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Abstract

Background.—Some Internet interventions are regarded as effective treatments for adult 

depression, but less is known about who responds to this form of treatment.

Method.—An elastic net and random forest were trained to predict depression symptoms and 

related disability after an 8-week course of an internet intervention, Deprexis, involving adults (N 
= 283) from across the United States. Candidate predictors included psychopathology, 

demographics, treatment expectancies, treatment usage, and environmental context obtained from 

population databases. Models performance was evaluated using predictive R-squared (Rpred
2 , the 

expected variance explained in a new sample, estimated by 10 repetitions of 10-fold cross-

validation.

Results.—An ensemble model was created by averaging the predictions of the elastic net and 

random forest. Model performance was compared to a benchmark linear autoregressive model that 

predicted each outcome using only its baseline. The ensemble predicted more variance in post-

treatment depression (8.0% gain, 95% CI [0.8, 15]; total Rpred
2  = .25), disability (5.0% gain, 95% 

CI [−0.3, 10]; total Rpred
2  = .25), and well-being (11.6% gain, 95% CI [4.9, 19]; total Rpred

2  = .29) 

than the benchmark model. Important predictors included comorbid psychopathology, particularly 

total psychopathology and dysthymia, low symptom-related disability, treatment credibility, lower 

access to therapists, and time spent using certain Deprexis modules.

Conclusion.—A number of variables predict symptom improvement following an internet 

intervention, but each of these variables make relatively small contributions. Machine learning 
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ensembles may be a promising statistical approach for identifying the cumulative contribution of 

many weak predictors to psychosocial depression treatment response.

Self-guided internet interventions appear to effectively reduce symptoms of depression. A 

recent meta-analysis of 16 randomized clinical trials found that self-guided CBT 

interventions were significantly more effective at reducing depression symptoms than 

control treatments (number needed to treat = 8) (Karyotaki et al. 2017). However, despite the 

effectiveness of these treatments on average, it is clear that these interventions are neither 

equally effective nor effective for all participants. Identifying which individuals are most 

likely to benefit from a potentially effective treatment is essential to developing an efficient 

and personalized health care system (Cuijpers et al. 2016).

Precision medicine, aimed at identifying individual differences that predict beneficial and/or 

adverse effects, has recently emerged as a major goal in health care (Hamburg & Collins 

2010). Although many predictors of response to depression treatment using traditional 

statistical methods have been examined (Huang et al. 2014), the predictive power of each 

variable in isolation is often relatively weak. As a result, data-based personalized treatment 

recommendations are not routinely offered for any form of depression treatment (although 

see Fisher 2015; Fernandez et al. 2017), despite the known benefits of actuarial approaches 

(Dawes et al. 1989).

New statistical methods, such as machine learning, may allow for the development of 

treatment algorithms that can predict with high accuracy whether or not treatment may be 

successful for a given individual with a specific set of attributes. Specifically, for traditional 

linear models to be stable and reproducible, the number of predictors must be kept small 

relative to the sample size, and subsets of predictors cannot be highly correlated with one 

another. As a consequence, traditional multiple regression is not well suited to data-mining 

challenges, i.e., when there are hundreds of potentially relevant predictors, many of which 

share at least some degree of redundancy. For such problems, machine learning methods can 

outperform traditional stepwise selection methods by capturing the simultaneous effect of all 
relevant predictors rather than considering discrete subsets of predictors one at a time and 

discarding all but the strongest (Hastie et al. 2009). This approach has been successfully 

used in medicine, most notably in oncology, where machine learning approaches have been 

applied to predict cancer progression and treatment outcome (Cruz & Wishart 2007). More 

recently, machine learning was successfully used to predict treatment response to 

antidepressant medication (Khodayari-Rostamabad et al. 2013; Chekroud et al. 2016) and 

electroconvulsive therapy (Redlich et al. 2016). The current study applies machine learning 

methods to predict response to a psychosocial intervention for depression (for a review, see 

Cohen & Derubeis 2018).

The current study involved a secondary analysis of data from a recently published clinical 

trial examining the effectiveness of an internet intervention for depression among adults 

recruited from across the United States (Beevers et al. 2017). An ensemble of elastic net and 

random forest learners were used to predict treatment outcomes. Symptom outcomes 

included interviewer-rated depression, symptom-related disability, and well-being (i.e., 

positive affect). Candidate predictors included relatively low cost and easy to obtain self-
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report data including concurrent psychopathology, demographics, treatment expectancies, 

treatment usage, and, given the geographic diversity of our sample, environmental context 

variables mined from population databases based on participants’ postal address.

Methods

Study Design

Data were obtained from a recently published clinical trial comparing a depression-focused 

Internet intervention, Deprexis, to an 8-week waitlist control condition. Treatment response 

was comparable for participants who received Deprexis immediately versus after an 8-week 

waiting period (Beevers et al. 2017). Thus, to maximize sample size for machine learning 

analyses, participants who received Deprexis immediately (N = 222) or after an 8-week 

waiting period (N = 61) were combined for analyses. Whether or not treatment was 

administered immediately or after a delay was also included as a predictor variable, but it 

was not a highly important predictor of post-treatment outcome in any model (depending on 

outcome and importance metric, it ranked between 67th and 114th out of 120 predictors.) We 

used a complete cases approach, utilizing data from participants who provided data at pre- 

and post-treatment assessments (Ns ranged from = 283 to 271, depending on missing 

outcome data).

Deprexis is an Internet treatment for unipolar depression that was provided with relatively 

minimal user support. The intervention consists of 10 content modules that include 

behavioral activation, cognitive modification, relaxation, exercise and lifestyle modification, 

acceptance and mindfulness, problem-solving, childhood experiences, interpersonal skills, 

positive psychology and dream-work (for more detail, see Table 1 from (Beevers et al. 

2017)). Further, daily brief messages are sent automatically by the program and are intended 

to remind and motivate the users to engage with the program. A recent meta-analyses of 

eight Deprexis trials with a total of 2402 participants has yielded a medium effect size of 

Hedges’ g = 0.54 for this intervention, compared to control conditions, with no evidence of 

publication bias or developer-involvement bias (Twomey et al. 2017).

Study inclusion criteria were: 1) age between 18–55; 2) English fluency; 3) reliable access to 

the internet (i.e., dialup or broadband access); 4) willingness to provide saliva for DNA 

research; 5) presence of moderate levels of depression or greater (QIDS score >= 10) at time 

of eligibility screening; 6) treatment stability (no changes in psychotropic medication or 

psychosocial treatment in the 30 days prior to study entry); and 7) living in the United States 

of America. Exclusion criteria were: 1) presence of psychotic or substance use symptoms; 2) 

a diagnosis of bipolar disorder; or 3) suicidal risk (defined as having suicidal ideation with 

intent with/or without a plan in the last 90 days or attempting suicide in the past year).

Participants were primarily female (74.4%) and in their early 30s (mean age, 32 years old, 

range 18–55). Participants also tended to be single, Non-Hispanic White, and have at least 

some college education. Although the majority of participants were recruited from the state 

of Texas (50.2%), there was geographic diversity (see Figure 1). Approximately 40% of the 

sample was currently receiving antidepressant treatment and more than 2/3 of the sample 

had received psychological treatment at some point in their lifetime.
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Clinical Outcomes

Machine learning was used to predict three treatment outcomes: the Hamilton Rating Scale 

for Depression (HRSD; Hamilton 1960), Sheehan Disability Scale (SDS; Sheehan et al. 

1996), and the Well-Being subscale of the Inventory of Depressive Symptoms (IDAS; 

Watson et al. 2008). The SDS and IDAS Well-Being were selected because they are 

important correlates of depression not well captured by the HRSD, were measured at the 

same time as the HRSD (i.e., at pre- and post-treatment), and, like the HRSD, showed 

substantial individual differences in treatment outcome. For more information about the 

psychometrics of the clinical outcomes, see supplemental materials, section 1.0.

Candidate Predictors

Given the exploratory, data driven approach to analyses, all available data were utilized for 

each clinical post-treatment outcome to identify the most important candidate predictors. 

Total score and subscale scores if available (or individual items if not) were used as potential 

candidate predictors for the following self-report scales measured at pre-treatment: QIDS-

SR, HRSD, Psychiatric Diagnostic Screening Questionnaire (PDSQ; Zimmerman & Mattia 

2001), SDS, IDAS Ill Temper, IDAS Well-Being, IDAS Social Anxiety, IDAS Traumatic 

Intrusion, IDAS Panic, Treatment Credibility and Expectancies Questionnaire (Devilly & 

Borkovec 2000), and the Risky Families Questionnaire (Taylor et al. 2004). Clinical 

candidate predictors were also included, such as past and current psychotherapy, other health 

problems, family history of mental illness, antidepressant usage, and participant 

demographic variables, such as age, marital status, household size and composition, income, 

education level, sexual orientation, and ethnicity.

Given the geographic diversity of our participants, environmental context variables were also 

obtained by joining participant data to population databases (e.g., census data) based on 

participants’ zip code (postal address). Examples of available candidate predictors based on 

zip code of the participant included median household income, ethnic/racial diversity, crime 

rate, and access to mental healthcare providers. We also included the amount of time the 

participant spent on each Deprexis module to account for the potential impact of 

engagement with particular modules. Although these values are unknown prior to treatment, 

this aspect of the model could be useful when predicting outcomes for new patients by 

forecasting a range of expected outcomes that assume minimal vs. maximal treatment 

engagement. For more detail on how these predictors were obtained, see supplemental 

materials, section 2.0. There were 120 candidate predictors in total used for each machine 

learning model. For a list of all predictors, see supplemental materials section 3.0.

Learning Algorithms and Tuning Parameters

We selected two popular machine learning algorithms—the elastic net and the random forest

—that perform well with samples of this size (< 300). While large for a typical psychosocial 

intervention study, this would be considered small for many machine learning algorithms. 

The reason is that most machine learners (e.g., gradient boosting machines) require “tuning” 

of several hyperparameters to achieve good predictive performance, which is typically done 

by trying out hundreds of different combinations of hyperparameter values by fitting 

hundreds of models and selecting the one that achieves the best cross-validation 
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performance. This can result in overfitting, not due to an overly complex model, but rather 

having tested too many models (Ng 1997). As noted by other researchers (Varma & Simon 

2006; Cawley & Talbot 2010), overfitting from model selection will be most severe when 

the sample of data is small and the number of hyperparameters is large. For small data sets, 

Cawley and Talbot (2010) recommend avoiding hyperparameter tuning altogether by using 

an ensemble approach, such as random forests, that performs well without tuning.

While random forests have a few hyperparameters that could be tuned in principle, the 

default values for these typically work very well in practice: 1) The number of trees was set 

to 500. As shown by Breiman (2001), random forests do not overfit as more trees are added, 

but rather the generalization error converges to a limiting value. Thus, for this parameter, we 

only needed to verify that the default value was sufficient for the error to reach its plateau 

(James et al. 2013). For more detail, see supplemental materials section 4.0.2) The depth to 

which trees are grown was set to terminate if the additional split resulted in fewer than 5 

observations in the terminal node. While using fully grown trees can overfit the data, Hastie, 

Tibshirani, and Friedman (2009) recommend not tuning this parameter because it seldom 

makes a substantive difference. 3) The number of variables that are randomly sampled when 

determining a split was set to the recommended value for regression problems, which is 1/3 

of the candidate predictors. Tuning this parameter can make a substantive difference in 

performance, conditional on the prevalence of relevant vs. irrelevant variables: this value 

should be large enough that any subset of variables of this size contains at least one relevant 

predictor.

The elastic net, on the other hand, has one parameter, λ, the magnitude of the shrinkage 

penalty that must be tuned with cross-validation, and an additional parameter, α, the 

proportion of L1 ‘lasso’ penalty (sum of absolute values of all coefficients) vs. L2 ‘ridge’ 

penalty (sum of squared values of all coefficients), that often benefits from a small amount 

of tuning. For each outcome, we searched over 100 possible values of λ (autogenerated by 

the model fitting program) and 3 possible values of α: 0.01 (favoring the inclusion of most 

variables), 0.99 (favoring sparsity), and 0.5 (an equal mix of both L1 and L2). For reasons 

already discussed, cross-validation errors used for model selection are prone to optimistic 

bias. In the case of the elastic net, the models’ linear constraints might be expected to offset 

any optimistic bias introduced by this minimal amount of tuning. Nonetheless, to obtain an 

unbiased estimate of test error, we used a nested cross-validation procedure (Varma & 

Simon 2006), which will be explained further in the Prediction Metrics section. For the 

HRSD outcome, the value of α that minimized cross-validation error tended to be either 

0.01 or 0.5 (mean = 0.31), with optimal λ ranging from 3.9 – 7.6 (mean = 5.7). Sparser 

models were selected for the SDS and IDAS outcomes, with optimal α tending to be 0.5 but 

sometimes 0.99 (mean = 0.66 for SDS and 0.63 for IDAS well-being). Shrinkage penalties 

were stronger for SDS (mean λ = 3.7) than IDAS well-being (mean λ = 0.73), indicating 

there were fewer relevant predictors of SDS.

Comparing Elastic Net and Random Forest

The major appeal of the elastic net is that it offers a regularized version of the familiar linear 

model, whereas the major appeal of the random forest is that it offers an automated method 
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of detecting nonlinear and interaction effects. Importantly, both techniques allow all 

variables to “have their say” (Hastie, Tibshirani, & Friedman, 2009, p. 601), i.e., they are 

able to accommodate multiple weak influences and weed out useless predictors, albeit 

through different mechanisms. The elastic net does this by directly fitting all predictors to 

the outcome simultaneously while an L2 penalty shrinks the coefficients of useful but 

redundant predictors toward 0 and each other, and an L1 penalty shrinks the coefficients of 

useless predictors all the way to 0 (Zou & Hastie 2005). The random forest achieves a 

similar end result because each regression tree in the forest “sees” a different one-third of the 

predictors every time it chooses the best variable with which to recursively partition the data. 

Thus, the strongest predictors will not always be available, giving weaker predictors a 

chance to contribute. Since the predictions of the individual trees are averaged to yield an 

ensemble prediction, the contribution of any one predictor is effectively reduced. Other 

advantages of the random forest over the elastic net include less sensitivity to the effects of 

skewed distributions and outliers and an ability to work with the predictors in their natural 

units; for the elastic net to work, all variables, including dummy codes for factors, must be 

scaled to have the same mean and variance. On the other hand, if there are true linear 

relationships, the elastic net will be better at modeling them; the random forest can only 

approximate linear relationships as an average of step functions.

Our initial plan was simply to evaluate how each of these approaches performed on the 

Deprexis data individually. However, we later reasoned that averaging the predictions of the 

random forest with those of the elastic net (which are highly correlated—see supplemental 

materials section 6.0 - 6.2) might retain the “best of both worlds” and result in a superior 

prediction than either approach alone. This is not a novel concept; there are many examples 

of “blending” or “stacking” machine learners, and this is the basis of the so-called “super 

learner” algorithm (van der Laan et al. 2007).

In this approach, a meta-learner is trained to optimize how models are combined, essentially 

resulting in a weighted average of model predictions. We would have liked to have used this 

approach here, but this would have required additional hold-out data or an independent test 

sample to obtain accurate estimates of model generalization, which our modest sample size 

could not support. Therefore, we adopted the simpler committee method (Hastie, Tibshirani, 

& Friedman, 2009, p. 289) of taking the unweighted average of the predictions from each 

model. Notably, the random forest itself is an ensemble of very complicated trees (each of 

which individually overfits the data such that its predictions will not generalize well to the 

population as a whole), and it already uses the committee method to average these unbiased 

but variable predictions into a stable, generalizable prediction. Essentially, we are simply 

adding the elastic net to the random forest ensemble—the final ensemble includes 500 

regression trees + 1 elastic net—but with the elastic net predictions weighted 500 times 

greater than those of an individual regression tree.

Benchmark Models

There is growing recognition that many prior machine learning studies predicting health-

related outcomes have compared machine learning models to relatively weak baseline 

models, such as null or no information model (DeMasi et al. 2017). This is a very low 
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threshold for the machine learning models to improve upon, thus producing falsely 

optimistic conclusions. Rather than a null model, the current study examined whether 

random forests explained additional variance beyond a linear regression “benchmark” model 

that predicted the clinical outcome with the same assessment at pre-treatment. Thus, for each 

outcome, we first report variance explained by the benchmark model and then examine 

whether the ensemble predicts variance not already explained by the benchmark model (i.e., 

model gain).

Prediction Metrics and Cross-Validation

An important aspect of model performance is how well it performs on cases that it was not 

trained on. We used 10-fold cross validation to estimate a predictive R2 Rpred
2

, which is the 

fraction of variance in previously unseen data that the model is expected to explain. The 10-

fold cross validation was repeated 10 times using different randomized partitions of the data.
1 Within each repetition, 10 models were fit, each trained to 90% of the data and used to 

predict the outcomes for the 10% of cases that were withheld. An Rpred
2  was then calculated 

based on the residual errors of the holdout predictions and then averaged across the 10 

repetitions. This procedure was applied to both the benchmark model (see above) and the 

ensemble model. For the elastic net model, an additional 10-fold cross-validation procedure 

was nested within each 90% partition of data used for training and used to select values for 

the tuning parameters as described in the above section Learning Algorithms and Tuning 

Parameters. The mean Rpred
2  of the benchmark model was subtracted from the mean Rpred

2  of 

the ensemble model to yield an estimate of predictive gain (ΔR2
pred). A 95% CI for 

predictive gain was estimated as the .025 and .975 quantiles of the distribution of ΔR2
pred 

recomputed over 10,000 bootstrap replicates. For the elastic net, these numbers reflect the 

outer cross-validation, not the nested cross-validation, which tended to show a 1% (range = 

0–3%) greater Rpred
2 , indicating that the estimates of error from the tuning procedure incur a 

slight optimistic bias.

Cross-validation of models was expedited by fitting models to resampled data in parallel on 

the Wrangler computing cluster provided by the Texas Advanced Computing Center (TACC) 

at the University of Texas at Austin (https://www.tacc.utexas.edu/). All analyses were 

implemented in R (version 3.4). Our code made extensive use of the tidyverse (Wickham 

2018) packages dplyr, purrr, and tidyr for general data extraction and transformation. 

Figures were generated using the packages ggplot2 (Wickham 2009), gridExtra (Auguie 

2017), and ggmap (Kahle & Wickham 2013). The randomForest (Liaw & Wiener 2002) and 

glmnet (Friedman et al. 2010) packages were used to implement the machine learning 

ensembles.

1One may choose the number of folds to be anywhere from 2 (equivalent to splitting the data in half) to the number of observations 
(equivalent to “leave-one-out” cross-validation). This choice incurs a bias-variance tradeoff. Fewer folds mean smaller sample sizes 
for fitting the models and therefore worse fits (greater bias) but more similar performance between different samples (less variance); 
more folds mean larger sample sizes and therefore better fits (less bias) but more inconsistent performance between different samples 
(greater variance). Empirically, 10-fold cross-validation seems to offer the best compromise between these two extremes. Specifically, 
the 10 × 10 cross-validation tests performed here follow the work and recommendations of Bouckaert (2003; 2004) for reliably 
comparing the performance of different learning algorithms.
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Calculation of Variable Importance Scores

We provide a variable importance metric that was obtained by selecting a sequence of values 

between the minimum and maximum of each predictor while holding all other predictors 

constant (at the mean of numeric variables or at the mode of factors), using the final model 

to make predictions for each of these selected values, and then obtaining the difference 

between the minimum and maximum prediction. This corresponds to the amount of partial 

influence that each variable had on the model prediction, in terms of the difference in 

outcome units that it was able to effect on its own. These predictions are for the final 

ensemble, thus the prediction for each variable is an average of linear and non-linear 

associations (from the elastic net and random forests models, respectively) between the 

predictor variable and outcome. Partial influence for each important predictor is illustrated 

in the partial dependence plots presented in the results section.

In the supplemental material (sections 6.0–6.2), we also provide variable importance for the 

elastic net and random forest models separately. For the elastic net, variable importance was 

quantified as the absolute value of the standardized regression coefficient for each predictor. 

For the random forest, predictor importance was quantified as the percent mean increase in 

the residual squared prediction error on the out-of-bag (OOB) samples2 when a given 

variable was randomly permuted. In other words, if permuting a variable substantially 

worsens the quality of the prediction, then it is important; if permutation has no impact on 

the prediction, then it is not important. We provide both sets of importance metrics because 

variable importance is not a well- defined concept (Grömping 2009) and there are a large 

number of ways of computing variable importance (Wei et al. 2015). To facilitate 

comparison between the two metrics, both were scaled so that the importance scores of all 

variables sum to 1. For the most part, the importance metrics identify similar sets of 

predictors as important.

Missing Data

Imputation of missing predictor data was performed using the missForest method 

(Stekhoven & Bühlmann 2012), which regresses each variable against all other variables and 

predicts missing data using random forests. Several studies have demonstrated the 

superiority of missForest over alternative approaches, such as k-nearest neighbors, 

multivariate imputation using chained equation (MICE) and several other random forest 

missing data algorithms (van Buuren 2007; Waljee et al. 2013; Shah et al. 2014). Imputation 

was only applied to the missing predictors; none of the outcome data were used in the 

imputation, so there was no opportunity for information about the outcome to “leak” into the 

predictor values and thus artificially improve prediction.

2The term “out of bag” derives from the term “bagging”, which is a portmanteau of “bootstrap aggregating”. Because each split in 
each regression tree in the random forest is based on a bootstrap sample of the original data, there are always a number of samples 
(about 1/3 on average) that are randomly left out of each “bagged” sample. Hence, for the random forest, aggregating the prediction 
errors for these “out-of-bag” observations provides an additional valid estimate of how well the machine learner can predict new cases.
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Results

HRSD

The benchmark model predicted 16.6% of the variance in post-treatment HRSD. The 

ensemble model predicted an additional 8% of the variance in post-treatment HRSD (see 

Table 1). The most important predictor variables were pre-treatment depression total score, 

psychiatric comorbidity, dysthymia, several depression symptom items, usage of several 

Deprexis modules, disability, treatment credibility, and availability of therapists (see Figure 

2).

Not surprisingly, partial dependence plots indicated a fairly linear relationship for pre-

treatment HRSD and dysthymia; as pre-treatment depression/dysthymia increased, so did 

predicted post-treatment HRSD. Psychiatric comorbidity had a more curvilinear 

relationship, as post-treatment HRSD gently increased with increasing comorbidity until 

relatively high levels of comorbidity where post-treatment HRSD increased much more 

quickly. Higher levels of specific symptoms of depression, including slowness, psychic 

anxiety, and weight loss, were associated with higher post-treatment depression; disability 

related to psychiatric symptoms had a similar association.

Notably, usage of the relationships, acceptance, and relaxation modules were identified as 

important predictors. Using these modules for at least 30 minutes was associated with a 1.2-

point greater reduction in HRSD score (all other predictors being equal), which is 

approximately one-quarter of the mean outcome difference observed for Deprexis-treated vs. 

wait-list groups. As can be seen in many of the partial dependence plots for the 16 highest 

impact predictors (Figure 2), associations between predictors and post-treatment HRSD 

were often non-linear and effects were relatively small (with the exception of the first three 

variables).3 Importance scores are also presented separately for the random forests and 

elastic net models in supplemental materials, section 6.0.

Symptom Related Disability

Consistent with prior work, to create a disability outcome, the work, social, and family 

disability questions (3 items in total) from the Sheehan Disability Scale were averaged to 

form a single index of symptom-related disability. The benchmark model with pre-treatment 

disability predicted 20.4% of the variance in post-treatment symptom related disability. The 

ensemble model predicted an additional 5% of the variance in post-treatment disability 

(Table 1).

As can be seen in Figure 3, the pre-treatment disability composite had the strongest 

importance score, which was approximately equivalent to the importance of disability in the 

family domain. Nevertheless, several other variables also contributed to the prediction of 

disability. Several QIDS-SR items were identified as important predictors, including 

disinterest, early insomnia, and fatigue. More time spent on both the relaxation and cognitive 

modules (the benefit tapered off after approximately 60 minutes on each module) were both 

3Note that self-reported depression symptoms were also assessed with the QIDS-SR. Results for the QIDS-SR are presented in 
supplemental materials section 5.0.
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associated with lower post-treatment disability. Higher percentage of zip code with Hispanic 

ethnicity and fewer years in therapy were also associated with lower disability. Importance 

scores are also presented separately for the random forests and elastic net models in 

supplemental materials, section 6.1.

Depression-Related Well-Being

The benchmark model with pre-treatment well-being (positive affect) predicted 17.8% of the 

variance in post-treatment symptom related well-being. The ensemble model explained an 

additional 11.6% of the variance in post-treatment well-being (Table 1). As can be seen in 

Figure 4, not surprisingly, higher pre-treatment well-being was associated with higher post-

treatment well-being.

Comorbid psychopathology was also an important predictor of post-treatment well-being. 

The most important forms of comorbidity included mania symptoms, dysthymia, disinterest, 

and ill temper. Higher perceived treatment credibility and greater confidence that treatment 

would help were both associated with greater improvements in well-being in a fairly linear 

fashion (see Figure 4). Younger age was associated with a better outcome as was paternal 

anxiety and mental illness. Higher use of the relaxation module was also associated with 

better post-treatment well-being. Importance scores are also presented separately for the 

random forests and elastic net models in supplemental materials, section 6.2.

Deprexis Module Usage

A final plot highlights the relative impact of module usage for each of the three outcomes. 

To generate these scores, the module importance scores for each outcome were scaled to 

sum to 1. A few notable patterns emerge. First, the most important module appeared to be 

the relaxation module; greater usage was associated with fewer depression symptoms, less 

disability, and more well-being. In addition, usage of the acceptance and relationship 

modules were most important for the prediction of HRSD depression symptoms. The 

cognitive module was important for predicting reductions in disability, as was the diagnosis 

module. Time spent on most of the other modules was not strongly associated with symptom 

improvement, at least for the average user. It is important to note that usage of all modules 

did factor (weakly) into the final prediction, and modules that were not important for the 

average user might nonetheless be very important when predicting the outcomes for some 

individuals.

Discussion

This study used an ensemble of random forests regression trees and elastic net machine 

learning approaches to predict symptom change in response to Deprexis, an internet 

intervention for depression. In contrast to many prior studies (DeMasi et al. 2017), we 

determined whether the ensemble predicted significantly more variance in post-treatment 

outcomes than a benchmark linear regression model that only included the baseline 

assessment of the outcome. Candidate predictors ranged from patient demographics, to 

comorbid psychopathology, past and current treatment utilization, to environmental 

characteristics based on the participants’ residence (i.e., postal code in the USA). In 
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summary, the ensemble outperformed an autoregressive linear benchmark model for the 

prediction of interviewer-rated depression symptoms (8% gain in variance explained, 25% 

total variance explained), symptom-related disability (5% gain in variance explained, 25% 

total variance explained), and well-being (12% gain in variance explained, 29% total 

variance explained).

Results provide important new insight into who is most likely to respond to internet 

interventions such as Deprexis. Not unexpectedly, pre-treatment assessments were the 

strongest predictors of each outcome. However, a number of additional predictors, all 

making relatively small contributions to the prediction, were associated with symptomatic 

improvement. The ensemble indicated that comorbid psychopathology was an especially 

important predictor of post-treatment HRSD, particularly total psychopathology and 

dysthymia (other psychopathology symptoms were also identified as important predictors). 

This may not be surprising, as past research has indicated that comorbid psychopathology is 

often associated with poor treatment response (Smits et al. 2012). Also consistent with prior 

research, pre-treatment disability was an important predictor of symptom change (Kessler et 

al. 2017). High pre-treatment impairment has been shown to predict poor treatment response 

across both pharmacological and psychological treatment modalities (Trivedi et al. 2006; 

Frank et al. 2011; Jarrett et al. 2013), but does not appear to moderate response to any 

specific form of treatment (Kessler et al. 2017). Nevertheless, impairment appears to be an 

important, non-specific predictor of treatment response.

The ensemble was also able to predict additional variance in post-treatment well-being 

beyond the benchmark model. Comorbid dysthymia, disinterest, depression symptoms, and 

mania symptoms were all important predictors of well-being. Further, treatment credibility 

and treatment expectancies were relatively strong predictors of symptom change. Self-

guided interventions should consider incorporating interventions that enhance patient 

expectations about treatment effectiveness and treatment credibility, as initial expectancies 

have predicted treatment engagement and outcome in psychotherapy and internet treatments 

(Greenberg et al. 2006). Although positive expectations are sometimes dismissed as mere 

“placebo” processes, which need to be controlled in trials, we concur with others that such 

factors can fuel treatment engagement and improve outcomes (Kirsch et al. 2016). As with 

the HRSD, disability across multiple domains was also an important predictor of post-

treatment well-being.

A final aim was to examine the differential association of Deprexis module usage to the 

three post-treatment outcomes. Usage of the relationships, acceptance, and relaxation 

modules appeared to be the most closely associated with the depression-related outcomes. 

Notably, this study is among the first to identify specific module dosages that are associated 

with symptom improvement. For each of the modules, symptom reduction appeared to taper 

off after approximately 30 to 50 minutes of usage. Prior work has found that module 

completion is modestly associated with improvements in depression (Spek et al. 2007). 

Much of this prior work has examined a linear relationship between usage and symptom 

improvement, even though there is evidence that this association may be non-linear (Donkin 

et al. 2013). One benefit of using random forests together with elastic nets is that random 

forests can detect non-linear associations without having to specify the form of the 
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association in advance. The use of standardized interventions (as opposed to face-to-face 

interventions that can have variable implementations) also facilitates these dose-response 

analyses.

There are several limitations of this study that should be noted. First, future work predicting 

treatment response would benefit from using larger samples, which would allow for more 

complex models without overfitting. Although it would be ideal for future work to also 

include highly dimensional data, such as neuroimaging, hormones, genetics, and microbiota 

it would not be desirable to include those data at the cost of large sample size and population 

diversity. In addition, without comparable data from an alternative clinical intervention, we 

have no way of gauging the extent to which this model is predicting response to Deprexis 

specifically versus a response to interventions more generally. We do not yet know whether 

the results of this model can be used to recommend whether an individual should try 

Deprexis or not. Finally, although Deprexis has been studied in other countries, this was the 

first trial of the English version of Deprexis, and many of the important predictors here were 

either not collected or not applicable to prior European trials. Thus, testing our algorithm 

with other Deprexis-treated samples was not possible.

Given that the goal of this project was to develop an algorithm that could be used to predict 

response to a single treatment, one might wonder how this work could be used in real-world 

clinical settings. Imagine a clinical setting with a large waiting list (not an unusual 

circumstance in some settings, such as treatment centers at large medical centers or 

universities). Patient information could be obtained, via an online survey or other methods, 

and fed into the Deprexis treatment response algorithm. The algorithm may predict several 

of these new patients will show significant improvement in symptoms following Deprexis, 

whereas other individuals are predicted to show relatively little symptom change.

As a result of these analyses, Deprexis could be provided right away to the first set of 

individuals, perhaps allowing for the patients predicted not to respond to Deprexis to be 

scheduled sooner for more intensive, in-person treatment. Treatment centers would need to 

decide the threshold for an acceptable amount of predicted change in order to receive 

Deprexis, and this could potentially dynamically fluctuate depending on demand for 

services, therapist availability, and other constraints. In addition, while a patient’s future 

usage of the various modules is obviously unknown prior to treatment, this aspect of the 

model could be used to explore different usage scenarios and recommend which modules are 

likely to yield the greatest return on an individual patient’s time investment. To make this 

hypothetical application more concrete, we provide case examples of predicted response to 

treatment, using the machine learning algorithm developed in this study, for two 

hypothetical patients under two different usage scenarios in supplemental materials, section 

7.0.

This exercise demonstrates how some patients could be identified as good candidates for this 

low-intensity, Internet-based treatment, whereas others may not be. Of course, because we 

have only one treatment, we do not know how these participants might respond to other 

treatments (or no treatment at all). Ideally, algorithms could be developed for predicting 

response to different treatments. These algorithms could then be used to determine the 
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optimal treatment(s) for a patient with a given set of attributes. We believe methods used in 

the current study provide a small but important step towards developing these algorithms 

and, given the emphasis of machine learning methods for reducing overfitting and increasing 

generalization to new samples, this may be a better alternative than traditional statistical 

approaches typically used to detect treatment predictors (for a review, see Cohen & Derubeis 

2018). With further refinement, ensemble machine learning methods may facilitate a more 

efficient mental health care system by helping clinicians optimize treatment delivery so that 

patients initially receive the treatment with the best likelihood of a positive response for that 

specific individual.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Geographical distribution of study participants. Note that most participants (approximately 

50%) were recruited from the state of Texas.
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Figure 2. 
Partial dependence plots for the top sixteen predictors of post-treatment interviewer rated 

depression symptoms.
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Figure 3. 
Partial dependence plots for the top sixteen predictors of post-treatment disability.
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Figure 4. 
Partial dependence plots for the top sixteen predictors of post-treatment well-being (low 

positive affect) symptoms.
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Figure 5. 
Importance of Deprexis module usage for predicting post-treatment depression, disability, 

and well-being (positive affect).
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Table 1.

Prediction of post-treatment depression by linear regression model including only pre-treatment assessment of 

outcome (benchmark), additional variance explained beyond benchmark model by ensemble model (model 

gain), and total variance explained. 95% CIs for Prediction R2 were based on the standard error formula 

applied to the 10 × 10 cross-validation estimates. 95% CIs for Gain (the increase in predicted R2 over 

Benchmark) were estimated by bootstrap.

Prediction R2 95% CI

HRSD

Benchmark 0.17 0.07, 0.26

Random Forest 0.23 0.14, 0.31

Elastic Net 0.24 0.14, 0.33

Random Forest/ Elastic Net Ensemble 0.25 0.16, 0.33

Gain for Ensemble Model +0.08 +0.008, +0.15

Disability

Benchmark 0.20 0.10, 0.31

Random Forest 0.24 0.13, 0.34

Elastic Net 0.24 0.15, 0.33

Random Forest/ Elastic Net Ensemble 0.25 0.16, 0.35

Gain for Ensemble Model +0.05 −0.003, +0.10

IDAS-Well Being

Benchmark 0.18 0.08, 0.27

Random Forest 0.26 0.19, 0.34

Elastic Net 0.29 0.19, 0.40

Random Forest/ Elastic Net Ensemble 0.29 0.21, 0.38

Gain for Ensemble Model +0.12 +0.05, +0.19
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