
Licensed under the Creative Commons Attribution 4.0 License

CORRESPONDING AUTHOR: Aziz Nazha, MD, Lerner College of Medicine, Department of Hematology and Medical Oncology, 
Taussig Cancer Institute, Cleveland Clinic, Desk R35, 9500 Euclid Ave, Cleveland, OH 44195; nazhaa@ccf.org.
AUTHOR CONTRIBUTIONS
Conception and design: Aziz Nazha, Mikkael A. Sekeres, Cameron B. Hilton, David P. Steensma, Guillermo Garcia-Manero, 
Benjamin L. Ebert
Financial support: John Barnard, Guillermo Garcia-Manero, Jaroslaw P. Maciejewski
Administrative support: Guillermo Garcia-Manero, Jaroslaw P. Maciejewski Provision of study material or patients: Rafael Bejar, 
Guillermo Garcia-Manero, Harry Erba, Jaroslaw P. Maciejewski
Collection and assembly of data: Aziz Nazha, Rafael Bejar, Michael J. Rauh, Megan Othus, Rami S. Komrokji, Cassandra M. Kerr, 
David P. Steensma, Amy DeZern, Guillermo Garcia-Manero, Jaroslaw P. Maciejewski
Data analysis and interpretation: Mikkael A. Sekeres: Michael J. Rauh, Megan Othus, Rami S. Komrokji, John Barnard, Cameron 
B. Hilton, Cassandra M. Kerr, David P. Steensma, Amy DeZern, Gail Roboz, Guillermo Garcia-Manero, Harry Erba, Jaroslaw P. 
Maciejewski
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

PRIOR PRESENTATION
Presented at the Annual Meeting of the American Society of Hematology, Atlanta, GA, December 2017.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST AND DATA AVAILABILITY STATEMENT
The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. 
Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the 
subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or 
ascopubs.org/po/author-center.
Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians 
Open Payments.
Aziz Nazha
Honoraria: DCI
Consulting or Advisory Role: Karyopharm Therapeutics, Tolero Pharmaceuticals
Speakers’ Bureau: Novartis, Incyte
Research Funding: Jazz Pharmaceuticals
Mikkael A. Sekeres
Consulting or Advisory Role: Celgene, Millennium Pharmaceuticals, Syros Pharmaceuticals
Research Funding: Takeda Pharmaceuticals (Inst), Pfizer (Inst)
Rafael Bejar
Honoraria: Celgene, Alexion Pharmaceuticals, Abbvie/Genentech, Astex Pharmaceuticals, NeoGenomics Laboratories, Daiichi 
Sankyo, Forty Seven
Consulting or Advisory Role: Celgene, Foundation Medicine, NeoGenomics Laboratories, Abbvie/Genentech, Astex 
Pharmaceuticals, Daiichi Sankyo
Research Funding: Celgene, Takeda Pharmaceuticals
Travel, Accommodations, Expenses: Celgene
Megan Othus
Consulting or Advisory Role: Celgene, Glycomimetics, Cascadia Laboratories
Rami S. Komrokji
Stock and Other Ownership Interests: Abbvie
Consulting or Advisory Role: Celgene, Novartis, Daiichi Sankyo, Pfizer, Janssen Pharmaceuticals, Agios, Incyte
Speakers’ Bureau: Novartis, Alexion Pharmaceuticals, Jazz Pharmaceuticals
Travel, Accommodations, Expenses: Celgene, Incyte, Alexion Pharmaceuticals, Novartis, Jazz Pharmaceuticals, Daiichi Sankyo
David P. Steensma
Stock and Other Ownership Interests: Array BioPharma (I)
Honoraria: Daiichi Sankyo, Summer Road, Stemline Therapeutics
Consulting or Advisory Role: Pfizer
Amy DeZern
Consulting or Advisory Role: Acceleron Pharma, Syros, Otsuka US
Gail Roboz
Consulting or Advisory Role: Amphivena, Janssen, Amgen, Astex Pharmaceuticals, Celgene, Genoptix, MedImmune, Novartis, 
Pfizer, Abbvie, Argenx, Array BioPharma, Bayer AG, Celltrion, Jazz Pharmaceuticals, Orsenix, Genentech/Roche, Sandoz, Actinium 
Pharmaceuticals, Astellas Pharma, Eisai, Daiichi Sankyo, MEI Pharma, Otsuka, Takeda Pharmaceuticals, Roche, Agios, Trovagene
Research Funding: Abbvie (Inst), Agios (Inst), Astex Pharmaceuticals (Inst), Celgene (Inst), CTI (Inst), Karyopharm Therapeutics 
(Inst), MedImmune (Inst), MEI Pharma (Inst), Moffitt (Inst), Novartis (Inst), Onconova Therapeutics (Inst), Pfizer (Inst), Sunesis 
Pharmaceuticals (Inst), Tensha Therapeutics (Inst), Cellectis (Inst), Cellectis, Janssen (Inst), Amphivena (Inst)

HHS Public Access
Author manuscript
JCO Precis Oncol. Author manuscript; available in PMC 2019 October 29.

Published in final edited form as:
JCO Precis Oncol. 2019 ; 3: . doi:10.1200/po.19.00119.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.asco.org/rwc
http://www.ascopubs.org/po/author-center


Genomic Biomarkers to Predict Resistance to Hypomethylating 
Agents in Patients With Myelodysplastic Syndromes Using 
Artificial Intelligence

Aziz Nazha, MD1, Mikkael A. Sekeres, MS, MD1, Rafael Bejar, MD, PhD2, Michael J. Rauh, 
MD, PhD3, Megan Othus, PhD4, Rami S. Komrokji, MD5, John Barnard, PhD1, Cameron B. 
Hilton1, Cassandra M. Kerr, MS1, David P. Steensma, MD6, Amy DeZern, MD7, Gail Roboz, 
MD8, Guillermo Garcia-Manero, MD9, Harry Erba, MD, PhD10, Benjamin L. Ebert, MD, PhD11, 
Jaroslaw P. Maciejewski, MD, PhD1

1Cleveland Clinic, Cleveland, OH

2University of California San Diego, San Diego, CA

3Queen’s University, Kingston, Ontario, Canada

4Fred Hutchinson Cancer Research Center, Seattle, WA

5Moffitt Cancer Center, Tampa, FL

6Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA

7The Johns Hopkins University School of Medicine, Baltimore, MD

8Weill Cornell University, New York, NY

9MD Anderson Cancer Center, Houston, TX

10Duke University, Durham, NC

11Brigham and Women’s Hospital, Harvard Medical School, Boston, MA

Abstract

Travel, Accommodations, Expenses: Amphivena, Astex Pharmaceuticals, Janssen, Pfizer, Array BioPharma, Novartis, Abbvie, Jazz 
Pharmaceuticals, Celgene, Celltrion, Roche/Genentech, Sandoz, Bayer AG, Clovis Oncology, Amgen, Sunesis Pharmaceuticals, Eisai, 
Agios
Guillermo Garcia-Manero
Honoraria: Celgene, Astex Pharmaceuticals, Acceleron Pharma, Helssin, Abbvie
Consulting or Advisory Role: Celgene, Astex Pharmaceuticals, Acceleron Pharma, Jazz Pharmaceuticals
Research Funding: Celgene, Astex Pharmaceuticals
Harry Erba
Consulting or Advisory Role: Agios, Astellas Pharma, Amgen, Celgene, Daiichi Sankyo, Glycomimetics, Immunogen, Incyte, Jazz 
Pharmaceuticals, Macrogenics, Novartis, Pfizer, Seattle Genetics
Speakers’ Bureau: Agios, Celgene, Incyte, Jazz Pharmaceuticals, Novartis
Research Funding: Agios (Inst), Amgen (Inst), Daiichi Sankyo (Inst), Glycomimetics (Inst), Immunogen (Inst), Janssen Oncology 
(Inst), Juno Therapeutics (Inst), Pfizer (Inst), Seattle Genetics (Inst), Takeda Pharmaceuticals (Inst)
Other Relationship: Glycomimetics, Celgene
Benjamin L. Ebert
Consulting or Advisory Role: GRAIL
Research Funding: Celgene, Deerfield Management
Patents, Royalties, Other Intellectual Property: Patents related to the prediction of risk of cardiovascular disease (Inst)
No other potential conflicts of interest were reported.

Nazha et al. Page 2

JCO Precis Oncol. Author manuscript; available in PMC 2019 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PURPOSE—We developed an unbiased framework to study the association of several mutations 

in predicting resistance to hypomethylating agents (HMAs) in patients with myelodysplastic 

syndromes (MDS), analogous to consumer and commercial recommender systems in which 

customers who bought products A and B are likely to buy C: patients who have a mutation in gene 

A and gene B are likely to respond or not respond to HMAs.

METHODS—We screened a cohort of 433 patients with MDS who received HMAs for the 

presence of common myeloid mutations in 29 genes that were obtained before the patients started 

therapy. The association between mutations and response was evaluated by the Apriori market 

basket analysis algorithm. Rules with the highest confidence (confidence that the association 

exists) and the highest lift (strength of the association) were chosen. We validated our biomarkers 

in samples from patients enrolled in the S1117 trial.

RESULTS—Among 433 patients, 193 (45%) received azacitidine, 176 (40%) received decitabine, 

and 64 (15%) received HMA alone or in combination. The median age was 70 years (range, 31 to 

100 years), and 28% were female. The median number of mutations per sample was three (range, 

zero to nine), and 176 patients (41%) had three or more mutations per sample. Association rules 

identified several genomic combinations as being highly associated with no response. These 

molecular signatures were present in 30% of patients with three or more mutations/sample with an 

accuracy rate of 87% in the training cohort and 93% in the validation cohort.

CONCLUSION—Genomic biomarkers can identify, with high accuracy, approximately one third 

of patients with MDS who will not respond to HMAs. This study highlights the importance of 

machine learning technologies such as the recommender system algorithm in translating genomic 

data into useful clinical tools.

INTRODUCTION

The hypomethylating agents azacitidine (AZA) and decitabine (DAC) have been approved 

by the Food and Drug Administration and the European Medicine Agency for patients with 

myelodysplastic syndromes (MDS).1–4 Although treatment with these agents is well 

tolerated, only 30% to 40% of patients will respond to therapy, with the majority achieving 

hematologic improvement in blood counts and only a minority (10% to 15%) achieving a 

complete response, the response criterion most reliably associated with improvement in 

overall survival (OS).1–4 More importantly, it may take up to six cycles of treatment for 

patients to achieve their best response.5 Given the limited number of patients who benefit 

from these agents and the long administration of their treatment, identifying biomarkers that 

can predict resistance is essential, because it can prevent prolonged exposure to ineffective 

therapy and unnecessary toxicities and treatment costs can be avoided.

Because clinical variables and patient characteristics have not consistently predicted 

response to hypomethylating agents (HMAs), molecular data represent a biologic 

opportunity6–8 to enhance patient response rates and outcomes. Although recurrent somatic 

mutations have been described in several genes in MDS and have implications for disease 

biology and OS,9 the impact of these mutations on response to HMAs remains controversial, 

with studies evaluating the impact including a small number of patients or a small number of 

gene sets.10–14 For example, some studies have shown that TP53 mutations may predict a 
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higher response of limited duration to HMAs, whereas others have shown no impact of TP53 
mutations on response.8,13,14 Similarly, studies have shown that mutations along methylation 

pathways, such as TET2, may predict higher responses to HMAs, but only in patients with a 

variant allelic frequency of 10% or more,11 whereas a combination of genes such as ASXL1 
mutations with wild-type TET2 may predict resistance to HMAs.11 These approaches do not 

take into account the genomic heterogeneity or hierarchy of MDS or the association of these 

mutations with each other. Because identifying a single gene or comutated genes is unlikely 

to yield an understanding of how these mutations define disease biology or phenotype, an 

unbiased approach is needed to study the relationship of these abnormalities to each other 

and to MDS biology.

In this study, we used unbiased, machine learning approaches (a recommender system 

similar to that used by Netflix or Amazon.com) to assess the impact of molecular data on 

resistance to HMAs in a large cohort of patients treated with HMAs at different academic 

institutions, and we validated our results in a population treated in a contemporary 

prospective clinical trial of HMA therapy15 of AZA alone and in combination.

METHODS

Patients

For the training cohort, patients treated with either AZA- or DAC-based regimens were 

included in this study: 230 patients were treated at Cleveland Clinic (between 2002 and 

2012); 203 were from other academic institutions (Dana-Farber Cancer Institute [2003 to 

2010, n = 42] and MD Anderson Cancer Center [2003 to 2010, n = 103]) or were part of the 

DACO-020 clinical trial (ADOPT [2005 to 2006, n = 58]).11 All patients consented to blood 

or bone marrow samples at each institution under institutional review board–approved 

protocols in accordance with each institution policy and the Declaration of Helsinki. More 

information regarding the patient cohort, response criteria, and validation cohort is included 

in the Data Supplement.

DNA Sequencing and Mutational Analysis

A panel of 29 genes that are commonly mutated in MDS and myeloid malignancies was 

evaluated (Data Supplement). For samples obtained from Cleveland Clinic, genomic DNA 

was extracted from peripheral blood or bone marrow mononuclear cells before treatment. 

More information regarding sequencing method is included in the Data Supplement.

Statistical Analyses

Variables were compared using the Wilcoxon rank sum test and Fisher’s exact test for 

continuous and categorical variables, respectively. OS was calculated from the date of 

diagnosis to the date of last follow-up or death (whichever came first), and survival curves 

were constructed using the Kaplan-Meier method and compared using the log-rank test. 

Univariate analyses were conducted to evaluate the impact of single mutations on response. 

A multivariate analysis using logistic regression was conducted and included variables with 

P values of < .1 from univariate analyses. Details regarding the recommender system 

algorithm are included in the Data Supplement.
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RESULTS

Patients

A total of 433 patients were included in the final training cohort analysis. The median age at 

diagnosis was 70 years (range, 31 to 100 years). Table 1 summarizes patient clinical 

characteristics. Two hundred twenty-eight patients (53%) received AZA (193 [85%] alone 

and 35 [15%] in combination with other agents), and 205 (47%) received DAC (176 [86%] 

alone and 29 [14%] in combination with other agents). Cytogenetic analyses per 

International Prognostic Scoring System (IPSS)–revised (R) criteria16 included 234 patients 

(54%) with very good or good risk, 66 (15%) with intermediate risk, 33 (8%) with poor risk, 

66 (15%) with very poor risk, and 34 (8%) not documented (Table 1). A total of 125 (29%) 

were in the very low or low, 100 (23%) were in the intermediate, 113 (26%) were in the 

high, and 95 (22%) were in the very high risk category per IPSS-R (Table 1). The 2008 

WHO classification for the entire cohort is summarized in Table 1.

Mutation Distribution

Overall, 367 patients (85%) in the training cohort had a mutation in at least one gene. The 

median number of mutations per patient was three (range, zero to nine), and a total of 176 

patients (41%) had three or more mutations/sample. The most frequently mutated genes 

were ASXL1 (31%), TET2 (22%), SRSF2 (23%), RUNX1 (15%), DNMT3A (14%), and 

SF3B1 (12%; Table 2). The frequency of these mutations in our patient cohort was similar to 

those identified in other MDS cohorts, with the exception of ASXL1, which was slightly 

higher because it was overrepresented in one cohort11(203 patients from other academic 

institutions). Patterns of mutation association were also similar to those in previous reports 

(Fig 1). ASXL1 mutations were commonly commutated with TET2 in 42 patients (10%), 

and with SRSF2 38 (9%), RUNX1 35 (8%), U2AF1 24 (6%), and DNMT3a 21 (5%; Fig 1).

Standard Clinical and Mutational Predictors of Response

The overall response rate to HMAs was 43%, with 109 patients (25%) achieving complete 

remission (CR), 16(4%) partial remission (PR), 59 (14%) hematologic improvement (HI), 

142 (33%) stable disease, and 107 (24%) progressive disease. In general, clinical 

characteristics such as age, cytopenias, and treatment regimens did not affect response, with 

the exception of the median blast percentage in the bone marrow, which was higher among 

responders compared with nonresponders (9% v 2%, P = .02; Table 1). Risk stratifications 

per IPSS and IPSS-R did not affect the overall response rate (Table 1).

No single gene mutation was significantly associated with response and resistance to HMAs 

in univariate analyses, with the exception of IDH1 and EZH2, respectively (Table 2). The 

number of mutations per sample also did not affect response, with patients with three or 

more mutations having similar response rates to those with fewer than three mutations 

(Table 1). To further understand the impact of comutated genes on response, we selected 

cases with the highest number of comutated genes in our cohort (Data Supplement). None of 

these combinations predicted response or resistance to HMAs (Data Supplement).
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The impact of mutations on response was assessed after controlling for clinical variables 

such as age and IPSS-R scoring system, using logistic regression analyses. No mutation was 

associated with overall resistance or response to HMAs, even after adjustment for clinical 

variables (age, IPSS-R, and sex; Data Supplement).

Recommender System Genomic Biomarkers That Predict Response

To build strong association rules (associations between genes and outcomes [response v no 

response]), we used strict criteria to identify rules with the highest support (how many times 

the rules appeared in the data set), high confidence (the confidence of the algorithm in the 

association rule was set at ≥ 95%), and higher lift (a measure that is reflected in the strength 

of the association: the higher the lift is, the stronger is the association) in the training cohort. 

On the basis of these criteria, we found eight rules that predicted resistance to HMAs (Table 

3). No strong association rules meeting these strict criteria could predict response to HMAs. 

These genomic biomarkers were present in 53 of 176 patients (30%) with three or more 

mutations. When the rules were applied to our patient cohort, they predicted resistance to 

HMAs correctly in 46 of 53 patients (87%) with relevant molecular mutations. Among the 

105 patients with lower-risk disease by IPSS-R (low and very low risk groups), 62 (59%) did 

respond to HMAs. Among nonresponders, 20 patients had three or more mutations/sample, 

and the biomarkers were present in seven (35%) of their samples. On the contrary, among 

262 patients with higher-risk disease per IPSS-R (intermediate, high, very high), 156 (60%) 

did not respond. Among nonresponders, 60 patients had three or more mutations/sample and 

the biomarkers were present in 33 (55%) of their samples. The difference in the presence of 

the biomarkers in lower- versus higher-risk MDS is related to the higher percentage of 

patients with three or more mutations/sample in the higher-risk (42%) versus the lower-risk 

(30%) group.

Association With Overall Survival

Survival data were available for 375 patients from the training cohort. With a median follow-

up of 30 months (range, 0.62 to 111.7 months), the median OS for the entire group was 19.5 

months (95% CI, 9.56 to 34.37 months). The median OS for HMA responders was 29.5 

months (95% CI, 25 to 41.3 months) compared with 18.9 months (95% CI, 15 to 24.2 

months) for nonresponders (P < .001; Fig 2). The median OS was similar for patients treated 

with AZA (22.9 months [95% CI, 18.9 to 28.4 months]) compared with DAC (24.4 months 

[95% CI, 21.2 to 29.5 months], P = .66; Fig 2). Single-agent HMA versus combinations did 

not affect survival, with a median OS of 25 months (95% CI, 21.8 to 28.4 months) and 19.7 

months (95% CI, 11.8 to 29.2 months), respectively (P = .15; Fig 2). The median OS rates 

per IPSS-R risk categories were 48.1, 22.3, 22.1, and 14.3 months for the low or very low, 

intermediate, high, and very high subgroups respectively (P < .001; Fig 2).

The median OS for patients with zero mutations/sample was 39.8 months versus 24 months 

for those with one or two mutations, 19.3 months for those with three to five mutations, and 

15.8 months for those with more than five mutations (P < .01; Fig 3). Only ASXL1, BCOR, 

DNMT3A, RUNX1, NF1, and TP53 mutations were negatively associated with OS (Fig 3). 

When applying association rules with an outcome of OS, patients who met at least one of the 

rules that predicted for resistance had very poor OS compared with patients with three or 
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more mutations/samples who did not meet any of these rules, or patients with fewer than 

three mutations/sample: 14.6 months versus 22.8 months versus 28.2 months (P = .001), 

respectively (Fig 3).

Validation of Genomic Biomarkers in Phase II/III Clinical Trial Samples

One hundred three of 113 (91%) in the validation cohort had at least one mutation, the most 

common being ASXL1 (n = 31), TET2 (n = 26), SRSF2 (n = 23), TP53 (n = 22), RUNX1 (n 

= 21), and U2AF1 (n=19). The median number of mutations per sample was two (range, 

zero to seven mutations). Thirty-nine patients (35%) had three or more mutations/sample. 

Genomic biomarkers of resistance to AZA were present in 14 of 39 samples (35%) with 

three or more mutations; 13 of 14 of these patients (93%) did not respond to therapy.

DISCUSSION

Predicting response or resistance to our currently available standard HMA therapy in MDS 

remains a significant clinical challenge. Identifying patients up front who may not respond 

to HMAs can potentially improve outcome, decrease unnecessary adverse effects, and save 

money, especially when current recommendations are for a minimum of 6 months of 

treatment before deeming it a failure. Although it is tempting to identify an isolated 

molecular abnormality or a pair of mutations that can predict HMA resistance, this approach 

does not allow for the complexity and evolution of the genomic landscape in MDS.

In this study, we developed an unbiased framework using a machine learning, recommender 

system algorithm to identify highly sensitive genomic associations (molecular signatures or 

genomic biomarkers) that can predict resistance to HMAs with high accuracy. The 

recommender system algorithm allowed us to identify complex genomic associations that 

were associated with resistance to HMAs without pregrouping mutations. These associations 

were validated in an independent cohort in samples from patients enrolled in a randomized 

phase II/III clinical trial. Although our biomarkers were identified in only 25% of patients, 

their presence predicted resistance in almost all patients who had these mutations. By 

definition, a biomarker can be present in a small subset of patients, but when present can 

predict, with high accuracy and reliability, response or resistance to a therapy. More 

importantly, our biomarkers also correlated with worse survival, suggesting higher-risk 

features of disease resistance and progression. Detecting these biomarkers in 29% of patients 

suggests that other biologic mechanisms (eg, changes in gene expression or epigenetic 

changes) or clinical characteristics may contribute more to HMA response and failure than 

does genomics. Indeed, several studies have shown that genomic clonal architecture does not 

change at the time of response to HMAs in serial samples obtained from patients during 

therapy. Our findings confirm that genomic associations may lead to different gene 

expressions and/or epigenetic changes that contribute to the response or resistance and thus, 

identifying one or two genes that can predict response may not be sufficient to build reliable 

and predictable models.

Although we included patients who received HMAs in combination with other 

investigational agents, these combinations did not affect the response or resistance rate or 

OS; thus, their impact on the output of our recommender system algorithms is negligible. 
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Furthermore, neither IPSS nor IPSS-R predicted response or resistance to HMAs in our 

study in accordance with prior reports.1,15

Prior studies have attempted to use genomic data to predict response or resistance to HMAs. 

The results among these studies have been controversial. For example, some studies have 

shown that TP53 mutations may predict response to HMAs, whereas others did not confirm 

that finding.13,17 In a small study of 84 patients with acute myeloid leukemia (AML) and 

MDS treated with a 10-day DAC course, a small subset of patients with TP53 mutations had 

a higher response rate to DAC compared with TP53 wild-type patients. Furthermore, the 

median OS for TP53 mutated patients who received DAC and underwent an allogeneic stem-

cell transplantation was similar to that of patients with wild-type TP5317. Contrary to this 

finding, in a study of 71 patients with AML, there was no difference in overall response rate 

and survival among patients who received 5 days of DAC compared with those who had a 

10-day schedule. More importantly, TP53 status did not affect their response.18 Similarly, 

prior studies have shown that TET2 mutations with variant allele frequency greater than 10% 

may predict response to HMAs, especially in patients with wild-type ASXL1 mutations, but 

this finding was not validated in our study.11 The discrepancy in the results of these studies 

could be related to sample size, the number of genes tested, and the statistical approach that 

was used to analyze the data. It is also possible that genomic changes in themselves are not 

the drivers of response to HMAs but rather, changes in the gene expression and methylation 

profile that are derived from the combination of these mutations. In a study of whole-

genome sequencing, RNA sequencing, and methylation profile of samples from patients 

with chronic myelomonocytic leukemia, a serial sequencing demonstrates that the response 

to hypomethylating agents is associated with changes in DNA methylation and gene 

expression, without any decrease in the mutation allele burden or prevention of new genetic 

alteration occurrence.18

This study includes several areas of innovation. On the clinical side, these genomic 

biomarkers can be used to tailor therapy. For example, if a patient with MDS with higher-

risk disease carries one of these biomarkers, he or she should be encouraged to enroll in a 

clinical trial with a novel therapy or to proceed with an allogeneic stem-cell transplantation, 

if eligible, directly, without the use of HMAs, because the response to such therapy is 

predicted to be low. Although all patients with MDS should be encouraged to enroll in a 

clinical trial with novel therapies, having biomarkers that accurately predict resistance may 

ease the conversation with some patients who are hesitant to try newer approaches and prefer 

Food and Drug Administration–approved therapies.19 Alternatively, patients with higher-risk 

disease and a high blast percentage may consider intensive, AML-type chemotherapy before 

allogeneic stem-cell transplantation, as opposed to an HMA that is predicted to do little to 

affect the disease in the absence of other biomarkers that could predict resistance to 

chemotherapy, such as complex karyotype cytogenetics, and the presence of TP53 mutations 

and the absence of targetable mutations such as IDH1 and IDH2. Because the optimal timing 

for patients with MDS with lower-risk disease can be challenging and because these 

genomic biomarkers predicted poor outcome even in patients with lower-risk disease. These 

biomarkers could be used as a justification to proceed with allogeneic stem-cell 

transplantation early in the disease course, especially if the patient has a lower blast 

percentage. In addition, identifying, with high accuracy, patients who may or may not 
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respond to therapy can prevent prolonged exposure to ineffective therapy and can lead to 

lower cost without decreasing value or changing patient outcomes. Translationally, these 

genomic biomarkers can also be used to model HMA resistance in the laboratory and to 

study the mechanisms of resistance in cell cultures and animal models. Introducing these 

biomarkers into normal hematopoietic cells using CRISPR/cas9 may offer an opportunity to 

model and understand HMA resistance to develop novel drugs to overcome this resistance.

Our study highlights the importance of machine learning algorithms such as the 

recommender system in translating genomic data into useful clinical tools that can be used 

by physicians in the clinic.20 Nevertheless, some limitations to our approach exist. These 

limitations include the presence of these genomic abnormalities in only approximately one 

quarter of patients and the lack of identification of rules that predict response to HMAs. It is 

possible that the response to HMAs is derived mainly from epigenetic changes and is not 

dependent on the genomic changes that we studied here.

In summary, our study identified genomic abnormalities that predict response or resistance 

to HMAs in patients with MDS, and we validated our results in an independent patient 

cohort treated in a randomized clinical trial. Identification of biomarkers that can provide 

personalized treatment approaches that can predict response or resistance to cancer therapy 

remains an important clinical challenge, and future drug development should focus on 

identifying the subgroup of patients who may benefit the most from any given cancer 

therapy. Such an approach can aid physicians and their patients in selecting the best 

available therapy to obtain the best outcome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG 1. 
Spectrum of mutations in 433 patients with 29 genes. Each column represents a patient 

sample and each colored cell represents a mutation of the gene or gene groups listed in the 

middle. The graph is separated to show the spectrum of mutations in responders compared 

with nonresponders.
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FIG 2. 
Kaplan-Meier curves for overall survival in our patient cohort with survival data. (A) 

Survival of responders compared with nonresponders. (B) Survival of male compared with 

female patients. (C) Survival of patients treated with azacitidine compared with patients 

treated with decitabine. (D) Survival of patients who received hypomethylating agent as a 

single agent compared with patients who received it in combination with other drugs. (E) 

Survival of patients on the basis of International Prognostic Scoring System (IPSS)–revised 

risk categories.
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FIG 3. 
Kaplan-Meier curves for overall survival on the basis of mutations (mut) status. (A) Overall 

survival (OS) on the basis of the number of mut/sample (regardless of response or resistance 

to hypomethylating agents). (B) Survival of patients with mutated ASXL1 compared with 

wild type. (C) Survival of patients with mutated TP53 compared with wild type. (D) 

Survival of patients with mutated BCOR compared with wild type. (E) Survival of patients 

with mutated NF1 compared with wild type. (F) Survival of patients with mutated RUNX1 
compared with wild type. (G) OS on the basis of the recommender system rules. The graphs 

Nazha et al. Page 13

JCO Precis Oncol. Author manuscript; available in PMC 2019 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compare the OS of patients with three or more mutations and carry one of the proposed rules 

that were identified in our algorithm (gray line) to patients with three or more mutations 

without the rules (red line), and patients with fewer than three mutations/sample (purple 

line).
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TABLE 3.

Genomic Biomarkers Defined by the Recommender System

Association Rules for Resistance to HMAs

ASXL1, NF1

ASXL1, EZH2, TET2

ASXL1, EZH2, RUNX1

EZH2, SRSF2, TET2

ASXL1, EZH2, SRSF2

ASXL1, RUNX1, SRSF2

ASXL1, TET2, SRSF2

ASXL1, BCOR, RUNX1
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