure — allows us to access the SA. The rank data structure can be kept small even for large 

genomic databases, by run-length compressing the BWT, but until recently there was no means 

known to keep the SA sample small without greatly slowing down access to the SA. Now that 

Gagie et al. (SODA 2018) have defined an SA sample that takes about the same space as the run-

length compressed BWT, we have the design for efficient FM-indexes of genomic databases but 

are faced with the problem of building them. In 2018 we showed how to build the BWT of large 

genomic databases efficiently (WABI 2018) but the problem of building Gagie et al.’s SA sample 

efficiently was left open. We compare our approach to state-of-the-art methods for constructing the 

SA sample, and demonstrate that it is the fastest and most space-efficient method on highly 

repetitive genomic databases. Lastly, we apply our method for indexing partial and whole human 

genomes and show that it improves over the FM-Index based Bowtie method with respect to both 
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memory and time and over the Hybrid Index-based CHIC method with respect to query time and 

memory required for indexing.

1 Introduction

The FM-index, which is a compressed subsequence index based on Burrows Wheeler 

Transform (BWT), is the primary data structure of the majority of short read aligners — 

including Bowtie [19], BWA [13] and SOAP2 [22]. These aligners build an FM-index based 

data structure of sequences from a given genomic database and then use the index to perform 

queries that find approximate matches of sequences to the database. While these methods 

can easily index one or a few human genomes, they do not scale well to thousands of 

genomes. This is problematic in analysis of the data produced by consortium projects, which 

routinely have several thousand genomes.

In this paper, we address this need by introducing and implementing an algorithm for 

efficiently constructing the FM-index, which allows for the FM-index construction to scale 

to larger sets of genomes. To understand the challenge and solution behind our method, 

consider the two principal components of the FM-index: first, a rank data structure over the 

BWT of the string that enables us to fiiently constructing the FM-index, ffix array (SA) 

containing pointers to starting positions of occurrences of a given pattern (and to compute 

how many such occurrences there are); second, a sample of the SA that, when used with the 

rank data structure, allows us to access the SA (so we can list those starting positions). 

Searching with an FM-index can be summarized as follows: starting with the empty suffix, 

for each proper suffix of the given pattern we use rank queries at the ends of the BWT 

interval containing the characters immediately preceding occurrences of that suffix in the 

string, to compute the interval containing the characters immediately preceding occurrences 

of the suffix of length 1 greater; when we have the interval containing the characters 

immediately preceding occurrences of the whole pattern, we use a SA sample to list the 

contexts of the corresponding interval in the SA, which are the locations of those 

occurrences.

Although it is possible to use a compressed implementation of the rank data structure that 

does not become much slower or larger even for thousands of genomes, the same cannot be 

said for the SA sample. The product of the size and the access time must be at least linear in 

the length of the string for the standard SA sample. This implies that the FM-index will 

become much slower and/or much larger as the number of genomes in the databases grows 

significantly. This bottleneck has forced researchers to consider variations of FM-indexes 

adapted for massive genomic datasets, such as Valenzuela et al.’s pan-genomic index [34] or 

Garrison et al.’s variation graphs [7]. Some of these proposals use elements of the FM-

index, but all deviate in substantial ways from the description above. Not only does this 

mean they lack the FM-index’s long and successful track record, it also means they usually 

do not give us the BWT intervals for all the suffixes as we search (whose lengths are the 

suffixes’ frequencies, and thus a tightening sequence of upper bounds on the whole pattern’s 

frequency), nor even the final interval in the suffix array (which is an important input in 

other string processing tasks).
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Recently, Gagie, Navarro and Prezza [11] proposed a different approach to SA sampling, 

which takes space proportional to that of the compressed rank data structure while still 

allowing reasonable access times. While their result yielded a potentially practical FM-index 

on massive databases, it did not directly lead to a solution since the problem of how to 

efficiently construct the BWT and SA sample remained open. In a direction toward to fully 

realizing the theoretical result of Gagie et al. [11], Boucher et al. [2] showed how to build 

the BWT of large genomic databases efficiently. We refer to this construction as prefix-free 
parsing. It takes as input string S and in one pass generates a dictionary and a parse of S with 

the property that the BWT can be constructed from dictionary and parse using workspace 

proportional to their total size and in O(|S|) time. Yet the resulting index of Boucher et al. [2] 

lacks the SA sample and therefore does not support locating. This makes this index not 

directly applicable to many bioinformatic applications, such as sequence alignment.

Our contributions.

In this paper, we present a solution for building the FM-index1 for very large datasets by 

showing that we can build the BWT and Gagie et al.’s SA sample together in roughly the 

same time and memory needed to construct the BWT alone. We note that this algorithm is 

also based on prefix-free parsing. Thus, we begin by describing how to construct the BWT 

from the prefix-free parse, and then we show that it can be modified to build the SA sample 

in addition to the BWT in roughly the same time and space. We implement this approach, 

and we refer to the resulting implementation as bigbwt. We compare it to state-of-the-art 

methods for constructing the SA sample and demonstrate that bigbwt is currently the fastest 

and most space-efficient method for constructing the SA sample on large genomic databases.

Next, we demonstrate the applicability of our method to short read alignment. In particular, 

we compare the memory and time needed by our method to build an index for collections of 

chromosome 19 with those of Bowtie [19] and CHIC [33]. We also compare the sizes of the 

resulting indexes as well as the amount of time required to perform several locate queries 

against the indexes. We find that Bowtie is unable to build indexes for our largest collections 

(500 or more) because it exhausted memory, whereas our method is able to build indexes up 

to 2,000 chromosome 19s (and likely beyond). At 250 chromosome 19 sequences, our 

method requires only about 2% of the time and 6% the peak memory of Bowtie’s. While 

CHIC can produce the smallest indexes for smaller sequence collections, this comes at the 

cost of higher indexing memory footprint and dramatically higher query time. Lastly, we 

demonstrate that it is possible to index collections of whole human genome assemblies with 

sub-linear scaling as the size of the collection grows.

Related work.

The development of methods for building the FM-index on large datasets is closely related 

to the development of short-read aligners for pan-genomics — an area where there is 

growing interest [27, 5, 12]. Here, we briefly describe some previous approaches to this 

problem and detail their connection to the work in this paper. We note that the majority of 

1With the SA sample of Gagie et al. [11], this index is termed the r-index.
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pan-genomic aligners require building the FM-index for a population of genomes and thus 

could increase proficiency by using the methods described in this paper.

GenomeMapper [27], the method of Danek et al. [5], and GCSA [29] represent the genomes 

in a population as a graph and then reduce the alignment problem to finding a path within 

the graph. Hence, these methods require all possible paths to be identified, which is 

exponential in the worst case. Some of these methods — such as GCSA — use the FM-

index to store and query the graph and could capitalize on our approach by building the 

index in the manner described here. Another set of approaches [24, 8, 12, 33] considers the 

reference pan-genome as the concatenation of individual genomes and exploits redundancy 

by using a compressed index. The hybrid index [8] operates on a Lempel-Ziv compression 

of the reference pan-genome. An input parameter M sets the maximum length of reads that 

can be aligned. This has a major impact on the final size of the index. For this reason, the 

hybrid index is suitable mainly for short-read alignment, although there have been recent 

heuristic modifications to allow for longer alignments [9]. In contrast, the r-index, of which 

we provide an implementation in this work, has no such length limitation. The most recent 

implementation of the hybrid index is CHIC [34] (based on CHICO [32]). Although CHIC 

has support for counting multiple occurrences of a pattern within a genomic database, it is 

an expensive operation, namely O(ℓlog log n), where ℓ is the number of occurrences in the 

databases and n is the length of the database. However, the r-index is capable of counting all 

occurrences of a pattern of length m in O(m) time up to polylog factors. There are a number 

of other approaches building o the hybrid index or similar ideas [5, 35]; for an extended 

discussion, we refer the reader to the survey of Gagie and Puglisi [12].

Finally, a third set of approaches [14, 23] attempts to encode variants within a single 

reference genome. BWBBLE by Huang et al. [14] follows this by supplementing the 

alphabet to indicate if multiple variants occur at a single location. This approach does not 

support counting of the number of variants matching a specific alignment; also, it suffers 

from memory blow-up when larger structural variations occur.

2 Background

2.1 BWT and FM indexes

Consider a string S of length n from a totally ordered alphabet Σ, such that the last character 

of S is lexicographically less than any other character in S. Let F be the list of S’s characters 

sorted lexicographically by the suffixes starting at those characters, and let L be the list of 

S’s characters sorted lexicographically by the suffixes starting immediately after those 

characters. The list L is termed the Burrows-Wheeler Transform [3] of S and denoted BWT. 

If S[i] is in position p in F then S[i−1] is in position p in L. Moreover, if S[i] = S[j] then S[i] 
and S[j] have the same relative order in both lists; otherwise, their relative order in F is the 

same as their lexicographic order. This means that if S[i] is in position p in L then, assuming 

arrays are indexed from 0 and ≺ denotes lexicographic precedence, in F it is in position ji = |

{h: S[h] ≺ S[i]}| +| {h: L[h] = S[i], h ≤ p}| − 1. The mapping i ↦ ji is termed the LF 

mapping. Finally, notice that the last character in S always appears first in L. By repeated 

application of the LF mapping, we can invert the BWT, that is, recover S from L. Formally, 

the suffix array SA of the string S is an array such that entry i is the starting position in S of 
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the ith largest suffix in lexicographical order. The above definition of the BWT is equivalent 

to the following:

BWT[i] = S[(SA[i] − 1) mod n] . (1)

The BWT was introduced as an aid to data compression: it moves characters followed by 

similar contexts together and thus makes many strings encountered in practice locally 

homogeneous and easily compressible. Ferragina and Manzini [10] showed how the BWT 

may be used for indexing a string S: given a pattern P of length m < n, find the number and 

location of all occurrences of P within S. If we know the range BWT(S)[i..j] occupied by 

characters immediately preceding occurrences of a pattern Q in S, then we can compute the 

range BWT(S)[i′..j′] occupied by characters immediately preceding occurrences of cQ in S, 

for any character c ϵ Σ, since

i′ = | ℎ:S[ℎ] ≺ c | + | ℎ:S[ℎ] = c, ℎ < i |

j′ = | ℎ:S[ℎ] ≺ c | + | ℎ:S[ℎ] = c, ℎ ≤ j | − 1.

Notice j′ − i′ + 1 is the number of occurrences of cQ in S. The essential components of an 

FM-index for S are, first, an array storing |{h: S[h] ≺ c}| for each character c and, second, a 

rank data structure for BWT that quickly tells us how often any given character occurs up to 

any given position2. To be able to locate the occurrences of patterns in S (in addition to just 

counting them), the FM-index uses a sampled3 suffix array of S and a bit vector indicating 

the positions in the BWT of the characters preceding the sampled suffixes.

2.2 Prefix-free parsing

Next, we give an overview of prefix-free parsing, which produces a dictionary D and a parse 

P by sliding a window of fixed width through the input string S and dividing it into variable-

length overlapping substrings with delimiting prefixes and suffixes. We refer the reader to 

Boucher et al. [2] for the formal proofs and Section 3.1 for the algorithmic details. A rolling 

hash function identifies when substrings are parsed into elements of a dictionary, which is a 

set of substrings of S. Intuitively, for a repetitive string, the same dictionary phrases will be 

encountered frequently.

We now formally define the dictionary D and parse P. Given a string4 S of length n, 

window size w ∈ ℕ and modulus p ∈ ℕ, we construct the dictionary D of substrings of S and 

the parse P as follows; we let f be a hash function on strings of length w, and let T be the 

sequence of substrings W = S[s, s + w − 1] such that f(W)≡ 0 (mod p) or W = S[0, w − 1] or 

2Given a sequence (string) S[1, n] over an alphabet Σ = {1,…, σ}, a character c ϵ Σ, and an integer i, rankc(S, i) is the number of times 
that c appears in S[1, i].
3Sampled means that only some fraction of entries of the suffix array are stored.
4For technical reasons, the string S must terminate with w copies of lexicographically least $ symbol.
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W = S[n − w + 1, n − 1], ordered by initial position in S; let 

T = W 1 = S s1, s1 + w − 1 , …, W k = sk, sk + w − 1  By construction, the strings

S s1, s2 + w − 1 , S s2, s3 + w − 1 , …, S sk − 1, sk + w − 1

form a parsing of S in which each pair of consecutive strings S[si, si+1+w−1] and S[si, 

si+2+w−1] overlaps by exactly w characters. We define D = S si, si + 1 + w − 1 :1 ≤ i < k ; 

that is, D consists of the set of the unique substrings s of S such that |s| > w and the first and 

last w characters of s form consecutive elements in T. If S has many repetitions we expect 

that D ≪ k. With a little abuse of notation we define the parsing P as the sequence of 

lexicographic ranks of substrings in D:P = rankD S si, si + 1 + w − 1 i = 1
k − 1. The parse P

indicates how S may be reconstructed using elements of D. The dictionary D and parse P
may be constructed in one pass over S in O(n + D log D ) time if the hash function f can be 

computed in constant time.

2.3 r-index locating

Policriti and Prezza [26] showed that if we have stored SA[k] for each value k such that 

BWT[k] is the beginning or end of a run (i.e., a maximal non-empty unary substring) in 

BWT, and we know both the range BWT[i..j] occupied by characters immediately preceding 

occurrences of a pattern Q in S and the starting position of one of those occurrences of Q, 

then when we compute the range BWT[i′..j′] occupied by characters immediately preceding 

occurrences of cQ in S, we can also compute the starting position of one of those 

occurrences of cQ. Bannai et al [1] then showed that even if we have stored only SA[k] for 

each value k such that BWT[k] is the beginning of a run, then as long as we know SA[i], we 

can compute SA[i′].

Gagie, Navarro and Prezza [11] showed that if we have stored in a predecessor data structure 

SA[k] for each value k such that BWT[k] is the beginning of a run in BWT, with ϕ−1(SA[k]) 

= SA[k +1] stored as satellite data, then given SA[h] we can compute SA[h+1] in O(log log 

n) time as SA[h+1] = ϕ−1(pred(SA[h]))+SA[h]−pred(SA[h]), where pred(·) is a query to the 

predecessor data structure. Combined with Bannai et al.’s result, this means that while 

finding the range BWT[i..j] occupied by characters immediately preceding occurrences of a 

pattern Q, we can also find SA[i] and then report SA[i + 1..j] in O((j − i) log log n)-time; 

that is, O(log log n)-time per occurrence.

Gagie et al. gave the name r-index to the index resulting from combining a rank data 

structure over the run-length compressed BWT with their SA sample, and Bannai et al. used 

the same name for their index. Since our index is an implementation of theirs, we keep this 

name; on the other hand, we do not apply it to indexes based on run-length compressed 

BWTs that have standard SA samples or no SA samples at all.

3 Methods

Here we describe our algorithm for building the SA or the sampled SA from the prefix-free 

parse of an input string S, which is used to build the r-index. We first review the algorithm 
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from [2] for building the BWT of S from the prefix-free parse. Next, we show how to 

modify this construction to compute the SA or the sampled SA along with the BWT.

3.1 Construction of BWT from prefix-free parse

We assume we are given a prefix-free parse of S[1..n] with window size w consisting of a 

dictionary D and a parse P. We represent the dictionary as a string 

D[1…l] = t1 # t2 # ⋯td − 1 # td # where ti’s are the dictionary phrases in lexicographic order 

and # is a unique separator. We assume we have computed the SA of D, denoted by 

SAD[1..l] in the following, and the BWT of P, denoted BWTP, and the array Occ[1, d] such 

that Occ[i] stores the number of occurrences of the dictionary phrase ti in the parse. These 

preliminary computations take O( D + P ) time.

By the properties of the prefix-free parsing, each suffix of S is prefixed by exactly one suffix 

α of a dictionary phrase tj with |α| > w. We call αi the representative prefix of the suffix 

S[i..n]. From the uniqueness of the representative prefix we can partition S’s suffix array 

SA[1..n] into k ranges

b1, e1 ,     b2, e2 ,     b3, e3 ,    …,     bk, ek

with b1 = 1, bi = ei−1 + 1 for i = 2,…, k, and ek = n, such that for i = 1,…, k all suffixes

S SA bi ..n ,    S SA bi + 1 ..n ,    …,    S SA ei ..n

have the same representative prefix αi. By construction α1 ≺ α2 ≺ αk.

By construction, any suffix D[i..l] of the dictionary D is also prefixed by the suffix of a 

dictionary phrase. For j = 1, …, l, let βj denote the longest prefix of D SAD[j]..l  which is 

the suffix of a phrase (i.e. D SAD[j] + βj = #). By construction, the strings βj’s are 

lexicographically sorted β1 ≺ β2 ≺ ⋯ ≺ βl. Clearly, if we compute β1, …, βl and discard those 

such that |βj| ≤ w, the remaining βj’s will coincide with the representative prefixes αi’s. 

Since both βi’s and αi’s are lexicographically sorted, this procedure will generate the 

representative prefixes in the order α1, α2,…,αk. We note that more than one βj can be equal 

to some αi since different dictionary phrases can have the same suffix.

We scan SAD[1..l], compute β1, …, βl and use these strings to find the representative 

prefixes. As soon as we generate an αi we compute and output the portion BWT[bi, ei] 

corresponding to the range [bi, ei] associated to αi. To implement the above strategy, assume 

there are exactly k entries in SAD[1..l] prefixed by αi. This means that there are k distinct 

dictionary phrases ti1, ti2, …, tik that end with αi. Hence, the range [bi, ei] contains 

zi = ei − bi + 1 = ∑ℎ = 1
k Occ iℎ  elements. To compute BWT[bi, ei] we need to: 1) find the 

symbol immediately preceding each occurrence of αi in S, and 2) find the lexicographic 

ordering of S’s suffixes prefixed by αi. We consider the latter problem first.
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Computing the lexicographic ordering of suffixes.—For j = 1,…, zi consider the j-
th occurrence of αi in S and let ij denote the position in the parsing of S of the phrase ending 

with the j-th occurrence of αi. In other words, P ij  is a dictionary phrase ending with αi and 

i1 < i2 < ⋯ < izi. By the properties of BWTP the lexicographic ordering of S’s suffixes 

prefixed by αi coincides with the ordering of the symbols P ij  in BWTP In other words, 

P ij  precedes P iℎ  in BWTP if and only if S’s suffix prefixed by the j-th occurrence αi is 

lexicographically smaller than S’s suffix prefixed by the h-th occurrence of αi.

We could determine the desired lexicographic ordering by scanning BWTP and noticing 

which entries coincide with one of the dictionary phrases ti1, …, tik that end with αi but this 

would clearly be inefficient. Instead, for each dictionary phrase ti we maintain an array ILi of 

length Occ[i] containing the indexes j such that BWTP[j] = i. These sorts of “inverted lists” 

are computed at the beginning of the algorithm and replace the BWTP which can be 

discarded.

Finding the symbol preceding αi.—Given a representative prefix αi from SAD we 

retrieve the indexes i1,…, ik of the dictionary phrases ti1, …, tik that end with αi. Then, we 

retrieve the inverted lists ILi1, …ILik and we merge them, obtaining the list of the zi positions 

y1 < y2 < ⋯ < yzi such that BWTP yj  is a dictionary phrase ending with αi. Such a list 

implicitly provides the lexicographic order of S’s suffixes starting with αi.

To compute the BWT we need to retrieve the symbols preceding such occurrences of αi. If 

αi is not a dictionary phrase, then αi is a proper suffix of the phrases ti1, …, tik and the 

symbols preceding αi in S are those preceding αi in ti1, …, tik that we can retrieve from 

D[1…l] and SAD[1..l]. If αi coincides with a dictionary phrase tj, then it cannot be a suffix 

of another phrase. Hence, the symbols preceding αi in S are those preceding tj in S that we 

store at the beginning of the algorithm in an auxiliary array PRj along with the inverted list 

ILj.

3.2 Construction of SA and SA sample along with the BWT

We now show how to modify the above algorithm so that, along with BWT, it computes the 

full SA of S or the sampled SA consisting of the values SA[s1],…, SA[sr] and SA[e1],…, 

SA[er], where r is the number of maximal non-empty runs in BWT and si and ei are the 

starting and ending positions in BWT of the i-th such run, respectively. Note that if we 

compute the sampled SA, the actual output will consist of r start-run pairs 〈si, SA[si]〉 and r 
end-run pairs 〈ei, SA[ei]〉 since the SA values alone are not enough for the construction of 

the r-index.

We solve both problems using the following strategy. Simultaneously to each entry BWT[j], 
we compute the corresponding entry SA[j]. Then, if we need the sampled SA, we compare 

BWT[j − 1] and BWT[j] and if they differ, we output the pair 〈j − 1, SA[j − 1]〉 among the 

end-runs and the pair 〈j, SA[j]〉 among the start-runs. To compute the SA entries, we only 
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need d additional arrays EP1,…EPd (one for each dictionary phrase), where |EPi| = |ILi| = 

Occ[i], and EPi[j] contains the ending position in S of the dictionary phrase which is in 

position ILi[j] of BWTP.

Recall that in the above algorithm for each occurrence of a representative prefix αi, we 

compute the indexes i1,…, ik of the dictionary phrases ti1, …, tik that end with αi. Then, we 

use the lists ILi1, …, ILik to retrieve the positions of all the occurrences of ti1, …, tik in BWTP, 

thus establishing the relative lexicographic order of the occurrences of the dictionary phrases 

ending with αi. To compute the corresponding SA entries, we need the starting position in S 
of each occurrence of αi. Since the ending position in S of the phrase with relative 

lexicographic rank ILiℎ[j] is EPiℎ[j], the corresponding SA entry is EPiℎ[j] − αi + 1. Hence, 

along with each BWT entry we obtain the corresponding SA entry which is saved to the 

output file if the full SA is needed, or further processed as described above if we need the 

sampled SA.

4 Time and memory usage for SA and SA sample construction

We compare the running time and memory usage of bigbwt with the following methods, 

which represent the current state-of-the-art.

bwt2sa

Once the BWT has been computed, the SA or SA sample may be computed by applying the 

LF mapping to invert the BWT and the application of Eq. 1. Therefore, as a baseline, we use 

bigbwt to construct the BWT only, as in Boucher et al. [2]; we use bigbwt since it seems 

best suited to the inputs we consider. Next, we load the BWT as a Huffman-compressed 

string with access, rank, and select support to compute the LF mapping. We step backwards 

through the BWT and compute the entries of the SA in non-consecutive order. Finally, these 

entries are sorted in external memory to produce the SA or SA sample. This method may be 

parallelized when the input consists of multiple strings by stepping backwards from the end 

of each string in parallel.

pSAscan

A second baseline is to compute the SA directly from the input; for this computation, we use 

the external-memory algorithm pSAscan [17], with available memory set to the memory 

required by bigbwt on the specific input; with the ratio of memory to input size obtained 

from bigbwt, pSAscan is the current state-of-the-art method to compute the SA. Once 

pSAscan has computed the full SA, the SA sample may be constructed by loading the input 

text T into memory, streaming the SA from the disk, and the application of Eq. 1 to detect 

run boundaries. We denote this method of computing the SA sample by pSAscan+.

We compared the performance of all the methods on two datasets: (1) Salmonella genomes 

obtained from GenomeTrakr [31]; and (2) chromosome 19 haplotypes derived from the 1000 

Genomes Project phase 3 data [4]. The Salmonella strains were downloaded from NCBI 

(NCBI BioProject PRJNA183844) and preprocessed by assembling each individual sample 

with IDBA-UD [25] and counting k-mers (k=32) using KMC [6]. We modified IDBA by 
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setting kMaxShortSequence to 1024 per public advice from the author to accommodate the 

longer paired end reads that modern sequencers produce. We sorted the full set of samples 

by the size of their k-mer counts and selected 1,000 samples about the median. This avoids 

exceptionally short assemblies, which may be due to low read coverage, and exceptionally 

long assemblies which may be due to contamination.

Next, we downloaded and preprocessed a collection of chromosome 19 haplotypes from 

1000 Genomes Project. Chromosome 19 is 58 million base pairs in length and makes up 

around 1.9% of the total human genome sequence. Each sequence was derived by using the 

bcftools consensus tool to combine the haplotype-specific (maternal or paternal) variant calls 

for an individual in the 1KG project with the chr19 sequence in the GRCH37 human 

reference, producing a FASTA record per sequence. All DNA characters besides A, C, G, T 

and N were removed from the sequences before construction.

We performed all experiments in this section on a machine with Intel(R) Xeon(R) CPU E5–

2680 v2 @ 2.80GHz and 324 GB RAM. We measured running time and peak memory 

footprint using/usr/bin/time -v, with peak memory footprint captured by the Maximum 

resident set size (kbytes) field and running time by the User Time and System Time field.

We witnessed that the running time of each method to construct the full SA is shown in Figs. 

1(a)–1(c). On both the Salmonella and chr19 datasets, bigbwt ran the fastest, often by more 

than an order of magnitude. In Fig. 1(d), we show the peak memory usage of bigbwt as a 

function of input size. Empirically, the peak memory usage was sublinear in input size, 

especially on the chr19 data, which exhibited a high degree of repetition. Despite the higher 

diversity of the Salmonella genomes, bigbwt remained space-efficient and the fastest method 

for construction of the full SA. Furthermore, we found qualitatively similar results for 

construction of the SA sample, shown in Fig. 2. Similar to the results on full SA 

construction, bigbwt outperformed both baseline methods and exhibited sublinear memory 

scaling on both types of databases.

5 Comparison to Bowtie and CHIC

We studied how r-index scales to repetitive texts consisting of many similar genomic 

sequences, comparing it to Bowtie (version 1.2.2) [19], a traditional FM-index based aligner, 

and CHIC [33], a Hybrid Index that uses LZ compression to scale to repetitive texts. We 

measured indexing memory footprint, indexing time, index size, and locate query time.

We ran Bowtie with the -v 0 and --norc options; -v 0 disables approximate matching, while 

--norc causes Bowtie (like r-index) to perform the locate query with respect to the query 

sequence only and not its reverse complement.

CHIC parses the text with an LZ-like compression algorithm, storing the resulting phrases in 

a kernel string that can be indexed and aligned to with a standard aligner. Kernel-string 

alignments are transformed back to the original text coordinates using range-finding data 

structures. CHIC’s parameters include: which LZ parsing algorithm to use, the text prefix 

length from which phrases in the parse can be sourced (if a relative LZ algorithm is 

specified), the kernel-string indexing method, and the maximum length of the query patterns. 
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We used the RLZ parsing method and the FMI (FM-Index) method for indexing the kernel 

string in all our experiments. For the prefix length, we tried both 10% and 30% of the text 

length. For the maximum query length, we tried both 100bp and 250bp, these being realistic 

second-generation sequencing read lengths. We refer to each parameter combination as 

“CHIC Xp Y b”, where X is the prefix-length percentage and Y is the maximum query 

length.

5.1 Indexing chromosome 19s

We performed our experiments on collections of one or more haplotypes of chromosome 19. 

These haplotypes were obtained from 1000 Genomes Project in the manner described in the 

previous section. We used 10 collections of chromosome 19 haplotypes, containing 1, 2, 10, 

30, 50, 100, 250, 500, and 1,000, 1,250, 1,500 and 2,000 sequences, respectively. Each 

collection is a superset of the previous. Again, all DNA characters besides A, C, G, T and N 

were removed from the sequences before construction. All experiments in this section were 

run on an Intel Xeon system with an E5–2680 v3 CPU clocked at 2.50GHz and 512GB 

memory. We measured running time and peak memory footprint as described in the previous 

section.

First, we constructed r-index, Bowtie, and CHIC indexes for successively larger 

chromosome 19 collections (Figure 3A, 3B). r-index uses the least indexing memory for 

collections of 10 chromosomes and larger. At 250 chr19s, the r-index procedure takes about 

2% of the time and 6% the peak memory of Bowtie’s procedure.

While CHIC’s peak memory is also much higher than r-index’s at 10 sequences and above, 

CHIC tends to construct indexes faster, especially when using a prefix length of 10% of the 

text. At 2000 sequences, CHIC_10p_100b takes about 64% of the time but 920% of the 

memory of r-index. Bowtie is drastically slower to index than either CHIC or r-index, 

especially for larger collections. Due to memory exhaustion, Bowtie fails to index 

collections of more than 250 sequences and two of the CHIC modes (those using a 30% 

prefix) fail for collections of more than 1,500 sequences.

Next, we compared the disk footprint of the index files produced by all three methods 

(Figure 3C). r-index currently stores only the forward strand of the sequence. Bowtie, on the 

other hand, stores both the forward sequence and its reverse as needed by its double-

indexing heuristic [19]. Since the heuristic is relevant only for approximate matching, we 

omit the reverse sequence in these size comparisons. We also omit the 2-bit encoding of the 

original text (in the *.3.ebwt and *.4.ebwt files) as these too are used only for approximate 

matching. Specifically, the Bowtie index size was calculated by adding the sizes of the 

forward *.1.ebwt and *.2.ebwt files, which contain the BWT, SA sample, and auxiliary data 

structures for the forward sequence. CHIC stores the forward strand of the kernel string, 

along with range-finding data structures. These consist of the files ending with 

*.P512_GC4_kernel_text.MAN.kernel_index (the kernel index), and *.book keeping, 

*.is_literal, *.limits, *.limits_kernel, *.ptr, *.rmq, *.sparse_sample_limits_kernel, *.sparseX, 

*.variables and *.x (the range-finding data structures).
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An r-index is considerably larger than a Bowtie or CHIC index for smaller collections. 

However it grows at a slower rate than any of the other indexes, becoming smaller than 

Bowtie at 30 sequences and smaller than CHIC_10p_250b at 1,500 sequences. The r-index 

incurs more overhead for smaller collections because SA sample density depends on the 

ratio n/r. When the collection is small, n/r is small leading to a denser SA sample than the 1-

in-32 rate used by Bowtie. CHIC’s index stays small by indexing only the kernel string, 

which is smaller than the text. Like Bowtie, the FMI kernel samples a constant fraction of 

SA elements. Finally, CHIC’s range-query data structures are typically smaller than the 

kernel index. At 250 sequences, the r-index index takes 6% the space of the Bowtie index 

and 509% the space of the CHIC_30p_100b index (the smallest CHIC index at this point). 

At 1,500 sequences, the CHIC 30p 100b index takes 45% the space of r-index.

We then compared the speed of the locate query for the r-index, Bowtie and CHIC. We 

extracted 100,000 100-character substrings from the chr19 collection of size 1, which is also 

contained in all of the larger collections. We queried these against each of the indexes 

constructed. We aimed to measure the speed of locating all occurrences of each pattern, 

because in repetitive indexes the number of occurrences for one pattern is on average the 

number of sequences in the collection, but it could also exceed that number due to 

multimapping within a sequence. Since the source of the substrings is present in all the 

collections, every query will match at least once. As seen in Figure 3D, the r-index locate 

time is faster than that of Bowtie after 50 sequences, and it is consistently at least 10x faster 

than any of the CHIC modes.

6 Indexing whole human genomes

Lastly, we used r-index to index many human genomes at once. We repeated our 

measurements for successively larger collections of (concatenated) genomes. Thus, we first 

evaluated a series of haplotypes extracted from the 1000 Genomes Project [4] phase 3 callset 

(1KG). These collections ranged from 1 up to 10 genomes. As the first genome, we selected 

the GRCh37 reference itself. For the remaining 9, we used bcftools consensus to insert 

SNVs and other variants called by the 1000 Genomes Project for a single haplotype into the 

GRCh37 reference.

Second, we evaluated a series of whole-human genome assemblies from 6 different long-

read assembly projects (“LRA”). We selected GRCh37 reference as the first genome, so that 

the first data point would coincide with that of the previous series. We then added long-read 

assemblies from a Chinese genome assembly project [28], a Korean genome assembly 

project [16] a project to assemble the well-studied NA12878 individual [15], a hydatidiform 

mole (known as CHM1) assembly project [30] and the Celera human genome project [20]. 

Compared to the series with only 1000 Genomes Project individuals, this series allowed us 

to measure scaling while capturing a wider range of genetic variation between humans. This 

is important since de novo human assembly projects regularly produce assemblies that differ 

from the human genome reference by megabases of sequence (12 megabases in the case of 

the Chinese assembly [28]), likely due to prevalent but hard-to-profile large-scale structural 

variation. Such variation was not comprehensively profiled in the 1000 Genomes Project, 

which relied on short reads.
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The 1KG and LRA series were evaluated twice, once on the forward genome sequences and 

once on both the forward and reverse-complement sequences. This accounts for the fact that 

different de novo assemblies make different decisions about how to orient contigs. The r-
index method achieves compression only with respect to the forward-oriented haplotypes of 

the sequences indexed. That is, if two contigs are reverse complements of each other but 

otherwise identical, r-index achieves less compression than if their orientations matched. A 

more practical approach would be to index both forward and reverse-complement sequences, 

as Bowtie 2 [18] and BWA [21] do.

We measured the peak memory footprint when indexing these collections (Figure 4). We ran 

these experiments on an Intel(R) Xeon(R) CPU E5–2650 v4 @ 2.20GHz system with 

256GB memory. Memory footprints for LRA grew more quickly than those for 1KG. This 

was expected due to the greater genetic diversity captured in the assemblies. This may also 

be due in part to the presence of sequencing errors in the long-read assembles; long-read 

technologies are more prone to indel errors than short-read technologies, for example, and 

some may survive in the assemblies. Also as expected, memory footprints for the LRA 

series that included both forward and reverse complement sequences grew more slowly than 

when just the forward sequence was included. This is due to sequences that differ only (or 

primarily) in their orientation between assemblies. All series exhibit sublinear trends, 

highlighting the efficacy of r-index compression even when indexing genetically diverse 

whole-genome assemblies. Indexing the forward and reverse complement strands of 10 1KG 

individuals took about 6 hours and 20 minutes and the final index size was 36GB.

We also measured lengths and n/r ratios for each collection of whole genomes (Table 1). 

Consistent with the memory-scaling results, we see that the n/r ratios are somewhat lower 

for the LRA series than for the 1KG series, likely due to greater genetic diversity in the 

assemblies.

7 Conclusions and Future Work

We give an algorithm for building the SA and SA sample from the prefix-free parse of an 

input string S, which fully completes the practical challenge of building the index proposed 

by Gagie et al. [11]. This leads to a mechanism for building a complete index of large 

databases — which is the linchpin in developing practical means for pan-genomics short 

read alignment. We apply our method for indexing partial and whole human genomes, and 

show that it scales better than Bowtie with respect to both memory and time. This allows for 

an index to be constructed for large collections of chromosome 19s (500 or more); a task 

that is out of reach of Bowtie, causing it to exhaust memory even with a budget of 512 GB. 

Our method produces indexes in a smaller memory footprint than a Hybrid Index-based 

method (CHIC [33]) while providing much faster locate time

Though this work opens the door to indexing large collections of genomes, it also highlights 

problems needing further investigation. A major question is how this work can be adapted to 

work on large sets of sequence reads. This problem not only requires the construction of the 

r-index but also adapting and incorporating efficient means [1] to update the index as new 

datasets become available. Moreover, the use of many reference sequences complicates the 
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task of a read aligner performing approximate matching. In the future it will be important to 

explore both techniques like r-index that can facilitate the seed-finding phase of approximate 

matching, but also techniques — perhaps like those proposed in entropy-scaling search [36] 

— that can facilitate the gapped extension phase.
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Fig. 1: 
Runtime and peak memory usage for construction of full SA.
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Fig. 2: 
Runtime and peak memory usage for construction of SA sample.
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Fig. 3: 
Scalability of r-index, Bowtie, and CHIC (RLZ compressed, FMI kernel) indexes against 

chr19 haplotype collection size and total sequence length (megabases) with respect to index 

construction time (seconds) (a), index construction peak memory (megabytes) (b), index 

disk space (megabytes) (c), and locate time (seconds) of 100,000 100bp queries (d). Four 

different CHIC indexes were used, using different combinations of prefix size and maximum 

query length, each labeled as CHIC_(prefix size)p_(max query length).
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Fig. 4: 
Peak index-building memory for r-index when indexing successively large collections of 

1000-Genomes individuals (1KG) and long-read whole-genome assemblies (LRA).
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Table 1:

Sequence length and n/r statistic with respect to number of whole genomes for the first 6 collections in the 

1000 Genomes (1KG) and long-read assembly (LRA) series.

# Genomes Sequence Length (MB) n/r

1KG LRA 1KG LRA

1 6,072 6,072 1.86 1.86

2 12,144 12,484 3.70 3.58

3 18,217 17,006 5.38 4.83

4 24,408 22,739 7.13 6.25

5 30,480 28,732 8.87 7.80

6 36,671 34,420 10.63 9.28
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