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Abstract
Smooth muscle contractile activity is a major regulator of function of the vascular system, respiratory
system, gastrointestinal system and the genitourinary systems. Malfunction of contractility in these
systems leads to a host of clinical disorders, and yet, we still have major gaps in our understanding
of the molecular mechanisms by which contractility of the differentiated smooth muscle cell (dSMC)
is regulated. This review will summarize recent advances in the molecular understanding of the
regulation of smooth muscle myosin activity via phosphorylation/dephosphorylation of myosin, the
regulation of the accessibility of actin to myosin via the actin binding proteins calponin and
caldesmon, and the remodeling of the actin cytoskeleton. Understanding of the molecular “players”
should identify target molecules that could point the way to novel drug discovery programs for the
treatment of smooth muscle disorders such as cardiovascular disease, asthma, functional bowel
disease and preterm labor.
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Introduction
All contractility is initiated by changes in the activity of, or interactions of, actin and myosin.
In recent years, a multitude of signaling pathways have been suggested to regulate smooth
muscle contractility; however, these pathways can be broken down into 3 major types of
mechanisms (Fig. 1): 1. mechanisms that regulate actin-activated myosin ATPase activity via
changes in the phosphorylation state of the 20kDa myosin light chain (LC20); 2. mechanisms
that regulate the availability of actin to interact with myosin via the action of inhibitory actin
binding proteins such as caldesmon (CaD) and possibly calponin (CaP); and, 3. the less well
studied possibility of mechanisms by which the cytoskeleton is remodeled to facilitate the
transmission or maintenance of force developed by actomyosin interactions.

The first set of pathways are known to be involved in pathologies such as traumatic brain injury
and post-hemorrhagic cerebral vasospasm [1,2] (discussed in detail in a review by Jose Rafols
in this series), and in pulmonary hypertension [3]. The second set of pathways are strongly
implicated in preterm labor [4]. The third set of pathways are implicated in asthma [5]. Thus,
the diversity of signaling pathways that regulate contractility may well offer opportunities for
discovery of potential disease-specific and organ-specific therapies.
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The first set of mechanisms is illustrated on the left-hand side of Fig. 1 (purple type), where
depolarization of a smooth muscle cell, for example, by exposure to a physiological saline
solution in which NaCl is replaced by KCl, opens voltage-dependent Ca2+ channels and
increases Ca2+

i levels. This leads to a Ca2+
i / calmodulin (CaM) – dependent activation of

myosin light chain kinase (MLCK), phosphorylation of myosin LC20, and an increase in
myosin ATPase activity [6,7]. However, as soon as intracellular Ca2+ indicators were
successfully applied to smooth muscle cells and cell permeabilization techniques were
developed, it became clear that many agonists increase the relative amount of force produced
at a constant Ca2+

i, i.e. cause “Ca2+ sensitization” of force [8–17]. Ca2+ sensitization of force
can be caused by a Ca2+ sensitization of LC20 phosphorylation mechanisms and this is now
known to involve pathways that inhibit myosin phosphatase [18,19] as well as pathways that
increase the Ca2+ sensitivity of MLCK, such as the ERK1/2-mediated phosphorylation of
MLCK [20–22], or, possibly by the direct phosphorylation of Ser19 on LC20 by kinases other
than MLCK. These mechanisms are described in more detail below.

An observed “Ca2+ sensitization” of force can also occur in the absence of changes in LC20
phosphorylation [23]. In this case most evidence points to the second type of pathway— i.e.
those that regulate the activity of inhibitory actin binding proteins that regulate the availability
of actin to interact with myosin (Fig.1 right-hand side, blue type). These pathways include
possible roles for ERK1/2, CaP and CaD [24]. These pathways are described below in more
detail.

In recent years, the third possibility, (Fig. 1, top, gold type) i.e., that contractility may be
modulated by remodeling of the cytoskeleton has been suggested, although the molecular
mechanisms are far less well defined. Remodeling of the cytoskeleton is well know to occur
in airway smooth muscle, and there is growing evidence that this also happens in some blood
vessels, (see below), however, it is not yet clear exactly how cytoskeletal remodeling modulates
contractility of either the airway or vascular cells. This topic will be discussed in detail below.
Little is known regarding the molecular mechanism of the remodeling but several groups have
suggested that, as occurs in nonmuscle cells, the process involves not only actin polymerization
but also turnover of adhesion plaque proteins and activation of nonreceptor tyrosine kinases
such as those in the Src family [25].

Mechanisms that regulate LC20 phosphorylation
Smooth muscle myosin, unlike striated muscle myosin, requires phosphorylation at Ser 19 in
order to show significant levels of actin-activated myosin ATPase activity. Ca2+/CaM-
dependent activation of MLCK is the primary and best known pathway by which changes in
the phosphorylation level of smooth muscle myosin occur. However, it is worth mentioning
that smooth muscle myosin, at least in vitro, is also known to be capable of being
phosphorylated in a calcium-independent manner by additional kinases like Rho kinase [26],
integrin-linked kinase (ILK) [27], and zipper-interacting protein kinase (ZIPK) [28,29]
however, the relative in vivo significance of these pathways is not yet entirely determined
[18,30,31]. MLCK itself has been recently reviewed elsewhere [32] and will not be focused
on here. Recent studies have uncovered evidence for a multitude of additional complex
pathways by which smooth muscle myosin phosphorylation levels can be regulated in vivo,
including both regulation of dephosphorylation and the activation of a second Ca2+/CaM-
dependent kinase, CaMKII described below.

Regulation of Myosin Phosphatase
LC20 dephosphorylation is catalyzed by a single myosin light chain phosphatase (MP). The
smooth muscle MP complex consists of the catalytic subunit, PP1c delta, a regulatory subunit,
myosin phosphatase target subunit 1 (MYPT1), also referred to as myosin binding subunit
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(MBS), and a small, approximately 20kDa subunit of unknown function. Alternative splicing
of two exons gives rise to four major MYPT1 isoforms, that differ in the presence of a central
insert and/or a leucine zipper motif at the C-terminal end of the protein (LZ+ and LZ− isoforms)
[33–36].

Initially, MP was assumed to be constitutively active and not subject to regulation. However,
in recent years, an array of regulatory pathways leading to MP inhibition and activation has
been described and is summarized diagrammatically in Fig. 2. The various MP regulators can
be divided roughly into two groups: (1) protein scaffolds and (2) substrates of upstream kinases
(or, phosphoproteins), with some regulators having a dual function.

The most prominent MP regulator is the regulatory subunit, MYPT1, which behaves as both
a scaffolding protein and a substrate of upstream kinases. In its function as a scaffold, MYPT1
can be classified as an activator of MP, since it targets the MP complex to its substrate, LC20
[37]. Moreover, binding of MYPT1 to PP1c delta also enhances its catalytic activity towards
LC20 [38,39]. On the other hand, phosphorylation of MYPT1 on one or both of the two major
inhibitory phosphorylation sites (corresponding to threonine-696 and threonine-853 in
mammalian MYPT1), leads to inactivation of MP [40,41]. MYPT1 also contains an activating
phosphorylation site – serine-695 – that inhibits subsequent inhibitory phosphorylation of
threonine-696 [42].

Another phosphoprotein-type inhibitor of MP is CPI-17 (PKC-potentiated PP1 inhibitory
protein of 17 kDa) [43]. This small protein acts as an MP pseudosubstrate when
phosphorylated, and binds to the catalytic site of MP, thereby competing with LC20 for
phosphorylation. A bimodal MP regulator of the scaffold-type is the myosin phosphatase-Rho
interacting protein (M-RIP), which targets MYPT1, Rho and Rho kinase to actomyosin
filaments. As far as the targeting of MYPT1 to the actomyosin filaments is concerned, this
protein can be an activator of MP; however, since it also targets Rho kinase to the MP complex,
it can also have an inhibitory effect on MP activity. These different possibilities are reflected
by controversial reports about MRIP function [44–48].

The immediate MP regulators are, themselves, downstream elements of extracellular cascades.
Inhibitory phosphorylation of MYPT1 is primarily mediated by the Rho pathway, via Rho
kinase directly and/or via Rho kinase-mediated activation of ZIPK [41,49–51]. Whether
kinases other than Rho kinase can activate ZIPK in smooth muscle is not known. The inhibitory
effect of activated protein kinase C (PKC) on MP is primarily mediated by CPI-17 [52]. Apart
from PKC, CPI-17 can also be phosphorylated by ZIPK and ILK [53,54]. As CPI-17 is more
rapidly phosphorylated and dephosphorylated than MYPT1, these apparently redundant
pathways might be necessary for fine-tuning of contraction; furthermore, each pathway
provides contact points for offset signaling [55,56].

Counterbalancing the Rho and PKC pathways, which support contractility, the nitric oxide
(NO) pathway leads to relaxation. NO elevates intracellular cGMP, which activates the type
Ia cGMP-dependent protein kinase (PKG). PKG phosphorylates RhoA at Serine-188, an
inhibitory phosphorylation site, thus disrupting RhoA signaling [57,58]. Furthermore, PKG
phosphorylates MYPT1 at the activating phosphorylation site, serine-695, thus blocking
subsequent inhibitory phosphorylation [42,59]. This effect on MYPT1 depends on the
expression of the LZ+ isoform of MYPT1, however, it is controversial whether the interaction
between MYPT1 and PKG is mediated by a leucine zipper-leucine zipper interaction [60–
62]. Other downstream effectors of NO include protein phosphatase 2a (PP2a) [63], one of the
phosphatases that dephosphorylate and thus inactivate CPI-17 [64,65].

These regulatory pathways form a network that tightly regulates MP and therefore, has a
significant impact on LC20 phosphorylation and contractility. Disturbance of the balance
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between LC20 phosphorylation and dephosphorylation is expected to, and is known to lead to
pathologies. For example, vascular hyperconstriction of pulmonary arteries, caused by an
overstimulated Rho pathway, leads to pulmonary artery hypertension (PAH) [3]. MYPT1
phosphorylation in particular has been shown to be sensitive to hypoxia, thus probably playing
an essential role in hypoxic relaxation [66]. In hypertensive rat models, inhibition of the Rho
pathway corrected the hypertension [67]. In the setting of neonatal circulatory transition and
in persistent pulmonary hypertension of the newborn, the Rho pathway appeared to be less
important, but instead a role for CPI-17 was shown [68].

CaMKII
Ca2+/Calmodulin dependent kinase II (CaMKII) is a Serine/Threonine kinase that is
ubiquitously expressed. It is a family of four closely related isoforms; alpha, beta, gamma and
delta, the products of four separate genes. The alpha and beta isoforms are primarily restricted
to neural tissues, but the gamma and delta isoforms are widely distributed. We have identified
six variants of CaMKII gamma from an aorta cDNA library raising the possibility that each
could be differentially targeted, have different substrate specificity and, thus, have different
functions [69].

CaMKII consists of an N-terminal catalytic/regulatory domain and a C-terminal association
domain. A linker domain connects these two conserved domains, which is variable in sequence
(Fig. 3). The association domains of all isoforms of CaMKII interact to form large wheel-
shaped holoenzymes [70]. Crystallographic data indicate that the holoenzyme is dodecameric
[71].

As the name implies CaMKII is activated by Ca2+ and calmodulin (CaM). In the inactive state,
an autoinhibitory domain blocks the active site of the molecule, but the binding of Ca2+/CaM
disrupts the autoinhibitory domain and the kinase becomes active. In vitro studies have shown
that CaMKII can autophosphorylate at several sites [72,73]. However, autophosphorylation of
Thr286 (numbering according to alpha isoform, Thr287 for beta, gamma and delta) is the best
explored site and two important consequences have been proposed for autophosphorylation at
this site [74]. First, autophosphorylation of Thr286 disables the autoinhibitory domain; as a
result CaM kinase acquires “autonomous activity”, activity that is retained even after removal
of Ca2+. Secondly, the affinity of CaMKII for CaM increases about 1000-fold, also called ‘CaM
trapping’. The ability of the kinase to retain activity after being activated Ca2+ at a previous
point in time has been referred to as a “molecular memory” [75] that has been linked, for the
alpha and beta isoforms to the processes of synaptic plasticity, learning, and memory per se,
supported, most convincingly by the CaMKII alpha knockout mouse model [76]. In vascular
smooth muscle a modified form of memory has been linked to a prolongation of vascular tone
[77].

A distinct phase of autophosphorylation occurs at Thr305, Thr306 and Ser314 when Ca2+/CaM
dissociates from the Thr286 phosphorylated protein [78]. Autophosphorylation of Thr305 and
Thr306 are inhibitory as they prevent further binding of CaM. However, autophosphorylation
at Ser314 has no effect on binding of CaM [73,79]. In vascular smooth muscle it appears that
Thr305/306 phosphorylation is a significant regulator of vascular tone in that this site, which
inhibits CaMKII activity, is, itself, inhibited by the action of alpha agonists [77] leading to a
delayed reactivation of kinase activity, and increased vascular tone.

Both pharmacological inhibitors and antisense knockdown of CaMKII in vascular tissue and
cells have clearly shown that CaMKII activation is a significant regulator of vascular tone
[20,80,81]. In vitro, CaMKII has been shown to phosphorylate many key proteins involved in
smooth muscle regulation, including MLCK [82,83], LC20 [84], caldesmon and calponin
[85–87], phospholipase alpha2 [88] and the alpha subunit of Ca2+ channel [89]. The in vivo

Kim et al. Page 4

J Cell Mol Med. Author manuscript; available in PMC 2009 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



significance of most of these proteins is unclear; however, in vivo studies have indicated that
CaMKII increases the activity of the voltage dependent K+ channel [90], the voltage dependent
Ca2+ channel [91] and decreases the activity of the Ca2+ activated Cl− channel [92]. The
transcription factor, cAMP-responsive element binding protein (CREB) also appears to be an
in vivo substrate of CaMKII and the elevation of c-fos by CREB phosphorylation regulates
gene expression in smooth muscle [93]. Phospholamban, a negative regulator of sarcoplasmic
reticulum Ca2+-ATPase is also a substrate of CaMKII that seems to have in vivo relevance;
however, because of the apparent low abundance of phospholamban in smooth muscle, the
magnitude of the effect may be less than that in cardiac muscle [94].

CaMKII-mediated regulation of MLCK appears also to have in vivo relevance but is not due
to direct phosphorylation of MLCK but rather to the recruitment of a more complex pathway
involving activation of ERK and the presumed ERK-mediated phosphorylation of and
activation of MLCK at constant Ca2+ levels [20,81,95]. (Pathway 1, Fig. 1)

It is of interest that the knockdown of a specific variant of CaMKII gamma, CaMKII gamma
G-2, inhibits depolarization-mediated contractions and the ERK-MLCK pathway described
above. Whether this one variant is the only variant of the 6 known to be present in vascular
tissue that regulates contractility, or whether other variants share this mechanism, is not yet
known. Obviously, if G-2 is the sole variant effective in regulating vascular tone, it would be
a potentially specific candidate molecule for drug discovery research. This variant is unusual
in having a unique sequence of 99 amino acids that target the variant, when activated, to
adhesion plaques. The prevention of CaMKII gamma G-2 targeting to adhesion plaques leads
to significant inhibition of ERK activation as well as contractility [81].

A specific G-2 phosphatase, a small C-terminal domain (CTD) phosphatase-3 (SCP3)
homologue, a PP2C-type phosphatase has also been reported [96]. This phosphatase is
primarily expressed in vascular smooth muscle tissues and specifically binds to the association
domain of the CaMKII gamma G-2. SCP3 dephosphorylation of CaMKII gamma G-2 is site
specific, excluding the Thr287 site associated with Ca2+/CaM-independent activation of the
kinase. Thus, the selective dephosphorylation by SCP3 creates a constitutively active kinase
which is regulated by phosphorylation-dependent targeting mechanisms [96].

Recent work on the delta isoform of CaMKII has shown a role for CaMKII delta in PDGF-
stimulated vascular smooth muscle migration [97] and wound healing [98]. Vascular injury
induced by balloon angioplasty has been shown to increase CaMKII delta isoform expression
in smooth muscle cells and in fibroblasts [99]. Trafficking of iNOS was also shown to be
dependent on the activation of CaMKII delta isoform [100]. Thus, the gamma and delta
isoforms of CaMKII may have distinct, but equally important roles in vascular function.

Mechanisms that regulate the access of myosin to actin
Caldesmon

Caldesmon (CaD) is a highly conserved, actin [101] and myosin [102] binding protein that
exists in two isoforms which are generated by alternative splicing. Whereas the heavy isoform
(h-CaD) is restricted to smooth muscle cells, the light isoform (l-CaD) is expressed in non-
muscle and dedifferentiated smooth muscle cells [103]. This thin-filament associated protein
is capable of stabilizing actin filaments [104], blocking Arp2/3 mediated actin polymerization
[105], inhibiting actomyosin ATPase activity [106] as well as actin-myosin interaction [107]
and thereby regulates contractility of smooth muscle cells. The inhibitory effect of h-CaD can
be reversed by either binding of (CaM)/Ca2+ to the C-terminal domain [108] or by
phosphorylation of Serine residues 759 and 789 by either ERK1/2 [109] or cdc2 [110]. These
events lead to a conformational change in the CaD structure which allows interaction between
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actin and myosin [111]. While cdc2 phosphorylation plays an important role in cytokinesis
[112], the phosphorylation of CaD by ERK1/2 appears to regulate smooth muscle contractility
[113]. In this latter process ERK1/2 is activated by PKC (Fig. 1) which in turn can be stimulated
by phorbol esters or GPCR receptor agonists. Interestingly, CaD is found in podosomes
[114], structures that are known to represent sites of PKC activation and signaling and that are
involved in actin cytoskeleton remodeling processes [115]. Thus CaD is an important mediator
of smooth muscle contractility, regulated, among other mechanisms, by a PKC/ERK signaling
pathway.

bCaP function in regulation of PKC alpha/epsilon and ERK1/2 signaling
Calponin (CaP) is an actin-binding protein that was first isolated from gizzard smooth muscle
cells and that can regulate myosin ATPase activity [116]. To date there are known three
isoforms of this putative actin regulatory protein, called h1 CaP (smooth muscle-specific basic
CaP, bCaP) [117], h2 CaP (neutral CaP) [118] and acidic CaP [119] which are encoded by
three different genes. The most abundant isoform in dSMC is bCaP [120,121], although the
other isoforms are also expressed in this cell type in a lower extent [119,122]. Moreover bCaP
can be used as a differentiation marker of smooth muscle due to its downregulation in
proliferating cells [87]. CaP proteins consist of a conserved so called CaP homology (CH)
domain in their N-Terminus, a Troponin I (TnI) –like actin-binding domain and three C-
terminal repeats [123,124]. The very C-terminus is the variable region in the three CaP-
isoforms, whereas the N-terminal fragment is highly conserved (see Fig. 4). The CH-domain
has been shown to bind acidic phospholipids [125] and ERK1/2 [126], although this structural
motif is often implicated in actin binding in many other cytoskeleton proteins [127]. PKC alpha
and epsilon can interact with bCaP through the C-terminal repeats [128]. Actin binding of CaP
occurs through the TnI-like domain and in a weaker fashion through the C-terminal repeats
[124] and is regulatable by phosphorylation of PKC at Serine 175 and Threonine 184 residues
located within the C-terminal repeats [129,130].

The functional role of bCaP in regulation of smooth muscle contractility is controversial. One
theory is that bCaP may directly regulate contractility by inhibiting actomyosin ATPase activity
of myosin heads cross-linked to actin [116] and indeed experiments have shown that bCaP is
able to negatively influence in vitro motility of actin filaments [131]. On the other hand, bCaP
has been suggested to facilitate agonist-induced signal transduction perhaps by acting as a
scaffold protein. This latter hypothesis is based on the findings in vascular smooth muscle cells
that bCaP acts as an adaptor protein to directly interact with the signaling proteins PKC
[128] and ERK1/2 [126], cotranslocates to the cell cortex upon stimulation together with
ERK1/2 and PKC [132] and, in addition, seems to promote PKC activation [128]. Moreover
it was shown that a knockdown of bCaP in differentiated vascular smooth muscle cells results
in impaired ERK1/2 activity, h-CaD phosphorylation and contractility [133].

Extracellular regulated kinase 1/2 (ERK 1/2) is a member of the Mitogen-activated protein
kinase (MAPK) family, kinases that posses serine/threonine activity. Stimulation of most cell
surface receptors by mitogens or GPCR agonists causes activation of MAPK signaling
pathways where MAPKs such as ERK1/2 become phosphorylated at Thr and Tyr residues.
Phosphorylated ERK1/2 proteins are able to form dimers, enter the nucleus, phosphorylate
transcription factors and thereby promote cell proliferation of undifferentiated cells [134–
136]. On the other hand, active MAPKs have also been found in differentiated, non-
proliferating contractile smooth muscle cells [137,138], but their function in this cell types is
still not fully understood. Furthermore it is interesting that an intact actin cytoskeleton seems
to be necessary for ERK signaling [139] and that ERK1/2 itself shows actin-binding properties
[126], suggesting that the actin cytoskeleton is involved in ERK1/2 signaling. More evidence
for ERK1/2 playing a significant role in regulation of smooth muscle contractility comes from
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studies in pregnant rats showing that ERK1/2 activity is connected to onset of labor [140]. In
uterine smooth muscle, the kinase is activated in late pregnancy, possibly due to an increased
cortical tension, after translocation to the cell surface. This event is followed by an increased
h-CaD phosphorylation which contributes to the initiation of contractions [4,25].

Another interesting interaction partner of bCaP that seems to be involved in the ERK1/2
signaling pathway is the smooth muscle Archvillin (SmAV) protein. Recent findings show that
SmAV binds to bCaP, ERK1/2 and Raf [141,142], translocates to the cell periphery in smooth
muscle cells after agonist stimulation and colocalizes with ERK1/2 and bCaP. Furthermore,
an antisense-mediated knockdown of SmAV decreases ERK1/2 activation and contractility of
smooth muscle, similar to a bCaP knockdown [141].

The model shown in Fig. 5 brings these findings together. In this model bCaP acts as a scaffold,
connecting ERK1/2 and PKC pathways to regulation of smooth muscle cell contractility [24]
(Fig. 5): (1) In the first step a, yet unclear, stimulus leads to subsequent activation of PKC
alpha/epsilon, which is facilitated by bCaP. bCaP has been shown in vitro to be able to stimulate
PKC alpha/epsilon activation in the absence of lipids [128]. It can be speculated that either cell
permeant phorbol esters bind to PKC alpha/epsilon located at the actin filaments to activate
the molecule or, in the case of GPCR activation, that another PKC isoform such as PKC delta
activates PKC alpha/epsilon by phosphorylation. Activated PKC alpha/epsilon would then be
able to phosphorylate bCaP and attenuate its binding affinity to actin, so that (2) the PKC alpha/
epsilon – ERK1/2 – bCaP complex translocates to the cell cortex, where it comes in contact
with SmAV, acting as a scaffold for Raf and MEK. PKC alpha/epsilon at the surface membrane
could then undergo a full activation through binding of diacylglycerol (DAG), produced by
active phospholipase C (PLC) at the cell membrane. Active PKC alpha/epsilon can
phosphorylate Raf [143], which in turn activates MEK, followed by activation of the ERK1/2
molecule. (3) Whereas PKC alpha/epsilon, bCaP and SmAV stay at the cell cortex, (4)
phosphorylated ERK1/2 moves back to the actin cytoskeleton where it comes into proximity
with the actin-bound h-CaD molecule and phosphorylates its substrate [144]. Phosphorylation
of h-CaD results in a conformational change of the molecule, leading to partial dissociation of
h-CaD from actin and, hence, to actomyosin interaction and contraction [113].

Less is known about bCaP and its involvement in vascular diseases, but hints come from mice
with a mutated bCaP locus which express a C-terminal truncated form of the protein lacking
the TnI-like domain as well as the three C-terminal repeats and the variable C-terminus.
Surprisingly the most conspicuous phenotype of these mice was an increased bone formation,
leading to the hypothesis that bCaP is involved in regulation of osteogenesis [145]. Further
examination has revealed that these mice display a faster shortening velocity [146], a lower
heart beat rate, an impaired α-adrenergic vasoconstriction, an enhanced arterial baroreflex
sensitivity [147], a lower active isometric force [148] as well as impaired arterial blood pressure
regulation during exercise due to an enhanced muscular vasodilation [149]. Particularly the
enhanced vasodilation in mice expressing the truncated bCaP form is consistent with our
hypothesis that bCaP is required to activate ERK1/2 which in turn inactivates h-CaD, thereby
facilitating contraction. However, it should be considered that the truncated bCaP protein
expressed in the mouse model lacks only the actin-binding domains and the CH-domain is still
expressed. So it should be examined if this truncated bCaP form is still able to interact with
ERK1/2 and could therefore substitute for the wild type bCaP in some of its functions.

In other studies, it has been shown that blood vessels of mice with a mutated bCaP locus are
more fragile [150] and therefore less resistant to metastasis of tumor cells [151,152]. Indeed
downregulated bCaP expression is a poor diagnostic marker in many cancers [153–158],
leading to the hypothesis that misregulated bCaP levels are connected to cancerous diseases.
It has been speculated that downregulated bCaP levels in smooth muscle cells of blood vessel
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tumors leads to a destabilization of actin filaments, thereby weakening adhesion of cells to
neighbouring cells as well as to the extracellular matrix. This in turn could be a reason for the
fragility and penetrability of metastatic tumor cells [150]. On the other hand it was also shown
that restoration of bCaP expression in transformed cells can lead to a reduced proliferation rate,
tumorigenicity and metastatic cell motility. It has also been speculated that a loss of bCaP leads
to an unstable actin filament system, thereby facilitating cytoskeleton reorganisation which is
necessary for cells to assume an invasive phenotype [159,160]. Finally, given the evidence
(mentioned above) that CaP interacts with MAPKs and the known association of MAPKs with
regulation of proliferation, this pathway could also contribute to this property of CaP. Thus,
the exact mechanisms by which bCaP can act as a tumor suppressor remains to be elucidated.

Mechanisms that regulate cytoskeletal remodeling
The actin cytoskeleton is defined as the collection of actin filaments and actin filament
associated proteins, including adhesion plaque proteins. It has previously been assumed that
the actin cytoskeleton in dSMC is largely static, performing a solely structural role, in
comparison to the dynamic cytoskeleton of migrating, proliferating vascular smooth muscle
cells [161]. Although this topic is still controversial, a body of evidence is growing to support
the idea that the actin cytoskeleton is remodeled during contractile agonist activation and that
this remodeling might modulate vascular contractility [162–164].

Actin can exist as either filamentous actin (F-actin) or globular actin (G-actin) in cells. G-actin
spontaneously polymerizes to form F-actin above its critical concentration (∼8 microgram/ml)
[165]. The G-actin concentration in the cytoplasm of dVSM cells is above the critical
concentration. However, the polymerization of actin is tightly controlled by a large number of
actin binding proteins such as profilin, ADF/cofilin, capping proteins, and sequestering
proteins etc. Signaling pathways that regulate these processes therefore regulate the actual ratio
between G- and F-actin resulting in assembly or disassembly of the actin filament (Fig. 6)
[165,166].

Actin exists primarily as F-actin (∼ 80% of total actin) in unstimulated contractile intact
vascular smooth muscle. The percentage of F-actin can go above 90% in alpha adrenergic
receptor stimulated smooth muscle, indicating dynamic remodeling of the actin cytoskeleton
[164]. This result is consistent with the findings reported by Gunst and colleagues for airway
smooth muscle [167,168].

Actin is the most abundant protein in smooth muscle and it is highly conserved throughout
evolution and across species [169]. Six actin isoforms, products of separate genes, are present
in vertebrate tissues [170]. Among these isoforms, two smooth muscle type isoforms (alpha
and gamma) and two cytoplasmic isoforms (beta and gamma) coexist in differentiated vascular
smooth muscle [164,171]. The cytoplasmic beta and gamma actin isoforms are also sometimes
referred to as nonmuscle isoforms in smooth muscle tissues [169]. Evidence exists, largely in
cultured non-muscle cells that the different actin isoforms perform different cellular functions
[169]. The amino acid sequences of these actin isoforms are remarkably conserved and most
sequence differences are clustered at the NH2-terminal ends [172]. The NH2-terminal region
of actin is known not to be involved in actin-actin monomer binding and hence does not directly
regulate actin filament polymerization, however this region is known to be the binding site of
many actin binding proteins including myosin [173] and many actin polymerization regulatory
proteins. Recently, we showed that the NH2-terminal of actin isoforms also modulates the
contractile function of vascular smooth muscle by using the NH2-terminal decoy peptides of
actin isoforms [164]. This result supports the concept that different actin isoforms perform
different functions, even though the detailed mechanisms involved are not clear yet.
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The actin filaments that connect to either dense bodies or dense plaques (also known as focal
adhesion complexes) in smooth muscle are likely to include both the contractile filaments, i.e.
actomyosin-containing myofilaments, as well as actin filaments that are not associated with
myosin, i.e. the nonmuscle actin cytoskeleton. However, the arrangement of the contractile
filaments with respect to the overall cytoskeleton and the mechanism by which the nonmuscle
cytoskeleton is coupled to the contractile apparatus are still a matter of debate [174]. A
differential subcellular distribution of alpha-smooth muscle and beta-cytoplasmic actin in
vascular smooth muscle [175] and a differential distribution for beta-cytoplasmic actin from
actomyosin containing contractile bundles in chicken gizzard smooth muscle [174] have been
reported. A separation of cytoskeletal actin from actomyosin-containing contractile actin has
been reported by using immunoprecipitation [176]. In contrast, others have argued against any
actin isoform specific domains in vascular smooth muscle [177–179]. It is quite likely that the
connection between the two actin cytoskeletons is dynamic perhaps regulated by ‘a hierarchical
slippage clutch’ that is, itself, regulated by signaling pathways [180].

Focal adhesion complexes are large structures, often a micron in size, containing, in different
cell types, over a hundred proteins including integrin, actin, actin binding proteins, protein
kinases, and signaling proteins (Fig. 6) [181]. At focal adhesions, the force generated by the
contractile proteins is conveyed to the extracellular matrix (ECM) via integrin receptors. The
integrin family consists of eighteen alpha and eight beta subunits which can form 24 unique
integrin heterodimers [182]. The short intracellular domains of integrins are indirectly
connected to the actin cytoskeleton by several proteins such as talin, vinculin, paxillin and by
these connections, the extracellular events can be communicated into the cell and vice versa
[183]. Further details on this topic can be found in other recent review articles [181,183–
185].

There are several reports indicating that the connection between the actin cytoskeleton and
components of focal adhesion complexes are dynamic and are remodeled during
agonistinduced activation in differentiated airway smooth muscle. Integrin
mechanotransduction and consequent signal transduction-dependent alterations in the adhesion
plaque proteins, paxillin, talin, vinculin and FAK has been reported for both vascular and
airway smooth muscle [163,186–195].

Actin cytoskeletal remodeling also has been reported to occur in vascular smooth muscle
[162,164,189,190,196]. However, what has not been clear is exactly how, or if, cytoskeletal
remodeling modulates contractility of smooth muscle. Different possible mechanisms have
been suggested by different groups. Some groups have suggested that cytoskeletal remodeling
may alter the transmission of cross-bridge generated force to the cell membrane [192]. Dynamic
cytoskeletal processes within the cell may enhance the strength of the connections between
membrane adhesion junctions and actin filament within the contractile apparatus and
cytoskeletal network, thus providing a strong and rigid framework for the transmission of force
generated by the interaction of myosin and actin filaments to the outside of the cell [167].
However, Seow and his colleagues have published that the length of total contractile filament
complex is changed by addition or removal of myofilament units, suggesting the possibility of
dynamic remodeling in actomyosin containing myofilament [197–202]. Other groups have
suggested that cytoskeletal remodeling modulates force maintenance or optimizes the energetic
cost of tension in the vascular smooth muscle cell [203].

Recently, we found that the actin cytoskeleton in vascular smooth muscle is differentially
remodeled in a stimulus- and pathway-dependent manner. Interestingly, gamma-actin, the least
abundant actin isoform in vascular smooth muscle, is the most dynamically remodeled by alpha
adrenergic receptor stimulation [164]. This result suggests that the nonmuscle actin
cytoskeleton is more dynamic than the actin cytoskeleton in contractile apparatus. The
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reorganization of the cytoskeleton was shown to correlate with mechanisms for regulation of
smooth muscle contraction.

To understand the functional specificity of individual actin isoforms and to identify the
isoforms related diseases, several investigations utilized manipulation of the isoform specific
genes [204–206]. Ablation of gamma-cytoplasmic actin in skeletal muscle causes progressive
muscle necrosis and regeneration in mouse [207–209]. Vascular smooth muscle contractility
and blood pressure homeostasis are impaired in the alpha smooth muscle actin null mouse
[206].

It is conceivable that abnormal contractility in vascular smooth muscle may result from the
perturbation of normal cytoskeletal remodeling processes. Recently, Guo et al. [210] published
that 14% of inherited familial ascending thoracic aorta aneurysms leading to acute aortic
dissections (TAAD) are caused by missense mutations in ACTA2 (encodes alpha smooth
muscle actin). By using structural and immunofluorescence analysis, this study show that
interference with actin filament polymerization caused by this mutation leads to impaired
smooth muscle contraction [210]. There is much experimental evidence supporting the concept
that remodeling of the actin cytoskeleton is a crucial regulator of smooth muscle function.
However, much remains to be determined regarding the mechanistic basis for the actin
cytoskeletal remodeling in smooth muscle.

Conclusions
Undoubtedly, the information above has communicated the concept that smooth muscle
“excitation-contraction coupling” consists of far more than a simple calcium switch. Although
the complexity of the multitude of, apparently, redundant signaling pathways which regulate
smooth muscle contractility can be overwhelming, clearly the importance of proper functioning
of smooth muscle systems requires the fine tuning made possible by this sort of complex
system.

The importance of pathways that regulate plasticity of the cytoskeleton and those that regulate
the availability of actin to interact with myosin is only now becoming clear. Similarly, the
relative importance of the mix of pathways that regulate myosin phosphorylation levels in dSM
tissues is just now playing out. The good news is that this complex network of pathways offers
a multitude of possible leads for novel drug targets, with the hundreds of proteins present in
adhesion plaques representing, potentially, quite accessible targets. Added to this the well
known tissue- and organ-specific nature of smooth muscle signaling molecules and pathways,
it is feasible that such targets could lead to quite specific, as well as effective, new therapeutics.
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Figure 1. Pathways that regulate contractility (demonstrated and putative)
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Figure 2. Regulatory pathways leading to myosin light chain phosphatase inhibition and activation
Activating signaling molecules (leading to relaxation) are shown in green, inhibitory molecules
(supporting contractility) are shown in pink. Molecules shown in blue are bimodal and can be
both, an inhibitor or an activator.
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Figure 3. Domain structure of CaMKII
The phospho-sites are indicated with ‘P’ on top of the amino acid residues. The numbering is
according to the alpha isoform.
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Figure 4. Domain structure of Calponin
Calponin proteins consist of a conserved N-terminus including the CH-domain (blue), the TnI-
like domain (yellow) as well as the three C-terminal repeats (green). However, the very C-
terminus is a highly variable region (red) that differs in size and amino acid sequence within
the three Calponin isoforms.
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Figure 5. Model of bCaP function in regulation of smooth muscle cell contractility
(1) Starting with a yet unidentified stimulus, PKC alpha/epsilon gets subsequently activated,
an event that is further supported by bCaP binding. PKC alpha/epsilon may now phosphorylate
bCaP, leading to an impaired actin binding property of bCaP. (2) Hence the ERK1/2 - PKC
alpha/epsilon - bCaP complex translocates to the cell cortex where it binds to SmAV, a protein
acting as a scaffold for Raf and MEK. Moreover the PKC alpha/epsilon molecule gets fully
activated by membrane bound DAG that is produced by activated PLC coupled to GPCR. The
activated PKC alpha/epsilon molecule phosphorylates Raf, which in turn phosphorylates MEK
that now activates ERK1/2. Whereas the SmAV – bCaP – PKC alpha/epsilon complex stays
at the membrane, (4) activated ERK1/2 moves back to the actin filaments where it comes in
contact with its substrate h-CaD. Phosphorylation of the h-CaD molecule leads to its
conformational change, resulting in enabled actin – myosin interaction and hence to
contraction. For detailed information see text/article.
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Figure 6. Cytoskeletal remodeling at focal adhesions and regulation of smooth muscle contraction
Integrins connect the extracellular matrix to actin filaments within the cell. Actin filaments are
linked to cytoplasmic domain of integrin by linker proteins (green). Mechanical and/or
contractile stimuli induce the cytoskeletal remodeling by recruiting signaling proteins (orange)
to focal adhesions.
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