
Efficient Construction of a Complete Index for Pan-Genomics
Read Alignment

Alan Kuhnle1,⋆, Taher Mun2,⋆, Christina Boucher1,⋆⋆, Travis Gagie3,⋆⋆, Ben Langmead2,⋆⋆,
Giovanni Manzini4,⋆⋆

1Department of Computer and Information Science and Engineering, University of Florida,
Gainesville, FL,

2Department of Computer Science, John Hopkins University, Baltimore, MD

3School of Computer Science and Telecommunications, Universidad Diego Portales and CeBiB,
Santiago, Chile

4Department of Science and Technological Innovation, University of Eastern Piedmont,
Alessandria, Italy

Abstract

Short read aligners predominantly use the FM-index, which is easily able to index one or a few

human genomes. But it does not scale well to indexing collections of thousands of genomes.

Driving this issue are the two chief components of the index: (a) a rank data structure over the

Burrows-Wheeler Transform (BWT) of the string that will allow us to find the interval in the

string’s suffix array (SA), and (b) a sample of the SA that — when used with the rank data

structure — allows us to access the SA. The rank data structure can be kept small even for large

genomic databases, by run-length compressing the BWT, but until recently there was no means

known to keep the SA sample small without greatly slowing down access to the SA. Now that

Gagie et al. (SODA 2018) have defined an SA sample that takes about the same space as the run-

length compressed BWT, we have the design for efficient FM-indexes of genomic databases but

are faced with the problem of building them. In 2018 we showed how to build the BWT of large

genomic databases efficiently (WABI 2018) but the problem of building Gagie et al.’s SA sample

efficiently was left open. We compare our approach to state-of-the-art methods for constructing the

SA sample, and demonstrate that it is the fastest and most space-efficient method on highly

repetitive genomic databases. Lastly, we apply our method for indexing partial and whole human

genomes and show that it improves over the FM-Index based Bowtie method with respect to both

kuhnle@ufl.edu.
9Authors’ contributions
TG and GM conceptualized the idea and developed the algorithmic contributions of this work. GM and AK implemented the
construction of the r-index and conducted experiments. AK and CB assisted and oversaw the experiments and implementation. BL and
TM assisted in implementing the construction of the r-index and design and executed the comparisons to Bowtie and CHIC. All
authors contributed to the writing of this manuscript.
⋆Equal contribution, ordered alphabetically.
⋆⋆Equal contribution, ordered alphabetically.

Availability: The implementations of our methods can be found at https://gitlab.com/manzai/Big-BWT (BWTand SA sample
construction) and at https://github.com/alshai/r-index (indexing).

HHS Public Access
Author manuscript
Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

Published in final edited form as:
Res Comput Mol Biol. 2020 March 16; 27(4): 500–513. doi:10.1089/cmb.2019.0309.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://gitlab.com/manzai/Big-BWT
https://github.com/alshai/r-index

memory and time and over the Hybrid Index-based CHIC method with respect to query time and

memory required for indexing.

1 Introduction

The FM-index, which is a compressed subsequence index based on Burrows Wheeler

Transform (BWT), is the primary data structure of the majority of short read aligners —

including Bowtie [19], BWA [13] and SOAP2 [22]. These aligners build an FM-index based

data structure of sequences from a given genomic database and then use the index to perform

queries that find approximate matches of sequences to the database. While these methods

can easily index one or a few human genomes, they do not scale well to thousands of

genomes. This is problematic in analysis of the data produced by consortium projects, which

routinely have several thousand genomes.

In this paper, we address this need by introducing and implementing an algorithm for

efficiently constructing the FM-index, which allows for the FM-index construction to scale

to larger sets of genomes. To understand the challenge and solution behind our method,

consider the two principal components of the FM-index: first, a rank data structure over the

BWT of the string that enables us to fiiently constructing the FM-index, ffix array (SA)

containing pointers to starting positions of occurrences of a given pattern (and to compute

how many such occurrences there are); second, a sample of the SA that, when used with the

rank data structure, allows us to access the SA (so we can list those starting positions).

Searching with an FM-index can be summarized as follows: starting with the empty suffix,

for each proper suffix of the given pattern we use rank queries at the ends of the BWT

interval containing the characters immediately preceding occurrences of that suffix in the

string, to compute the interval containing the characters immediately preceding occurrences

of the suffix of length 1 greater; when we have the interval containing the characters

immediately preceding occurrences of the whole pattern, we use a SA sample to list the

contexts of the corresponding interval in the SA, which are the locations of those

occurrences.

Although it is possible to use a compressed implementation of the rank data structure that

does not become much slower or larger even for thousands of genomes, the same cannot be

said for the SA sample. The product of the size and the access time must be at least linear in

the length of the string for the standard SA sample. This implies that the FM-index will

become much slower and/or much larger as the number of genomes in the databases grows

significantly. This bottleneck has forced researchers to consider variations of FM-indexes

adapted for massive genomic datasets, such as Valenzuela et al.’s pan-genomic index [34] or

Garrison et al.’s variation graphs [7]. Some of these proposals use elements of the FM-

index, but all deviate in substantial ways from the description above. Not only does this

mean they lack the FM-index’s long and successful track record, it also means they usually

do not give us the BWT intervals for all the suffixes as we search (whose lengths are the

suffixes’ frequencies, and thus a tightening sequence of upper bounds on the whole pattern’s

frequency), nor even the final interval in the suffix array (which is an important input in

other string processing tasks).

Kuhnle et al. Page 2

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Recently, Gagie, Navarro and Prezza [11] proposed a different approach to SA sampling,

which takes space proportional to that of the compressed rank data structure while still

allowing reasonable access times. While their result yielded a potentially practical FM-index

on massive databases, it did not directly lead to a solution since the problem of how to

efficiently construct the BWT and SA sample remained open. In a direction toward to fully

realizing the theoretical result of Gagie et al. [11], Boucher et al. [2] showed how to build

the BWT of large genomic databases efficiently. We refer to this construction as prefix-free
parsing. It takes as input string S and in one pass generates a dictionary and a parse of S with

the property that the BWT can be constructed from dictionary and parse using workspace

proportional to their total size and in O(|S|) time. Yet the resulting index of Boucher et al. [2]

lacks the SA sample and therefore does not support locating. This makes this index not

directly applicable to many bioinformatic applications, such as sequence alignment.

Our contributions.

In this paper, we present a solution for building the FM-index1 for very large datasets by

showing that we can build the BWT and Gagie et al.’s SA sample together in roughly the

same time and memory needed to construct the BWT alone. We note that this algorithm is

also based on prefix-free parsing. Thus, we begin by describing how to construct the BWT

from the prefix-free parse, and then we show that it can be modified to build the SA sample

in addition to the BWT in roughly the same time and space. We implement this approach,

and we refer to the resulting implementation as bigbwt. We compare it to state-of-the-art

methods for constructing the SA sample and demonstrate that bigbwt is currently the fastest

and most space-efficient method for constructing the SA sample on large genomic databases.

Next, we demonstrate the applicability of our method to short read alignment. In particular,

we compare the memory and time needed by our method to build an index for collections of

chromosome 19 with those of Bowtie [19] and CHIC [33]. We also compare the sizes of the

resulting indexes as well as the amount of time required to perform several locate queries

against the indexes. We find that Bowtie is unable to build indexes for our largest collections

(500 or more) because it exhausted memory, whereas our method is able to build indexes up

to 2,000 chromosome 19s (and likely beyond). At 250 chromosome 19 sequences, our

method requires only about 2% of the time and 6% the peak memory of Bowtie’s. While

CHIC can produce the smallest indexes for smaller sequence collections, this comes at the

cost of higher indexing memory footprint and dramatically higher query time. Lastly, we

demonstrate that it is possible to index collections of whole human genome assemblies with

sub-linear scaling as the size of the collection grows.

Related work.

The development of methods for building the FM-index on large datasets is closely related

to the development of short-read aligners for pan-genomics — an area where there is

growing interest [27, 5, 12]. Here, we briefly describe some previous approaches to this

problem and detail their connection to the work in this paper. We note that the majority of

1With the SA sample of Gagie et al. [11], this index is termed the r-index.

Kuhnle et al. Page 3

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

pan-genomic aligners require building the FM-index for a population of genomes and thus

could increase proficiency by using the methods described in this paper.

GenomeMapper [27], the method of Danek et al. [5], and GCSA [29] represent the genomes

in a population as a graph and then reduce the alignment problem to finding a path within

the graph. Hence, these methods require all possible paths to be identified, which is

exponential in the worst case. Some of these methods — such as GCSA — use the FM-

index to store and query the graph and could capitalize on our approach by building the

index in the manner described here. Another set of approaches [24, 8, 12, 33] considers the

reference pan-genome as the concatenation of individual genomes and exploits redundancy

by using a compressed index. The hybrid index [8] operates on a Lempel-Ziv compression

of the reference pan-genome. An input parameter M sets the maximum length of reads that

can be aligned. This has a major impact on the final size of the index. For this reason, the

hybrid index is suitable mainly for short-read alignment, although there have been recent

heuristic modifications to allow for longer alignments [9]. In contrast, the r-index, of which

we provide an implementation in this work, has no such length limitation. The most recent

implementation of the hybrid index is CHIC [34] (based on CHICO [32]). Although CHIC

has support for counting multiple occurrences of a pattern within a genomic database, it is

an expensive operation, namely O(ℓlog log n), where ℓ is the number of occurrences in the

databases and n is the length of the database. However, the r-index is capable of counting all

occurrences of a pattern of length m in O(m) time up to polylog factors. There are a number

of other approaches building o the hybrid index or similar ideas [5, 35]; for an extended

discussion, we refer the reader to the survey of Gagie and Puglisi [12].

Finally, a third set of approaches [14, 23] attempts to encode variants within a single

reference genome. BWBBLE by Huang et al. [14] follows this by supplementing the

alphabet to indicate if multiple variants occur at a single location. This approach does not

support counting of the number of variants matching a specific alignment; also, it suffers

from memory blow-up when larger structural variations occur.

2 Background

2.1 BWT and FM indexes

Consider a string S of length n from a totally ordered alphabet Σ, such that the last character

of S is lexicographically less than any other character in S. Let F be the list of S’s characters

sorted lexicographically by the suffixes starting at those characters, and let L be the list of

S’s characters sorted lexicographically by the suffixes starting immediately after those

characters. The list L is termed the Burrows-Wheeler Transform [3] of S and denoted BWT.

If S[i] is in position p in F then S[i−1] is in position p in L. Moreover, if S[i] = S[j] then S[i]
and S[j] have the same relative order in both lists; otherwise, their relative order in F is the

same as their lexicographic order. This means that if S[i] is in position p in L then, assuming

arrays are indexed from 0 and ≺ denotes lexicographic precedence, in F it is in position ji = |

{h: S[h] ≺ S[i]}| +| {h: L[h] = S[i], h ≤ p}| − 1. The mapping i ↦ ji is termed the LF

mapping. Finally, notice that the last character in S always appears first in L. By repeated

application of the LF mapping, we can invert the BWT, that is, recover S from L. Formally,

the suffix array SA of the string S is an array such that entry i is the starting position in S of

Kuhnle et al. Page 4

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the ith largest suffix in lexicographical order. The above definition of the BWT is equivalent

to the following:

BWT[i] = S[(SA[i] − 1) mod n] . (1)

The BWT was introduced as an aid to data compression: it moves characters followed by

similar contexts together and thus makes many strings encountered in practice locally

homogeneous and easily compressible. Ferragina and Manzini [10] showed how the BWT

may be used for indexing a string S: given a pattern P of length m < n, find the number and

location of all occurrences of P within S. If we know the range BWT(S)[i..j] occupied by

characters immediately preceding occurrences of a pattern Q in S, then we can compute the

range BWT(S)[i′..j′] occupied by characters immediately preceding occurrences of cQ in S,

for any character c ϵ Σ, since

i′ = | ℎ:S[ℎ] ≺ c | + | ℎ:S[ℎ] = c, ℎ < i |

j′ = | ℎ:S[ℎ] ≺ c | + | ℎ:S[ℎ] = c, ℎ ≤ j | − 1.

Notice j′ − i′ + 1 is the number of occurrences of cQ in S. The essential components of an

FM-index for S are, first, an array storing |{h: S[h] ≺ c}| for each character c and, second, a

rank data structure for BWT that quickly tells us how often any given character occurs up to

any given position2. To be able to locate the occurrences of patterns in S (in addition to just

counting them), the FM-index uses a sampled3 suffix array of S and a bit vector indicating

the positions in the BWT of the characters preceding the sampled suffixes.

2.2 Prefix-free parsing

Next, we give an overview of prefix-free parsing, which produces a dictionary D and a parse

P by sliding a window of fixed width through the input string S and dividing it into variable-

length overlapping substrings with delimiting prefixes and suffixes. We refer the reader to

Boucher et al. [2] for the formal proofs and Section 3.1 for the algorithmic details. A rolling

hash function identifies when substrings are parsed into elements of a dictionary, which is a

set of substrings of S. Intuitively, for a repetitive string, the same dictionary phrases will be

encountered frequently.

We now formally define the dictionary D and parse P. Given a string4 S of length n,

window size w ∈ ℕ and modulus p ∈ ℕ, we construct the dictionary D of substrings of S and

the parse P as follows; we let f be a hash function on strings of length w, and let T be the

sequence of substrings W = S[s, s + w − 1] such that f(W)≡ 0 (mod p) or W = S[0, w − 1] or

2Given a sequence (string) S[1, n] over an alphabet Σ = {1,…, σ}, a character c ϵ Σ, and an integer i, rankc(S, i) is the number of times
that c appears in S[1, i].
3Sampled means that only some fraction of entries of the suffix array are stored.
4For technical reasons, the string S must terminate with w copies of lexicographically least $ symbol.

Kuhnle et al. Page 5

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

W = S[n − w + 1, n − 1], ordered by initial position in S; let

T = W 1 = S s1, s1 + w − 1 , …, W k = sk, sk + w − 1 By construction, the strings

S s1, s2 + w − 1 , S s2, s3 + w − 1 , …, S sk − 1, sk + w − 1

form a parsing of S in which each pair of consecutive strings S[si, si+1+w−1] and S[si,

si+2+w−1] overlaps by exactly w characters. We define D = S si, si + 1 + w − 1 :1 ≤ i < k ;

that is, D consists of the set of the unique substrings s of S such that |s| > w and the first and

last w characters of s form consecutive elements in T. If S has many repetitions we expect

that D ≪ k. With a little abuse of notation we define the parsing P as the sequence of

lexicographic ranks of substrings in D:P = rankD S si, si + 1 + w − 1 i = 1
k − 1. The parse P

indicates how S may be reconstructed using elements of D. The dictionary D and parse P
may be constructed in one pass over S in O(n + D log D) time if the hash function f can be

computed in constant time.

2.3 r-index locating

Policriti and Prezza [26] showed that if we have stored SA[k] for each value k such that

BWT[k] is the beginning or end of a run (i.e., a maximal non-empty unary substring) in

BWT, and we know both the range BWT[i..j] occupied by characters immediately preceding

occurrences of a pattern Q in S and the starting position of one of those occurrences of Q,

then when we compute the range BWT[i′..j′] occupied by characters immediately preceding

occurrences of cQ in S, we can also compute the starting position of one of those

occurrences of cQ. Bannai et al [1] then showed that even if we have stored only SA[k] for

each value k such that BWT[k] is the beginning of a run, then as long as we know SA[i], we

can compute SA[i′].

Gagie, Navarro and Prezza [11] showed that if we have stored in a predecessor data structure

SA[k] for each value k such that BWT[k] is the beginning of a run in BWT, with ϕ−1(SA[k])

= SA[k +1] stored as satellite data, then given SA[h] we can compute SA[h+1] in O(log log

n) time as SA[h+1] = ϕ−1(pred(SA[h]))+SA[h]−pred(SA[h]), where pred(·) is a query to the

predecessor data structure. Combined with Bannai et al.’s result, this means that while

finding the range BWT[i..j] occupied by characters immediately preceding occurrences of a

pattern Q, we can also find SA[i] and then report SA[i + 1..j] in O((j − i) log log n)-time;

that is, O(log log n)-time per occurrence.

Gagie et al. gave the name r-index to the index resulting from combining a rank data

structure over the run-length compressed BWT with their SA sample, and Bannai et al. used

the same name for their index. Since our index is an implementation of theirs, we keep this

name; on the other hand, we do not apply it to indexes based on run-length compressed

BWTs that have standard SA samples or no SA samples at all.

3 Methods

Here we describe our algorithm for building the SA or the sampled SA from the prefix-free

parse of an input string S, which is used to build the r-index. We first review the algorithm

Kuhnle et al. Page 6

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

from [2] for building the BWT of S from the prefix-free parse. Next, we show how to

modify this construction to compute the SA or the sampled SA along with the BWT.

3.1 Construction of BWT from prefix-free parse

We assume we are given a prefix-free parse of S[1..n] with window size w consisting of a

dictionary D and a parse P. We represent the dictionary as a string

D[1…l] = t1 # t2 # ⋯td − 1 # td # where ti’s are the dictionary phrases in lexicographic order

and # is a unique separator. We assume we have computed the SA of D, denoted by

SAD[1..l] in the following, and the BWT of P, denoted BWTP, and the array Occ[1, d] such

that Occ[i] stores the number of occurrences of the dictionary phrase ti in the parse. These

preliminary computations take O(D + P) time.

By the properties of the prefix-free parsing, each suffix of S is prefixed by exactly one suffix

α of a dictionary phrase tj with |α| > w. We call αi the representative prefix of the suffix

S[i..n]. From the uniqueness of the representative prefix we can partition S’s suffix array

SA[1..n] into k ranges

b1, e1 , b2, e2 , b3, e3 , …, bk, ek

with b1 = 1, bi = ei−1 + 1 for i = 2,…, k, and ek = n, such that for i = 1,…, k all suffixes

S SA bi ..n , S SA bi + 1 ..n , …, S SA ei ..n

have the same representative prefix αi. By construction α1 ≺ α2 ≺ αk.

By construction, any suffix D[i..l] of the dictionary D is also prefixed by the suffix of a

dictionary phrase. For j = 1, …, l, let βj denote the longest prefix of D SAD[j]..l which is

the suffix of a phrase (i.e. D SAD[j] + βj = #). By construction, the strings βj’s are

lexicographically sorted β1 ≺ β2 ≺ ⋯ ≺ βl. Clearly, if we compute β1, …, βl and discard those

such that |βj| ≤ w, the remaining βj’s will coincide with the representative prefixes αi’s.

Since both βi’s and αi’s are lexicographically sorted, this procedure will generate the

representative prefixes in the order α1, α2,…,αk. We note that more than one βj can be equal

to some αi since different dictionary phrases can have the same suffix.

We scan SAD[1..l], compute β1, …, βl and use these strings to find the representative

prefixes. As soon as we generate an αi we compute and output the portion BWT[bi, ei]

corresponding to the range [bi, ei] associated to αi. To implement the above strategy, assume

there are exactly k entries in SAD[1..l] prefixed by αi. This means that there are k distinct

dictionary phrases ti1, ti2, …, tik that end with αi. Hence, the range [bi, ei] contains

zi = ei − bi + 1 = ∑ℎ = 1
k Occ iℎ elements. To compute BWT[bi, ei] we need to: 1) find the

symbol immediately preceding each occurrence of αi in S, and 2) find the lexicographic

ordering of S’s suffixes prefixed by αi. We consider the latter problem first.

Kuhnle et al. Page 7

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Computing the lexicographic ordering of suffixes.—For j = 1,…, zi consider the j-
th occurrence of αi in S and let ij denote the position in the parsing of S of the phrase ending

with the j-th occurrence of αi. In other words, P ij is a dictionary phrase ending with αi and

i1 < i2 < ⋯ < izi. By the properties of BWTP the lexicographic ordering of S’s suffixes

prefixed by αi coincides with the ordering of the symbols P ij in BWTP In other words,

P ij precedes P iℎ in BWTP if and only if S’s suffix prefixed by the j-th occurrence αi is

lexicographically smaller than S’s suffix prefixed by the h-th occurrence of αi.

We could determine the desired lexicographic ordering by scanning BWTP and noticing

which entries coincide with one of the dictionary phrases ti1, …, tik that end with αi but this

would clearly be inefficient. Instead, for each dictionary phrase ti we maintain an array ILi of

length Occ[i] containing the indexes j such that BWTP[j] = i. These sorts of “inverted lists”

are computed at the beginning of the algorithm and replace the BWTP which can be

discarded.

Finding the symbol preceding αi.—Given a representative prefix αi from SAD we

retrieve the indexes i1,…, ik of the dictionary phrases ti1, …, tik that end with αi. Then, we

retrieve the inverted lists ILi1, …ILik and we merge them, obtaining the list of the zi positions

y1 < y2 < ⋯ < yzi such that BWTP yj is a dictionary phrase ending with αi. Such a list

implicitly provides the lexicographic order of S’s suffixes starting with αi.

To compute the BWT we need to retrieve the symbols preceding such occurrences of αi. If

αi is not a dictionary phrase, then αi is a proper suffix of the phrases ti1, …, tik and the

symbols preceding αi in S are those preceding αi in ti1, …, tik that we can retrieve from

D[1…l] and SAD[1..l]. If αi coincides with a dictionary phrase tj, then it cannot be a suffix

of another phrase. Hence, the symbols preceding αi in S are those preceding tj in S that we

store at the beginning of the algorithm in an auxiliary array PRj along with the inverted list

ILj.

3.2 Construction of SA and SA sample along with the BWT

We now show how to modify the above algorithm so that, along with BWT, it computes the

full SA of S or the sampled SA consisting of the values SA[s1],…, SA[sr] and SA[e1],…,

SA[er], where r is the number of maximal non-empty runs in BWT and si and ei are the

starting and ending positions in BWT of the i-th such run, respectively. Note that if we

compute the sampled SA, the actual output will consist of r start-run pairs 〈si, SA[si]〉 and r
end-run pairs 〈ei, SA[ei]〉 since the SA values alone are not enough for the construction of

the r-index.

We solve both problems using the following strategy. Simultaneously to each entry BWT[j],
we compute the corresponding entry SA[j]. Then, if we need the sampled SA, we compare

BWT[j − 1] and BWT[j] and if they differ, we output the pair 〈j − 1, SA[j − 1]〉 among the

end-runs and the pair 〈j, SA[j]〉 among the start-runs. To compute the SA entries, we only

Kuhnle et al. Page 8

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

need d additional arrays EP1,…EPd (one for each dictionary phrase), where |EPi| = |ILi| =

Occ[i], and EPi[j] contains the ending position in S of the dictionary phrase which is in

position ILi[j] of BWTP.

Recall that in the above algorithm for each occurrence of a representative prefix αi, we

compute the indexes i1,…, ik of the dictionary phrases ti1, …, tik that end with αi. Then, we

use the lists ILi1, …, ILik to retrieve the positions of all the occurrences of ti1, …, tik in BWTP,

thus establishing the relative lexicographic order of the occurrences of the dictionary phrases

ending with αi. To compute the corresponding SA entries, we need the starting position in S
of each occurrence of αi. Since the ending position in S of the phrase with relative

lexicographic rank ILiℎ[j] is EPiℎ[j], the corresponding SA entry is EPiℎ[j] − αi + 1. Hence,

along with each BWT entry we obtain the corresponding SA entry which is saved to the

output file if the full SA is needed, or further processed as described above if we need the

sampled SA.

4 Time and memory usage for SA and SA sample construction

We compare the running time and memory usage of bigbwt with the following methods,

which represent the current state-of-the-art.

bwt2sa

Once the BWT has been computed, the SA or SA sample may be computed by applying the

LF mapping to invert the BWT and the application of Eq. 1. Therefore, as a baseline, we use

bigbwt to construct the BWT only, as in Boucher et al. [2]; we use bigbwt since it seems

best suited to the inputs we consider. Next, we load the BWT as a Huffman-compressed

string with access, rank, and select support to compute the LF mapping. We step backwards

through the BWT and compute the entries of the SA in non-consecutive order. Finally, these

entries are sorted in external memory to produce the SA or SA sample. This method may be

parallelized when the input consists of multiple strings by stepping backwards from the end

of each string in parallel.

pSAscan

A second baseline is to compute the SA directly from the input; for this computation, we use

the external-memory algorithm pSAscan [17], with available memory set to the memory

required by bigbwt on the specific input; with the ratio of memory to input size obtained

from bigbwt, pSAscan is the current state-of-the-art method to compute the SA. Once

pSAscan has computed the full SA, the SA sample may be constructed by loading the input

text T into memory, streaming the SA from the disk, and the application of Eq. 1 to detect

run boundaries. We denote this method of computing the SA sample by pSAscan+.

We compared the performance of all the methods on two datasets: (1) Salmonella genomes

obtained from GenomeTrakr [31]; and (2) chromosome 19 haplotypes derived from the 1000

Genomes Project phase 3 data [4]. The Salmonella strains were downloaded from NCBI

(NCBI BioProject PRJNA183844) and preprocessed by assembling each individual sample

with IDBA-UD [25] and counting k-mers (k=32) using KMC [6]. We modified IDBA by

Kuhnle et al. Page 9

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

setting kMaxShortSequence to 1024 per public advice from the author to accommodate the

longer paired end reads that modern sequencers produce. We sorted the full set of samples

by the size of their k-mer counts and selected 1,000 samples about the median. This avoids

exceptionally short assemblies, which may be due to low read coverage, and exceptionally

long assemblies which may be due to contamination.

Next, we downloaded and preprocessed a collection of chromosome 19 haplotypes from

1000 Genomes Project. Chromosome 19 is 58 million base pairs in length and makes up

around 1.9% of the total human genome sequence. Each sequence was derived by using the

bcftools consensus tool to combine the haplotype-specific (maternal or paternal) variant calls

for an individual in the 1KG project with the chr19 sequence in the GRCH37 human

reference, producing a FASTA record per sequence. All DNA characters besides A, C, G, T

and N were removed from the sequences before construction.

We performed all experiments in this section on a machine with Intel(R) Xeon(R) CPU E5–

2680 v2 @ 2.80GHz and 324 GB RAM. We measured running time and peak memory

footprint using/usr/bin/time -v, with peak memory footprint captured by the Maximum

resident set size (kbytes) field and running time by the User Time and System Time field.

We witnessed that the running time of each method to construct the full SA is shown in Figs.

1(a)–1(c). On both the Salmonella and chr19 datasets, bigbwt ran the fastest, often by more

than an order of magnitude. In Fig. 1(d), we show the peak memory usage of bigbwt as a

function of input size. Empirically, the peak memory usage was sublinear in input size,

especially on the chr19 data, which exhibited a high degree of repetition. Despite the higher

diversity of the Salmonella genomes, bigbwt remained space-efficient and the fastest method

for construction of the full SA. Furthermore, we found qualitatively similar results for

construction of the SA sample, shown in Fig. 2. Similar to the results on full SA

construction, bigbwt outperformed both baseline methods and exhibited sublinear memory

scaling on both types of databases.

5 Comparison to Bowtie and CHIC

We studied how r-index scales to repetitive texts consisting of many similar genomic

sequences, comparing it to Bowtie (version 1.2.2) [19], a traditional FM-index based aligner,

and CHIC [33], a Hybrid Index that uses LZ compression to scale to repetitive texts. We

measured indexing memory footprint, indexing time, index size, and locate query time.

We ran Bowtie with the -v 0 and --norc options; -v 0 disables approximate matching, while

--norc causes Bowtie (like r-index) to perform the locate query with respect to the query

sequence only and not its reverse complement.

CHIC parses the text with an LZ-like compression algorithm, storing the resulting phrases in

a kernel string that can be indexed and aligned to with a standard aligner. Kernel-string

alignments are transformed back to the original text coordinates using range-finding data

structures. CHIC’s parameters include: which LZ parsing algorithm to use, the text prefix

length from which phrases in the parse can be sourced (if a relative LZ algorithm is

specified), the kernel-string indexing method, and the maximum length of the query patterns.

Kuhnle et al. Page 10

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We used the RLZ parsing method and the FMI (FM-Index) method for indexing the kernel

string in all our experiments. For the prefix length, we tried both 10% and 30% of the text

length. For the maximum query length, we tried both 100bp and 250bp, these being realistic

second-generation sequencing read lengths. We refer to each parameter combination as

“CHIC Xp Y b”, where X is the prefix-length percentage and Y is the maximum query

length.

5.1 Indexing chromosome 19s

We performed our experiments on collections of one or more haplotypes of chromosome 19.

These haplotypes were obtained from 1000 Genomes Project in the manner described in the

previous section. We used 10 collections of chromosome 19 haplotypes, containing 1, 2, 10,

30, 50, 100, 250, 500, and 1,000, 1,250, 1,500 and 2,000 sequences, respectively. Each

collection is a superset of the previous. Again, all DNA characters besides A, C, G, T and N

were removed from the sequences before construction. All experiments in this section were

run on an Intel Xeon system with an E5–2680 v3 CPU clocked at 2.50GHz and 512GB

memory. We measured running time and peak memory footprint as described in the previous

section.

First, we constructed r-index, Bowtie, and CHIC indexes for successively larger

chromosome 19 collections (Figure 3A, 3B). r-index uses the least indexing memory for

collections of 10 chromosomes and larger. At 250 chr19s, the r-index procedure takes about

2% of the time and 6% the peak memory of Bowtie’s procedure.

While CHIC’s peak memory is also much higher than r-index’s at 10 sequences and above,

CHIC tends to construct indexes faster, especially when using a prefix length of 10% of the

text. At 2000 sequences, CHIC_10p_100b takes about 64% of the time but 920% of the

memory of r-index. Bowtie is drastically slower to index than either CHIC or r-index,

especially for larger collections. Due to memory exhaustion, Bowtie fails to index

collections of more than 250 sequences and two of the CHIC modes (those using a 30%

prefix) fail for collections of more than 1,500 sequences.

Next, we compared the disk footprint of the index files produced by all three methods

(Figure 3C). r-index currently stores only the forward strand of the sequence. Bowtie, on the

other hand, stores both the forward sequence and its reverse as needed by its double-

indexing heuristic [19]. Since the heuristic is relevant only for approximate matching, we

omit the reverse sequence in these size comparisons. We also omit the 2-bit encoding of the

original text (in the *.3.ebwt and *.4.ebwt files) as these too are used only for approximate

matching. Specifically, the Bowtie index size was calculated by adding the sizes of the

forward *.1.ebwt and *.2.ebwt files, which contain the BWT, SA sample, and auxiliary data

structures for the forward sequence. CHIC stores the forward strand of the kernel string,

along with range-finding data structures. These consist of the files ending with

*.P512_GC4_kernel_text.MAN.kernel_index (the kernel index), and *.book keeping,

*.is_literal, *.limits, *.limits_kernel, *.ptr, *.rmq, *.sparse_sample_limits_kernel, *.sparseX,

*.variables and *.x (the range-finding data structures).

Kuhnle et al. Page 11

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

An r-index is considerably larger than a Bowtie or CHIC index for smaller collections.

However it grows at a slower rate than any of the other indexes, becoming smaller than

Bowtie at 30 sequences and smaller than CHIC_10p_250b at 1,500 sequences. The r-index

incurs more overhead for smaller collections because SA sample density depends on the

ratio n/r. When the collection is small, n/r is small leading to a denser SA sample than the 1-

in-32 rate used by Bowtie. CHIC’s index stays small by indexing only the kernel string,

which is smaller than the text. Like Bowtie, the FMI kernel samples a constant fraction of

SA elements. Finally, CHIC’s range-query data structures are typically smaller than the

kernel index. At 250 sequences, the r-index index takes 6% the space of the Bowtie index

and 509% the space of the CHIC_30p_100b index (the smallest CHIC index at this point).

At 1,500 sequences, the CHIC 30p 100b index takes 45% the space of r-index.

We then compared the speed of the locate query for the r-index, Bowtie and CHIC. We

extracted 100,000 100-character substrings from the chr19 collection of size 1, which is also

contained in all of the larger collections. We queried these against each of the indexes

constructed. We aimed to measure the speed of locating all occurrences of each pattern,

because in repetitive indexes the number of occurrences for one pattern is on average the

number of sequences in the collection, but it could also exceed that number due to

multimapping within a sequence. Since the source of the substrings is present in all the

collections, every query will match at least once. As seen in Figure 3D, the r-index locate

time is faster than that of Bowtie after 50 sequences, and it is consistently at least 10x faster

than any of the CHIC modes.

6 Indexing whole human genomes

Lastly, we used r-index to index many human genomes at once. We repeated our

measurements for successively larger collections of (concatenated) genomes. Thus, we first

evaluated a series of haplotypes extracted from the 1000 Genomes Project [4] phase 3 callset

(1KG). These collections ranged from 1 up to 10 genomes. As the first genome, we selected

the GRCh37 reference itself. For the remaining 9, we used bcftools consensus to insert

SNVs and other variants called by the 1000 Genomes Project for a single haplotype into the

GRCh37 reference.

Second, we evaluated a series of whole-human genome assemblies from 6 different long-

read assembly projects (“LRA”). We selected GRCh37 reference as the first genome, so that

the first data point would coincide with that of the previous series. We then added long-read

assemblies from a Chinese genome assembly project [28], a Korean genome assembly

project [16] a project to assemble the well-studied NA12878 individual [15], a hydatidiform

mole (known as CHM1) assembly project [30] and the Celera human genome project [20].

Compared to the series with only 1000 Genomes Project individuals, this series allowed us

to measure scaling while capturing a wider range of genetic variation between humans. This

is important since de novo human assembly projects regularly produce assemblies that differ

from the human genome reference by megabases of sequence (12 megabases in the case of

the Chinese assembly [28]), likely due to prevalent but hard-to-profile large-scale structural

variation. Such variation was not comprehensively profiled in the 1000 Genomes Project,

which relied on short reads.

Kuhnle et al. Page 12

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The 1KG and LRA series were evaluated twice, once on the forward genome sequences and

once on both the forward and reverse-complement sequences. This accounts for the fact that

different de novo assemblies make different decisions about how to orient contigs. The r-
index method achieves compression only with respect to the forward-oriented haplotypes of

the sequences indexed. That is, if two contigs are reverse complements of each other but

otherwise identical, r-index achieves less compression than if their orientations matched. A

more practical approach would be to index both forward and reverse-complement sequences,

as Bowtie 2 [18] and BWA [21] do.

We measured the peak memory footprint when indexing these collections (Figure 4). We ran

these experiments on an Intel(R) Xeon(R) CPU E5–2650 v4 @ 2.20GHz system with

256GB memory. Memory footprints for LRA grew more quickly than those for 1KG. This

was expected due to the greater genetic diversity captured in the assemblies. This may also

be due in part to the presence of sequencing errors in the long-read assembles; long-read

technologies are more prone to indel errors than short-read technologies, for example, and

some may survive in the assemblies. Also as expected, memory footprints for the LRA

series that included both forward and reverse complement sequences grew more slowly than

when just the forward sequence was included. This is due to sequences that differ only (or

primarily) in their orientation between assemblies. All series exhibit sublinear trends,

highlighting the efficacy of r-index compression even when indexing genetically diverse

whole-genome assemblies. Indexing the forward and reverse complement strands of 10 1KG

individuals took about 6 hours and 20 minutes and the final index size was 36GB.

We also measured lengths and n/r ratios for each collection of whole genomes (Table 1).

Consistent with the memory-scaling results, we see that the n/r ratios are somewhat lower

for the LRA series than for the 1KG series, likely due to greater genetic diversity in the

assemblies.

7 Conclusions and Future Work

We give an algorithm for building the SA and SA sample from the prefix-free parse of an

input string S, which fully completes the practical challenge of building the index proposed

by Gagie et al. [11]. This leads to a mechanism for building a complete index of large

databases — which is the linchpin in developing practical means for pan-genomics short

read alignment. We apply our method for indexing partial and whole human genomes, and

show that it scales better than Bowtie with respect to both memory and time. This allows for

an index to be constructed for large collections of chromosome 19s (500 or more); a task

that is out of reach of Bowtie, causing it to exhaust memory even with a budget of 512 GB.

Our method produces indexes in a smaller memory footprint than a Hybrid Index-based

method (CHIC [33]) while providing much faster locate time

Though this work opens the door to indexing large collections of genomes, it also highlights

problems needing further investigation. A major question is how this work can be adapted to

work on large sets of sequence reads. This problem not only requires the construction of the

r-index but also adapting and incorporating efficient means [1] to update the index as new

datasets become available. Moreover, the use of many reference sequences complicates the

Kuhnle et al. Page 13

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

task of a read aligner performing approximate matching. In the future it will be important to

explore both techniques like r-index that can facilitate the seed-finding phase of approximate

matching, but also techniques — perhaps like those proposed in entropy-scaling search [36]

— that can facilitate the gapped extension phase.

Acknowledgments

The authors thank Margaret Gagie for her assistance editing the manuscript as well as Daniel Valenzuela for his
suggestions on how to perform the comparisons to the CHIC software.

10 Funding

AK and CB were supported by National Science Foundation grant IIS-1618814 and National Institutes of Health/
National Institute of Allergy and Infectious Diseases (NIAID) grant R01AI141810–01. TM and BL were supported
by National Science Foundation grant IIS-1349906 and National Institutes of Health/National Institute of General
Medical Sciences grant R01GM118568. TG was supported by Fondecyt grant 1171058. GM was supported by
MIUR-PRIN grant 2017WR7SHH and by INdAM-GNCS project Innovative methods for the solution of medical
and biological big data.

References

1. Bannai H, Gagie T, and Online TI LZ77 parsing and matching statistics with RLBWTs. In
Proceedings of the 29th Annual Symposium on Combinatorial Pattern Matching (CPM), volume
105, pages 7:1–7:12, 2018.

2. Boucher C, Gagie T, Kuhnle A, and Manzini G. Prefix-free parsing for building big BWTs. In
Proceedings of 18th International Workshop on Algorithms in Bioinformatics (WABI), volume 113,
pages 2:1–2:16, 2018.

3. Burrows M and Wheeler DJ. A block sorting lossless data compression algorithm. Technical Report
124, Digital Equipment Corporation, 1994.

4. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature,
526(7571):68–74, 10 2015. [PubMed: 26432245]

5. Danek A, Deorowicz S, and Grabowski S. Indexes of large genome collections on a PC. PLoS ONE,
9(10), 2014.

6. Deorowicz S, Kokot M, Grabowski S, and Debudaj-Grabysz A. KMC 2: Fast and resource-frugal k-
mer counting. Bioinformatics, 31(10):1569–1576, 2015. [PubMed: 25609798]

7. Garrison E et al. Variation graph toolkit improves read mapping by representing genetic variation in
the reference. Nature Biotechnology, 36(9):875–879, 2018.

8. Ferrada H, Gagie T, Hirvola T, and Puglisi SJ. Hybrid indexes for repetitive datasets. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
372(2016):1–9, 2014.

9. Ferrada H, Kempa D, and Puglisi SJ. Hybrid Indexing Revisited. In Proceedings of the 21st
Algorithm Engineering and Experiments (ALENEX), pages 1–8, 2018.

10. Ferragina P and Manzini G. Opportunistic data structures with applications. In Proceedings of the
41st Annual Symposium on Foundations of Computer Science (FOCS), pages 390–398, 2000.

11. Gagie T, Navarro G, and Prezza N. Optimal-time text indexing in bwt-runs bounded space. In
Proceedings of the 29th Annual Symposium on Discrete Algorithms (SODA), pages 1459–1477,
2018.

12. Gagie T and Puglisi SJ. Searching and Indexing Genomic Databases via Kernelization. Frontiers in
Bioengineering and Biotechnology, 3:10–13, 2015. [PubMed: 25699254]

13. Li H and Durbin R Fast and accurate short read alignment with Burrows-Wheeler Transform.
Bioinformatics, 25:1754–60, 2009. [PubMed: 19451168]

14. Huang L, Popic V, and Batzoglou S. Short read alignment with populations of genomes.
Bioinformatics, 29(13), 2013.

Kuhnle et al. Page 14

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

15. Jain M et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nature
Biotechnology, 36(4):338–345, 4 2018.

16. Jeong-Sun S et al. De novo assembly and phasing of a Korean human genome. Nature,
538(7624):243–247, 10 2016. [PubMed: 27706134]

17. Kärkkäinen J, Kempa D, and Puglisi SJ. Parallel external memory suffix sorting. In Proceedings of
the 26th Annual Symposium on Combinatorial Pattern Matching (CPM), pages 329–342, 2015.

18. Langmead B and Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods,
9(4):357, 3 2012. [PubMed: 22388286]

19. Langmead B, Trapnell C, Pop M, and Salzberg SL. Ultrafast and memory-efficient alignment of
short DNA sequences to the human genome. Genome Biology, 10, 2008.

20. Levy S et al. The Diploid Genome Sequence of an Individual Human. PLoS Biology, 5(10):e254, 9
2007. [PubMed: 17803354]

21. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
arXiv:1303.3997 [q-bio], 3 2013. arXiv: 1303.3997.

22. Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, and Wang J. Soap2: an improved tool for
short read alignment. Bioinformatics, 25(15):1966–1967, 2009. [PubMed: 19497933]

23. Maciuca S, del Ojo Elias C, McVean G, and Iqbal Z. A natural encoding of genetic variation in a
Burrows-Wheeler transform to enable mapping and genome inference. In Proceedings of the 16th
Annual Workshop on Algorithms in Bioinformatics (WABI), pages 222–233, 2016.

24. Mäkinen V, Navarro G, Sirén J, and Välimäki N. Storage and retrieval of highly repetitive sequence
collections. Journal of Computational Biology, 17(3):281–308, 2010. [PubMed: 20377446]

25. Peng Yu, Leung Henry C M, Yiu SM, and Chin Francis Y L. IDBA-UD: A de novo assembler for
single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics,
28(11):1420–1428, 2012. [PubMed: 22495754]

26. Policriti A and Prezza N. LZ77 computation based on the run-length encoded BWT. Algorithmica,
80(7):1986–2011, 2018.

27. Schneeberger K et al. Simultaneous alignment of short reads against multiple genomes. Genome
Biology, 10(9), 2009.

28. Shi L et al. Long-read sequencing and de novo assembly of a Chinese genome. Nature
Communications, 7:12065, 6 2016.

29. Sirén J, Välimäki N, and Mäkinen V. Indexing graphs for path queries with applications in genome
research. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(2):375–388,
2014. [PubMed: 26355784]

30. Steinberg KM et al. Single haplotype assembly of the human genome from a hydatidiform mole.
Genome Research, page gr.180893.114, 11 2014.

31. Stevens EL, Timme R, Brown EW, Allard MW, Strain E, Bunning K, and Musser S. The public
health impact of a publically available, environmental database of microbial genomes. Frontiers in
Microbiology, 8:808, 2017. [PubMed: 28536563]

32. Valenzuela D. CHICO: A compressed hybrid index for repetitive collections. In International
Symposium on Experimental Algorithms, pages 326–338. Springer, 2016.

33. Valenzuela D and Mäkinen V. CHIC: a short read aligner for pan-genomic references. Technical
report, biorxiv.org, 2017.

34. Valenzuela D, Norri T, Välimäki N, Pitkänen E, and Mäkinen V. Towards pan-genome read
alignment to improve variation calling. BMC Genomics, 19(2):87, 2018. [PubMed: 29764365]

35. Wandelt S, Starlinger J, Bux M, and Leser U. RCSI: Scalable similarity search in thousand(s) of
genomes. Proceedings of the VLDB Endowment, 6(13):1534–1545, 2013.

36. Yu YW, Daniels NM, Danko DC, and Berger B. Entropy-scaling search of massive biological data.
Cell Syst, 1(2):130–140, 8 2015. [PubMed: 26436140]

Kuhnle et al. Page 15

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1:
Runtime and peak memory usage for construction of full SA.

Kuhnle et al. Page 16

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2:
Runtime and peak memory usage for construction of SA sample.

Kuhnle et al. Page 17

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3:
Scalability of r-index, Bowtie, and CHIC (RLZ compressed, FMI kernel) indexes against

chr19 haplotype collection size and total sequence length (megabases) with respect to index

construction time (seconds) (a), index construction peak memory (megabytes) (b), index

disk space (megabytes) (c), and locate time (seconds) of 100,000 100bp queries (d). Four

different CHIC indexes were used, using different combinations of prefix size and maximum

query length, each labeled as CHIC_(prefix size)p_(max query length).

Kuhnle et al. Page 18

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4:
Peak index-building memory for r-index when indexing successively large collections of

1000-Genomes individuals (1KG) and long-read whole-genome assemblies (LRA).

Kuhnle et al. Page 19

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kuhnle et al. Page 20

Table 1:

Sequence length and n/r statistic with respect to number of whole genomes for the first 6 collections in the

1000 Genomes (1KG) and long-read assembly (LRA) series.

Genomes Sequence Length (MB) n/r

1KG LRA 1KG LRA

1 6,072 6,072 1.86 1.86

2 12,144 12,484 3.70 3.58

3 18,217 17,006 5.38 4.83

4 24,408 22,739 7.13 6.25

5 30,480 28,732 8.87 7.80

6 36,671 34,420 10.63 9.28

Res Comput Mol Biol. Author manuscript; available in PMC 2021 May 11.

	Abstract
	Introduction
	Our contributions.
	Related work.

	Background
	BWT and FM indexes
	Prefix-free parsing
	r-index locating

	Methods
	Construction of BWT from prefix-free parse
	Computing the lexicographic ordering of suffixes.
	Finding the symbol preceding αi.

	Construction of SA and SA sample along with the BWT

	Time and memory usage for SA and SA sample construction
	bwt2sa
	pSAscan

	Comparison to Bowtie and CHIC
	Indexing chromosome 19s

	Indexing whole human genomes
	Conclusions and Future Work
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	Fig. 4:
	Table 1:

