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Abstract

The striatum with a number of dopamine containing neurons, receiving projections from the 

substantia nigra and ventral tegmental area; plays a critical role in neurodegenerative diseases of 

motor and memory function. Additionally, oxidative damage to nucleic acid may be vital in the 

development of age-associated neurodegeneration. The metabolism of dopamine is recognized as 

one of the sources of reactive oxygen species through the Fenton mechanism. The proposed 

interactions of oxidative insults and dopamine in the striatum during the progression of diseases 

are the hypotheses of most interest to our study. This study investigated the possibility of 

significant interactions between these molecules that are involved in the late-stage of Alzheimer’s 

disease (AD), Parkinson disease (PD), Parkinson disease dementia (PDD), dementia with Lewy 

bodies (DLB), and controls using ELISA assays, autoradiography, and mRNA in situ hybridization 

assay. Interestingly, lower DNA/RNA oxidative adducts levels in the caudate and putamen of 
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diseased brains were observed with the exception of an increased DNA oxidative product in the 

caudate of AD brains. Similar changes were found for dopamine concentration and vesicular 

monoamine transporter 2 densities (VMAT2). We also found that downstream presynaptic 

dopamine D1 Receptor binding correlated with dopamine loss in LBD groups, and RNA damage 

and BACE1 in the caudate of AD. This is the first demonstration of region-specific alterations of 

DNA/RNA oxidative damage which cannot be viewed in isolation, but rather in connection with 

the interrelationship between different neuronal events; chiefly DNA oxidative adducts and density 

of VMAT2 in AD and PD patients.

Graphical Abstract

We hypothesized the following interactions between oxidative damage and dopaminergic 

biological molecules. One, metabolism of dopamine yields ·OH through the Fenton Reaction and 

leads to oxidative damage of DNA and RNA molecules. Two, VMAT2 plays a vital anti-oxidation 

role. Three, D1R plays a compensatory role against dopamine loss and takes on damage effects in 

the regulation of BACE1 during these biochemical events. We believe these interactions are 

involved in the late-stages of neurodegenerative diseases - resulting in striatal neuron dysfunction.
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Introduction

Dementia with Lewy bodies (DLB), Parkinson disease dementia (PDD), and Parkinson 

disease (PD) share clinical and neuropathological similarities, and these diseases have been 

aggregated conceptually under the broad umbrella of Lewy body disease (LBD) (Lippa et al. 
2007). Alzheimer’s disease (AD) and LBD cause progressive cognitive and motor 

dysfunction to varying degrees (Gan et al. 2018). AD typically begins as an amnestic 

syndrome though motor dysfunction may also occur (Buchman et al. 2013). LBD includes 
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motor and cognitive manifestations that some classify as DLB if dementia occurs within or 

before the first year of motor Parkinsonism versus PDD if the dementia starts later in the 

course of the disease (Emre et al. 2007; McKeith et al. 2005). This rather arbitrary division 

blurs even more after realizing that 20–40% of people with PD have cognitive dysfunction at 

the time of initial motor symptoms (Foltynie et al. 2004; Aarsland & Kurz 2010; Goldman et 
al. 2015). Although the topographic distribution of pathology differs between AD and LBD 

both may involve dysfunction of striatal dopaminergic neurons. While degeneration of 

nigrostriatal dopaminergic neurons is the classic pathology of PD; striatal dopaminergic 

dysfunction may also contribute to the motor manifestations of AD. The striatum can be 

sectioned into sub-regions - caudate and putamen - based on the input it receives from 

different cortical areas (Draganski et al. 2008). The caudate nucleus is involved in a variety 

of behaviors including procedural learning (Seger & Cincotta 2005) and working memory 

(Hannan et al. 2010). The dorsal posterior putamen receives its primary input from the motor 

and sensorimotor cortices and is substantially involved in the regulation of motor circuits 

(Del Campo et al. 2016).

Recent studies indicate that neuroinflammation may contribute to degeneration of the 

nigrostriatal dopaminergic pathway in PD and possibly in AD as well. In PD, activation of 

glial cells causes the release of free radicals and cytokines which in turn increases the 

vulnerability of dopaminergic neurons to oxidative damage (Czlonkowska et al. 2002; Liu & 

Hong 2003). High concentrations of H2O2 - generated from the metabolism of dopamine - 

may lead to the formation of highly toxic hydroxyl radical (·OH) making dopaminergic 

neurons more susceptible to oxidative stress (Mytilineou et al. 1993). Mitochondrial 

dysfunction contributes to oxidative injury early in the course of these diseases. 

Furthermore, 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxo-dG) and 8-oxo-7,8-

dihydroguanosine (8-oxo-G) may act as biomarkers of oxidative damage to DNA and RNA, 

respectively. Postmortem brains from AD patients have higher levels of 8-oxo-G than 

healthy controls especially in the hippocampus (Nunomura et al. 1999; Hofer & Perry 2016). 

However, human studies into the biological consequence of oxidative damage to the 

dopaminergic system in the striatum are underdeveloped relative to the importance of this 

phenomenon (Venkateshappa et al. 2012; Horner et al. 2011; Tata & Yamamoto 2007). 

Regulation of reactive oxygen species (ROS) may provide a therapeutic target for these 

neurodegenerative diseases (Masoud et al. 2015; Martorana & Koch 2014; Hyun 2019).

In the current study, we hypothesized that the interrelationship of dopamine and oxidative 

insults in the striatum is involved crucially and differently in AD and LBD. This study 

analyzed human post-mortem brain samples from AD, LBD, and control cases. We 

selectively extracted DNA, RNA, and dopamine; and quantified the concentrations of 8-oxo-

dG, 8-oxo-G, and dopamine in the caudate and putamen. Furthermore, it is known that 

dopamine compartmentalization by the vesicular monoamine transporter 2 (VMAT2) 

correlates with the relative vulnerability of dopaminergic neurons in Parkinsonian-like 

neurodegeneration (Hall et al. 2014). It is also documented that presynaptic dopamine D1 

Receptor (D1R) binding is partly a complement to the alteration of dopamine levels and its 

pathological factor affects excitation/inhibition imbalances caused by β-Amyloid (Aβ) (Ren 

et al. 2018). In light of these factors, we measured densities of VMAT2 and D1R in the same 

regions using quantitative autoradiography and assessed the effects of D1R on β-site APP 
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cleaving enzyme 1 (BACE1) activity in AD using mRNA in situ hybridization assay. Our 

findings provide valuable insights on the interactions of oxidative damage and dopamine in 

the striatum of AD and LBD brains, and will evoke meaningful discussion on the subject.

Materials and methods

Ethics statement.

Either the patient provided written consent prior to cognitive impairment or the next of kin 

provided it antemortem or postmortem in accordance with local Ethical Committee 

procedures (Washington University Institutional Review Board, Washington University 

School of Medicine). Use of this tissue for the postmortem receptor autoradiography and 

biochemistry studies was approved by the Charles F. and Joanne Knight Alzheimer’s 

Disease Research Center (Knight ADRC) and Movement Disorders Center (MDC) 

Leadership Committees (Ethics approval reference number: T1705).

Chemicals and radioligands.

Chemical reagents and standard compounds were purchased from Sigma (St. Louis, MO). 

[3H]SCH23390 (85 Ci/mmol, Cat. #NET930025UC CAS. #125941–87-9) was purchased 

from Perkin Elmer Life Sciences (Boston, MA) and [3H]Dihydrotetrabenazine ([3H]DTBZ, 

20 Ci/mmol, Cat. #ART 0496) was purchased from American Radiolabeled Chemicals (St 

Louis, MO, USA).

Postmortem human brain cases.

Clinically and neuropathologically well-characterized human brain tissues were obtained 

from the Knight ADRC and the Movement Disorders Brain Bank at Washington University 

School of Medicine. The tissues obtained were as follows: 10 PD (7 male, 3 female) aged 

69–87 (mean: 78 ± 2) years at death, 8 PDD (7 male, 1 females) aged 66–87 (mean: 77 ± 3) 

years at death, 10 DLB (5 male, 5 female) aged 69–89 (mean: 81 ± 2) years at death, 27 AD 

(13 male, 14 females) aged 62–94 (mean: 82 ± 2) years at death, and 10 age-matched normal 

control cases (6 males, 4 females) aged 72–93 (mean: 83 ± 2) years at death. The arbitrary 

clinical distinction between DLB and PDD was made using the McKeith et al. criteria 

(McKeith et al. 2005; Hughes et al. 1992). Dementia level was evaluated by CDR (Emre et 
al. 2007); PD participants with CDR≥1 - based on criteria for dementia in PD - were 

included in the study. AD pathological changes were assessed using Braak staging (Thal & 

Braak 2005). Stages of amyloid beta deposition refer to initial deposits in the basal 

neocortex (A), deposits that extended into the association areas of the neocortex (B), and 

heavy deposition throughout the entire cortex (C). Stages of neurofibrillary pathology 

correspond to transentorhinal (I–II), limbic (III–IV), and neocortical (V and VI). The 

average age and post mortem interval time did not significantly differ across these three 

groups. All the AD cases show neurofibrillary tangles (NFTs) (V: 13 cases; VI: 14 cases) 

and are significantly different from that of age-matched control cases (Average amyloid 

beta: A; NFTs: II). Detailed information on the clinical and pathological features are 

summarized in Table 1.
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Tissue collection.

Brains were collected at the time of autopsy and the right hemisphere was coronally 

sectioned and snap-frozen by contact with Teflon-coated aluminum plates cooled in liquid 

nitrogen vapor. Tissue blocks were subsequently placed in airtight zip-lock plastic bags and 

stored at −80 °C until used. Microscopic examination to establish neuropathology was 

performed using established rating scales. For autoradiography and mRNA in situ 

hybridization studies: frozen coronal sections (20 µm) were cut with a Microm cryotome and 

mounted on Superfrost Plus glass slides (Fisher Scientific, Pittsburgh, PA, USA. Cat. 

#1255015). Striatal sub-areas - caudate and putamen - were tested separately.

8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxo-dG) Assay.

Total DNA in the caudate and putamen from study brains was extracted using the Qiagen 

QIAamp DNA Mini Kit according to the manufacturer’s instruction (Qiagen, Valencia, CA, 

USA. Cat. #51304). A NanoDrop 1000 spectrophotometer (Thermo Fisher, Pittsburgh, PA, 

USA) was utilized to measure DNA integrity and purity. Extracted gDNA was converted to 

single-strand DNA by incubating the sample at 95 °C for 5 min and rapidly chilling it on ice. 

DNA single-strand digestion used the nuclease P1 (NP1) and alkaline phosphatase (AP) 

enzymes (Huang et al. 2001). Preparation of enzymes solution was as follows: NP1 from 

Penicillium citrinum (1mg 1000 units of 3’-phosphomonoesterase activity, AdipoGen Life 

Sciences, San Diego, CA, USA. Cat. #501015753) was dissolved in 100 µL 20 mmol/L 

sodium acetate buffer (pH 5.2) it was further diluted 10 times to a final concentration of 1 

U/µL in the acetate buffer and AP from calf intestine (1 U/µL, Thermo Scientific™, Grand 

Island, NY, USA. Cat. #FEREF0651) was stored in 25 mmol/L Tris HCl (pH 7.6), 1 mmol/L 

MgCl2, and 50% glycerol (w/v). Digestion of the DNA was carried out in the following 

manner: after acidification with 1 µL 3 mol/L acetate buffer (pH 5.2) the DNA reaction 

mixture was subjected to 1 µL of NP1 (1 U/µL) digestion for 2 h at 37 °C. After 2 h of 

incubation, 10 µL of 1M Tris-HCl (pH 8.0) was used to bring pH back to 7.4 followed by 

treatment with 1 µL of AP (1 U/µL) for 1 h at 37 °C. The reaction mixture was centrifuged 

for 1 min at 8,000 g and the supernatant was collected for the 8-oxo-dG assay using the 

OxiSelect oxidative DNA damage ELISA kit (Cell Biolabs, Inc., San Diego, CA, USA. Cat. 

#STA-320) according to the manufacturer’s instructions. Each prepared tissue sample was 

added to the assay in duplicate. Known standards were also included in the assay in triplicate 

to allow for accurate quantification.

8-oxo-7,8-dihydroguanosine (8-oxo-G) Assay.

Whole RNA in the caudate and putamen from study brains was extracted using the Qiagen 

RNeasy Plus Micro Kit according to the manufacturer’s instruction (Qiagen, Valencia, CA, 

USA. Cat. #74034). RNA integrity and purity was measured using NanoDrop 1000 

spectrophotometer. RNA samples were digested to nucleosides by incubating the samples 

with 1 µL of NP1 (1 U/µL) and 1 µL 3 mol/L acetate buffer (pH 5.2) for 2 h at 37 °C. 

Following incubation they were treated with 10 µL of 1M Tris-HCl (pH 8.0) and 1 µL of AP 

(1 U/µL) for 1 h at 37 °C. The reaction mixture was centrifuged for 1 min at 8,000 g, and the 

supernatant was collected for the 8-oxo-G assay using the OxiSelect oxidative RNA damage 

ELISA kit (Cell Biolabs, Inc., San Diego, CA, USA. Cat. #STA-325–5) according to the 
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protocol provided by the manufacturer. Each prepared tissue sample was added to the assay 

in duplicate. Known standards were also included in the assay in triplicate to allow for 

accurate quantification.

Dopamine Assay.

Dopamine concentrations in the caudate and putamen from snap-frozen study brains were 

measured by the commercially available Dopamine (DA) ELISA Kit (BioVision, Inc., 

Milpitas, CA, USA. Cat. #K4219) according to the user’s manual provided by the 

manufacturer. Samples (100 mg) were rinsed with 1×PBS (Fisher Scientific, Pittsburgh, PA, 

USA, Cat. #50–983-207) and homogenized in 0.9 mL of 1×PBS. The homogenates were 

centrifuged for 5 min at 5000g at 2–8°C. The supernatant was collected for use with the 

dopamine assay kit. Known standards were added to the assay in triplicate for accurate 

quantification and each tissue extract was determined in duplicate by a four-parameter 

logistic (4-PL) regression model. The detection range for dopamine was 1.56 −100 ng/mL 

and the sensitivity was 0.938 ng/mL. All data were obtained from a standard curve with 

r>0.99.

Quantitative autoradiography protocol.

To ensure the removal of endogenous dopamine, sections for dopamine D1R binding tissue 

were pretreated in buffer (50 mmol/L Tris buffer, pH 7.4, containing 120 mmol/L NaCl, 5 

mmol/L KCl) for 20 min at room temperature (RT). After a 30 min incubation in an open 

staining jar with their respective radiotracer, slides were then rinsed five times at 1 min 

intervals with ice-cold buffer. The free radio ligand concentration loss was determined to be 

< 5% as previously described (Xu et al. 2010).

Quantification of total radioactivity.

Dried slides were made conductive by covering the free side with copper foil tape. Slides 

were then placed into a gas chamber containing a mixture of argon and triethylamine 

(Sigma-Aldrich, St. Louis, MO, USA. Cat. #BP616–500) as part of a gaseous detector 

system - the Beta Imager 2000Z Digital Beta Imaging System (Biospace, France) – for 

which there is a 0.07dpm/mm2 sensitivity limit. After the gas was well mixed and a 

homogenous state achieved, further exposure for 20 h yielded high-quality images. A 

[3H]microscale with a known amount of radioactivity (ranging from 0 to 36.3 nCi/mg) was 

counted with each section and used to create a standard curve; in each case the standard 

curve had a correlation coefficient (R) > 0.99. Quantitative analysis was performed with the 

program Beta-Vision Plus (BioSpace, France) for each anatomical region of interest.

Vesicular monoamine transporter 2 (VMAT2) binding.

VMAT2 binding sites were labeled with [3H]DTBZ. Brain sections were incubated at RT for 

30 min in buffer solution containing 4 nmol/L [3H]DTBZ. Nonspecific binding was 

determined in the presence of 1 µM S-(–) tetrabenazine (Sigma-Aldrich, St. Louis, MO, 

USA. Cat. #T2952–10MG, CAS. #58–46-8) as previously described (Sun et al. 2013b; Sun 

et al. 2013a).

Li et al. Page 6

J Neurochem. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dopamine D1R binding.

D1R binding sites were labeled with [3H]SCH23390 using the procedure described by 

Savasta with minor modifications (Savasta et al. 1986). After removing endogenous 

dopamine, sections were incubated for 30 min at RT in buffer solution containing 1.5 

nmol/L [3H]SCH23390 and 30 nM ketanserin tartrate (Tocris Bioscience, Ellisville, 

Missouri, USA. Cat. #0908, CAS. #83846–83-7) to block 5-HT2 receptors. Nonspecific 

binding was determined in the presence of 1 µM (+)-butaclamol (Sigma-Aldrich, St. Louis, 

MO, USA. Cat. #D033–5MG, CAS. #55528–07-9) as previously described (Novick et al. 
2008; Lim et al. 2011).

β-site APP cleaving enzyme 1 (BACE1) mRNA in situ hybridization assay.

In situ hybridization (ISH) was performed using the RNAscope 2.5 HD Chromogenic Assay 

kit (Advanced Cell Diagnostics, Inc. Newark, CA, USA. Cat. #322350) with a slightly 

modified protocol. Slides were removed from the −80 °C freezer and immediately placed in 

jar containing ice cold 10% Neutral Buffered Formalin (NBF, Fisher Scientific, Pittsburgh, 

PA, USA, Cat. #22–050-104) and fixed for 15 min at 4 °C. Then slides were placed in 50% 

EtOH (Ethanol 100%, Fisher Scientific, Pittsburgh, PA, USA, Cat. #04–355-720) for 5 min 

followed by 70% EtOH for 5 min. Finally, slides were placed in 100% EtOH for 5 min 

followed by fresh 100% EtOH for 5 min. These procedures were carried out at RT. Slides 

were left to dry for 5 min at RT then a hydrophobic barrier was drawn around each section 

(ImmEdge Hydrophobic Barrier Pen, ACD, Newark, CA, USA. Cat. #310018). Sections 

were then pretreated with Protease IV (Universal Pretreatment Reagents, ACD, Newark, CA, 

USA. Cat. #322380) for 15 min at RT and rinsed in PBS. Briefly, the tissue sections were 

incubated in a custom human gene-specific RNAscope Hs-BACE1 probe (Gene Alias: 

ASP2; Target Region: 1393–2418, ACD, Newark, CA, USA. Cat. #422541), a positive 

control probe (human Cyclophilin B (PPIB), ACD, Newark, CA, USA. Cat. #476701) and a 

negative control probe (bacterial dapB, ACD, Newark, CA, USA. Cat. #310043); for 2 h at 

40 °C in the RNAscope oven (ACD HybEZ™ II Hybridization System, ACD, Newark, CA, 

USA. Cat. #321711) then washed with buffer to remove probes. Sections were sequentially 

hybridized to a cascade of amplification molecules, culminating in binding to HRP-labeled 

probes; only with modification of incubation with Amp5 for 45 min at RT using the HybEZ 

humidity control tray and slide rack to maintain humidity. ISH signal was detected by 

diluting Fast RED-B in Fast RED-A solution (1:60 ratio) and incubating sections in this 

solution for 15 min. Slides were washed in water 2 times to stop the reaction. Then the slides 

were counterstained with 50% Hematoxylin (Gills Hematoxylin 1, Fisher Scientific, 

Pittsburgh, PA, USA, Cat. #NC1000827) and washed in water 3–5 times. Then the slides 

were placed into 0.01% Ammonia water (28 to 30% Ammonium hydroxide solution, Fisher 

Scientific, Pittsburgh, PA, USA, Cat. #MAX13036) for 20 seconds and washed with water 

3–5 times. After drying at 60 °C for at least 20 min, the slides were dipped into xylene 

(Sigma-Aldrich, St. Louis, MO, USA. Cat. #XX0055–6) and immediately placed mount 

media (EcoMount, Fisher Scientific, Pittsburgh, PA, USA, Cat. #EM897L) and coverslips. 

The high-resolution images of single colorimetric ISH tissue sections were acquired using a 

digital whole slide scanner (Nanozoomer 2-HT, Hamamatsu. Bridgewater, NJ) using a 20×/

0.75 lens (Olympus, Center Valley, PA). We used the NDP.view2 (Hamamatsu Photonics, 

Japan) software and viewed the digital slides. The hybridization signals were then quantified 
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using the image analysis module of the digital pathology software Visiomorph (VisioPharm, 

Broomfield, CO). The caudate and putamen under examination were delineated by a region 

of interest (ROI) in the software and the signals were quantified as the average red dots 

count per mm2.

Statistical analysis.

Continuous variables were expressed as the means ± SEM. One outlying sample in the PDD 

group and one outlying sample in the AD group were excluded from the analysis. Their 

results deviated more than 150% from the means in the 8-oxo-dG and dopamine assays and 

produced negative value in the D1 receptor density assay. More detail on these examples can 

be found in the supplementary materials (Figure S1–Figure S4). The statistical analyses 

were carried out using all data except these two outliers without any further normalization. 

One-way ANOVA and two-way ANOVA were used to estimate the overall significance 

followed by Bonferroni multiple comparison test. Student’s unpaired t-test was used to 

assess the difference between groups. Spearman’s correlation coefficient (rs) was calculated 

to verify the strength of correlation between continuous variables. Analyses of the 

correlations between dopamine concentration and L-Dopa response were performed using 

Kendall’s tau_b test. Statistical analyses were performed using GraphPad Prism 6.0 (RRID: 

SCR_002798) for Windows and IBM SPSS Statistics version 23 (RRID: SCR_002865). p < 

0.05 was considered statistically significant. No blinding, randomization, or sample size 

calculations were performed during experimentation and statistical analyses.

Results

Baseline information and clinical features of study subjects

In the present study, human brains were collected at autopsy between 3 and 47 h 

postmortem. Table 1 recapitulates the baseline information and clinical features of the study 

subjects. No significant difference were found in age at death, PMI, brain weight, onset, and 

progression of the disease suggesting that our results were not affected by these factors. For 

the Braak NFT stage factor there was a significant difference between the AD and Control 

groups. The demographic information on the Table 1 also shows the levodopa response of 

the PD, PDD, and DLB patients; however, the brains were collected during too large time 

span to textually research for the dose and duration of levodopa treatment.

8-oxo-dG levels in the caudate and putamen of the different groups

To ascertain 8-oxo-dG levels in the caudate and putamen of the disease groups and age-

matched controls we utilized the ELISA assay following the protocol mentioned above. As 

shown in Figure 1, we found that the levels of 8-oxo-dG in the caudate of the PD cases 

(11.22 ± 1.46) decreased remarkably by 45.7% compared to controls (20.67 ± 2.58) but 

without statistical significance. Additionally, a marked increase of 8-oxo-dG concentration 

in the caudate of AD patients (24.19 ± 2.94) was observed compared to PD patients 

(119.3%, p = 0.0039). The results in the putamen vastly differed from the caudate. In the 

putamen, the concentrations of 8-oxo-dG were similar to the controls except for a 

nonsignificant slight reduction in the AD group (Control: 16.59 ± 1.93; PD: 16.60 ± 1.78; 

PDD: 18.10 ± 1.23; DLB: 14.84 ± 1.83; AD: 13.87 ± 0.73). Two-way ANOVA analysis 
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shows there is a dramatic difference with statistical significance (p = 0.0008) between the 

elevated 8-oxo-dG levels in the caudate with the decreased levels in the putamen of AD 

brains (Figure S5). This suggested that the caudate is most likely more susceptible to DNA 

damage than the putamen in the late-stage of the AD patients.

8-oxo-G levels in the caudate and putamen of the different groups

Figure 2 shows the RNA damage status in the caudate and putamen of the disease groups 

and age-matched controls using ELISA assay; the levels of 8-oxo-G in the caudate did not 

significantly differ between controls and the disease groups (Control: 33.08 ± 4.31; PD: 

21.05 ± 3.34; PDD: 31.91 ± 5.68; DLB: 23.93 ± 2.92; AD: 27.88 ± 2.76). By contrast, all of 

the LBD groups had significantly lower concentrations of 8-oxo-G in the putamen compared 

to controls. The DLB subjects had the lowest concentrations with 67.4% reduction (DLB: 

15.83 ± 2.04, 95% CI: 14.04 to 51.12, p < 0.0001; Controls: 48.41 ± 6.11). The 56.4% and 

60.3% reductions were found for PD (21.12 ± 3.64, 95% CI: 8.24 to 46.34, p < 0.01) and 

PDD (19.17 ± 2.82, 95% CI: 7.83 to 50.65, p < 0.01) cases, respectively. The concentration 

of oxidative modified RNA in the putamen and caudate of AD (40.45 ± 3.12) brains 

decreased. There were two other interesting findings here to note. One, the level of 8-oxo-G 

in the putamen (48.41 ± 6.11) of health aging brain was higher than in caudate (33.08 

± 4.31), indicating that putamen was likely more susceptible to RNA oxidative damage than 

caudate. Additionally, greater oxidation to RNA than to DNA was found in caudate and 

putamen samples from all study cases, suggesting that RNA may be more vulnerable to 

oxidative insults than DNA.

Dopamine levels in the caudate and putamen of the different groups

ELISA assay was used to determine the DA concentrations in the caudate and putamen 

samples that were taken from the disease groups and age-matched controls, as shown in 

Figure 3A. DA levels in the caudate and putamen for control and diseases patients did not 

significantly differ. However, we observed trends of decreasing and increasing DA 

concentrations in the LBD and AD cohorts, respectively. These observations warrant further 

investigation in a larger population of patients. Looking at the correlation between dopamine 

and oxidative damage more closely, we see that Figure 3B shows a significant negative 

association between dopamine levels and the concentration of 8-oxo-dG in the caudate from 

patients with AD (rs = −0.454, p = 0.026). These data suggest the ability of dopamine in the 

caudate of AD to enhance the oxidative degradation through Fenton and Fenton-like 

reactions (Melin et al. 2015). Additionally, the concentration of dopamine showed a 

significant positive correlation with VMAT2 expression in the putamen of DLB brains 

(Figure 3C, rs = 0.667, p = 0.050), further proving in all likelihood that dopamine 

accumulates in the cytosol by means of dopamine transporter (DAT) followed by 

sequestration into the synaptic storage vesicles by VMAT2.

Vesicular monoamine transporter 2 (VMAT2) density in the caudate and putamen of the 
different groups

We determined the striatal VMAT2 density of the disease groups and age-matched controls 

using quantitative autoradiography. Compared to the controls, lower levels of striatal 

VMAT2 binding were obtained in the caudate of LBD cases with a similar reduction (PD: 
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−40.8%; PDD: −43.7%; DLB: −42.4%) of that shown in Figure 4A, statistical significance 

was reached vs. AD. The lowest VMAT2 striatal binding was found in the putamen of PD 

patients; it was found to have a 58.1% reduction – compared to the controls (p < 0.0001 vs. 

AD). On the other hand, a marked increase in VMAT2 density both in the caudate (33.3% 

increase) and putamen (47.8% increase) of AD brains were found in the present study. Both 

dopamine levels and VMAT2 density - compared to controls - showed similar changes in the 

caudate and putamen of the patients with diseases in the current study. Regarding the role of 

VMAT2 in packing cytosolic dopamine into synaptic vesicles to prevent its autoxidation and 

the subsequent degeneration of dopamine neurons; Spearman analyses reveal significant 

negative correlations between 8-oxo-dG levels and VMAT2 density in the caudate (rs = 

−0.451, p = 0.027) and putamen (rs = −0.516, p = 0.024) of AD brains, as well as in the 

caudate (rs = −0.683, p = 0.042) of PD brains (Figure 4C). This might explain the reduction 

of vesicular storage and increase of dopamine release, and the yielding of hydrogen peroxide 

from MAO-catalyzed dopamine metabolism (Golembiowska & Dziubina 2012).

Dopamine D1 Receptor (D1R) density in the caudate and putamen of the different groups

Although there is no report on the biological consequence of oxidative damage on D1R, 

D1R density is partly regulated by dopamine signal and should be investigated to establish 

the downstream consequence of damage to nucleic acids. We quantified D1R density of the 

disease groups and age-matched controls using quantitative autoradiography. As shown in 

Figure 5A - in the striatal regions - the distribution of D1R was abundant and no regional 

differences of receptor binding were found in the caudate and putamen of the controls 

(caudate: 25.28 ± 3.41; putamen: 24.63 ± 3.32). Substantial D1R density increases with 

statistically significance were found for the caudate and putamen from the patients with 

LBD when compared to controls. The greatest increase was found in the caudate for PD 

cases (66.09 ± 3.32, 161.4%, p < 0.001). The greatest increase was found in the putamen for 

PDD cases (70.23 ± 8.57, 185.1%, p < 0.001). The least increases of D1R bonding were 

found for the caudate (36.83 ± 1.54, 45.7% increase) and putamen (31.98 ± 2.14, 29.8% 

increase) of AD cases - compared to that of LBD cases.

mRNA level of β-site APP cleaving enzyme 1 (BACE1) in the caudate and putamen of the 
ten AD cases and age-matched controls

To examine the effects of D1R on regulation of BACE1 activity, we designed RNAscope 

ISH probe to detect BACE1 gene mRNA expression from the 10 cases from AD brains with 

the highest D1R density ≥ 40 fmol/mg. We only analyzed striatal tissue sections in these 10 

cases from AD brains along with 10 age-matched control brains by labeling them with the 

probe targeting BACE1 mRNA. Meanwhile, a positive control probe and negative control 

probe were performed under the same conditions as the RNA quality control. In our analysis 

we observed prominent neuropathological features of AD: Aβ plaques and neurofibrillary 

tauopathy consisting of threads and tangles (NFT) (Figure 6A left). Targeting BACE1 
mRNA was visualized as cytoplasmic red dots of variable size which were sometimes fused 

to form larger foci of staining, and were located mostly on the Aβ plaque accumulation 

more often found in the putamen (Figure 6A middle). Semi-quantitative regional analysis 

results of ISH signal in ROI (Figure 6C) showed that both increased transcriptional 

expression in the caudate and putamen were observed in patients with AD compared to 
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controls. The results concerning the putamen were of special note as they were statistically 

significant and deserved further investigation. (3.025 ± 0.10, 13.5% increase, p = 0.0197). 

This result can be observed visually in Figure 6B showing positive cells in the caudate and 

putamen of the exact AD case with the same D1R density in two brain areas and control 

subjects. Spearman analyses reveal positive correlations between BACE1 mRNA expression 

and the density of D1R in the caudate of the AD brains with statistical significance (rs = 

0.750, p = 0.020) and the controls (rs = 0.119, p = 0.779) without statistical significance. 

Conversely, negative correlations in the putamen (rs = −0.546, p = 0.160) of the AD brains 

and the controls (rs = −0.690, p = 0.058) without statistical significance were observed 

(Figure 6D). Our results were consistent with previous reports that Aβ1–42 oligomers 

damage synapse function and interact with D1/D5 dopamine receptor inducing pro-

epileptogenic effects, and in these reports D1R antagonist were studied as potential 

therapeutics (Costa et al. 2016).

Data analysis of all assay results of the caudate and putamen of the ten AD cases chosen 
for BACE1 mRNA analysis and age-matched controls

Re-analysis of all assays data involving the caudate and putamen of the only ten AD cases 

chosen for BACE1 mRNA assay and age-matched controls is consistent with the results 

previously discussed. However, compared to the control cases, there were some more 

apparent findings than in the previously reported data: an exceptional increase of 8-oxo-dG 

in the caudate, and decrease in the putamen; decreased 8-oxo-G levels, increased dopamine 

concentration, VMAT2, and D1R density were found both in the caudate and putamen of 

AD cases (Figure 7A, Figure 7B and Table 2). Spearman analyses reveal significant negative 

correlations between density of VMAT2 and DNA oxidative adducts levels (rs = −0.678, p = 

0.015), density of VMAT2 and RNA oxidative adducts levels (rs = −0.717, p = 0.030), as 

well as density of D1R and RNA oxidative adducts levels (rs = −0.750, p = 0.020) in the 

caudate of AD cases (Figure 7C). These results indicate that dopamine storage ability plays 

a critical role in enhancing the oxidative degradation through Fenton and Fenton-like 

reactions and that interactions between D1R and RNA oxidative damage is still unclear and 

needs to be explored in greater detail. Greater amounts of DNA oxidative adducts in the 

caudate and opposite changes in the putamen were of note, indicating that the caudate of AD 

patients are likely more susceptible to DNA damage.

Discussion

Oxidative DNA insults have received much attention - as the brain has a high oxygen 

demand, a relatively high metabolic rate, and is thought to have a decreased ratio of 

antioxidant enzymes, all of which result in elevated oxidative stress and ROS generation 

(Madabhushi et al. 2014). DNA damage could continuously alter chromatin conformation 

and gene expression patterns with age. Lesions to mitochondrial DNA have also been found 

in patients with PD (Bender et al. 2006). On the other hand, RNA molecules are likely 

oxidized by hydroxyl radical generated from the reaction of H2O2 with transition metals 

through the Fenton reaction. Furthermore, RNA bases are not protected by hydrogen 

bonding and specific proteins. These problems underlie the reasons that make RNA more 

vulnerable to oxidative damage than DNA (Fimognari 2015). While elevated oxidative stress 
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in the cerebral cortex in patients with early-stage PD has been described (Ferrer 2009); RNA 

oxidation has been prominently observed in postmortem AD brains with lesser volumes of 

Aβ plaque deposition or shorter disease duration (Nunomura et al. 2001).

Oxidative damage of nucleic acid in the caudate and putamen from patients with 
neurodegenerative diseases and age-matched controls

Transition metal ions - iron or copper - and hydrogen peroxide are able to oxidize a wide 

range of substrates resulting in biological damage. The reaction referred to as the Fenton 

reaction:

Fe2++H2O2 Fe3++·OH+OH−

Fe3++H2O2 Fe2+ + · OOH+H+

is capable of yielding both hydroxyl radical and higher oxidation states of the iron 

(Winterbourn 1995). Excessive hydroxyl radical attacks adjacent to mitochondrial DNA 

strands and cytoplasmic RNA single-strands eventually generate a wide variety of oxidative 

adducts. The major products of the oxidation of DNA/RNA are 8-oxo-dG/8-oxo-G - as 

guanine in DNA/RNA is more sensitive to ROS attacks than other bases - can be stable and 

relatively easily formed as biomarkers (Che et al. 2010). Enzymatically, metabolism of 

dopamine yields plenty of H2O2, leading conversely to dopaminergic neurons being more 

exposed to oxidative damage. Given the above, we can rethink how the metabolism and 

concentration of dopamine further plays a critical role in nucleic oxidation as a major source 

of ROS. Also, the progressive dysfunction or eventual death of dopaminergic neurons may 

be in part a result of an imbalance between clearance and generation of ROS. This theory 

can be supported further by a significant negative correlation between dopamine levels and 

DNA oxidative adducts levels in the caudate of AD subjects studied currently; dopamine is a 

good metal chelator and electron donor that can be capable of reacting with iron and 

manganese (Kong & Lin 2010).

Several studies have shown increased 8-OHdG level in patients with PD (Kikuchi et al. 
2002; Chen et al. 2009), and a higher level of 8-oxo-dG in cerebrospinal fluid (CSF) of 

patients with PD compared to controls (Abe et al. 2003). However, in the present study 

focusing on the late-stage of the disease, noticeable reductions of 8-oxo-dG level in the 

caudate of LBD cases were observed. The urinary 8-OHdG levels in MFB 6-

hydroxydopamine (6-OHDA) lesion model started to increase as early as day 3 with 

significant increases to day 7 and gradually reverting back to near baseline levels at day 42 

(Kikuchi et al. 2011). Also, the increased 8-oxo-dG levels in caudate of AD patients 

correlated with the increase of dopamine levels of the same cases, which are consistent with 

elevated 8-oxo-dG levels in the hippocampus of patients with AD (Hofer & Perry 2016). We 

observed a significant negative association between dopamine levels and the concentration 

of 8-oxo-dG in the caudate of patients with AD (rs = −0.454, p = 0.026). A significant 

negative correlation between 8-oxo-dG levels and VMAT2 density in the caudate (rs = 
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−0.451, p = 0.027) of AD brains was also observed. These results are most likely owing to 

the Fenton oxidation reaction taking place in the caudate of the AD - as a response to 

dopamine concentration (Youdim 2018) and dopamine compartmentalization by VMAT2 

association with DNA oxidative damage. Furthermore, decreased 8-oxo-dG level and 

increased Aβ plaque deposition in the putamen of AD brains were unexpectedly observed in 

the present study. In cell culture experiments, deposition of Aβ42 is associated with a 

decrease in the level of neuronal oxidative stress (Nunomura et al. 2000).

As oxidized RNAs turns-over rapidly, the pattern of RNA oxidation - a “steady-state” 

marker of oxidative damage rather than history - is prominent in neurons without pathology 

and is present in lesser amounts in neurons containing pathology (Nunomura et al. 2001). 

The prominent 8-oxo-G immunoreactivity were found in the hippocampus, subiculum, 

entorhinal cortex, and temporal neocortex of DLB cases (Nunomura et al. 2002). Previous 

reports describe that 8-oxo-dG might be used as an “early-stage” marker, whereas the 

decrease of 8-oxo-G in CSF might be an indicator of the degree of neurodegeneration during 

the PD disease progression (Gmitterova et al. 2018). As reported, a 58% decrease in striatal 

dopamine concentration was observed in the mouse model of Parkinson Disease (Xu et al. 
2017). In the present LBD patients, notable deficiencies in dopamine levels in the putamen - 

resulting in decreased oxidative damage to RNA - could be explained by the decreased 

metabolism of dopamine through Fenton Reaction thus leading to a lower yield of ·OH. The 

exception being for the metabolism of dopamine itself, other sources for the generation of 

ROS: mitochondrial dysfunction, iron, neuroinflammatory cells, calcium, and aging - need 

to be explored more in future research. We found the changes of dopamine levels in the 

caudate and putamen did not correlated with that of 8-oxo-G levels in the same brain areas 

of AD cases, indicating that alteration of dopamine was insufficient to fully explain the RNA 

oxidative damage. For patients with AD, the Apolipoprotein E (ApoE) ϵ4 was mainly 

responsible for increased amounts of Aβ deposits, as well as the strong negative correlation 

between RNA oxidative damage and Aβ deposits (Nunomura et al. 2001). Therefore, the 

same degrees of reduction of 8-oxo-G levels in the caudate (−15.7%) and putamen (−16.4%) 

were observed in AD brains despite the elevated dopamine levels in these brain areas. This is 

consistent with the previously reported decreased 8-oxo-G levels in disease-affected areas: 

the hippocampus, the inferior parietal lobule, and the superior and middle temporal gyri 

(Weidner et al. 2011).

Interaction of oxidative damage and dopamine in the caudate and putamen from patients 
with neurodegenerative diseases and age-matched controls

The dopamine levels in the caudate and putamen of LBD groups decreased. Obviously, 

dopamine treatments - such as levodopa – and Aβ are known to influence dopamine levels 

and could account for the reason the data gathered from our assay did not reach statistical 

significance. As shown in Table 1, majority of LBD patients had positive levodopa response. 

Kendall’s tau_b analyses of the correlations between dopamine concentration and L-Dopa 

response in the caudate (p = 0.075) and putamen (p = 0.064) of LBD patients reveal that L-

Dopa treatment was likely one of the factors that resulted in changes to dopamine levels 

(Figure S7). Dramatic fluctuation of dopamine levels occurs in the synaptic clefts of striatal 

neurons after each levodopa dose (Tomiyama 2017); these transient elevations would 
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increase with duration of Parkinson disease resulting in changes to the downstream 

dopamine receptors (de la Fuente-Fernandez et al. 2004). Even though, the total synaptic 

dopamine levels - including endogenous and derived from exogenous levodopa - are below 

normal values in health subjects. What’s more, other natural variabilities - postmortem 

intervals and dissection of postmortem tissue – assuredly contributed to significant 

dispersion both in PD subjects and the controls (Buddhala et al. 2015). Beyond our 

expectation, the increased concentrations of dopamine in the caudate and putamen of the AD 

brains were observed, conflicting with the hypothesis that a portion of AD patients could be 

more prone to develop dopamine-deficit symptoms (Martorana & Koch 2014). Aβ 
stimulates dopamine release from dopaminergic axons in the anterior cingulate cortex and 

excessive dopamine over activates D1R of fast-spiking interneurons, thus contributing to 

gamma-aminobutyric acid (GABA) inhibitory and excitation/inhibition imbalance caused by 

Aβ (Ren et al. 2018). Furthermore, soluble Aβ in the AD mice model at 100 nM evoked the 

release of dopamine to ~170% of base line, which was sensitive to antagonists of α7 

nicotinic receptors (Wu et al. 2007).

Although we cannot exclude the artificial oxidation of samples during analysis, we have 

confirmed that oxidative damage systemically changed in study groups. In 

neurodegenerative disease patients, metabolism of dopamine - one source of ROS - initiates 

the formation of free radicals through the Fenton reaction pathway; that in turn promotes 

oxidative damage to proteins, lipids, and nucleic acids. Paradoxically, this contributes to 

selective loss of dopaminergic neurons or even neuron death. ROS is thought to be the major 

source of oxidative damage contributing to the death of dopamine neurons in PD (Ortiz et al. 
2017; Koutsilieri et al. 2002).

To better understand the interactions among oxidative damage and dopamine storage 

abilities the spatial control of dopamine by VMAT2 and anti-oxidation role of VMAT2 

should be noted. With regard to the role of oxidative damage in the pathogenesis of PD, 

packing of cytosolic dopamine into synaptic vesicles by VMAT2 inhibits its autoxidation 

and subsequent degeneration of dopaminergic neurons (Carlsson et al. 1957; Golembiowska 

& Dziubina 2012). This theory is most likely proved further by the negative correlations of 

DNA/RNA oxidative damage and VMAT2 density in striatum of AD cases, as well as the 

negative correlation of DNA oxidative damage and VMAT2 density in putamen of PD 

brains. Decreased tissue concentrations of dopamine attenuated its uptake and transport 

functions altering dopamine turnover, thus VMAT2 levels correlate with the severity of 

Parkinsonism and (Hall et al. 2014) and cognitive impairment in DLB patients (Roselli et al. 
2009). Striatal VMAT2 binding is also interpreted as reflecting the integrity of the nigro-

striatal dopamine system in PD (Gao et al. 2016). Among the caudate and putamen, VMAT2 

is a mark of clinical diagnosis differentiation between DLB and AD. The greatest density 

difference between groups was observed for the lowest posterior putamen: PD < DLB < AD 

≈ Controls (Siderowf et al. 2014). This is consistent with our results in the caudate: LBD < 

control < AD and in the putamen: PD < AD (p < 0.0001 were found for all LBD groups vs 

AD in the caudate and PD vs AD in the putamen). Additionally and unexpectedly, 

conflicting with no striatal reductions in AD patients (Villemagne et al. 2012), elevated 

VMAT2 density in the caudate and putamen of patients with AD was observed. These 
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changes are probably due to the unexpected increase of dopamine levels in these two brain 

areas.

Amongst dopamine receptors, the D1R variety are crucially implicated in maintaining higher 

cognitive functions - in particular working memory, attention, and executive functions 

(Bruns et al. 2018). The increases of D1R density in striatum of patients with LBD can in all 

likelihood be explained by the fact that dopamine receptor function is strongly associated 

with the compensatory mechanism to make up for the loss of excitatory D1R stimulation 

(Perez et al. 2017). What’s more, it is widely believed that L-Dopa treatment stimulates D1R 

signaling leading to a persistent D1R hypersensitivity and contributing to the genesis of 

long-term complications involving L-Dopa including the development of L-Dopa-induced 

dyskinesia (LID) (Solis et al. 2017; Corvol et al. 2004). Increased D1R binding has been 

previously observed in the caudate when associated with the presence of Lewy body in AD 

subjects (Sweet et al. 2001).

Correlation of BACE1 mRNA transcriptional expression and D1R density in the caudate 
and putamen of the ten AD cases and age-matched controls

In a previous report, D1R seems play a more notable role in specific aspects of cognitive 

function; preclinical findings indicate that D1R is involved in mediating the epileptic effect 

of Aβ1–42 (Costa et al. 2016). Therefore, the ameliorative effects of dopamine D1-like 

receptor agonist SKF38393-D1R improved cognitive dysfunction. This result was likely 

mediated by increased phosphorylation of cAMP response element binding protein (CREB) 

and expression of Bcl-2 and brain-derived neurotrophic factor (BDNF) along with reduction 

of BACE1 and Aβ1–42 levels in hippocampus and cortex of animal model (Zang et al. 2018). 

In the current study, a statistically significant positive correlation of D1R density and 

BACE1 mRNA transcriptional expression in the caudate of AD was observed. This suggests 

that D1R hypersensitivity is mediated by a complex interaction between N-methyl-D-

aspartate (NMDA) receptors and dopamine D1-histamine H3 receptor heteromer 

(Rodriguez-Ruiz et al. 2017). Subsequently, our understanding of D1R activation 

mechanism in BACE1 activity needs to be further clarified.

Conclusion

In the current study, we show how region-specific alteration levels of DNA/RNA oxidative 

adducts and relevant dopamine levels along with dopamine storage abilities changes in the 

striatum of late-stage neurodegenerative diseases patients. There is a chicken and egg 

problem inherent to our findings when trying to correlate dopaminergic neuron dysfunction 

or even loss and oxidative damage. The downstream presynaptic D1R binding is associated 

with an alteration of dopamine levels, as well as the presence of Aβ plaque and RNA 

damage. When talking about the oxidative damage in the neurodegenerative diseases there 

are several protagonists that are involved in this story: metabolism of dopamine, 

mitochondrial dysfunction, and neuroinflammation are focused on as main resources of ROS 

(Dias et al. 2013). To our knowledge, this study is the first to investigate the interrelationship 

of dopamine and oxidative insults in the striatum of neurodegenerative brains. The omission 

of other ROS sources, limited samples, and significant dispersion are limitations of this 
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present study. The current results do not robustly support our hypothesis. Our findings may 

be the tips of the iceberg in the path to understanding the interactions of oxidative damage in 

the striatal dopaminergic system and open new questions for research in that field.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviation:

DLB dementia with Lewy bodies

PDD Parkinson disease dementia

PD Parkinson disease

LBD Lewy body disease

AD Alzheimer’s disease

8-oxo-dG 8-oxo-7,8-dihydro-2’-deoxyguanosine

8-oxo-G 8-oxo-7,8-dihydroguanosine

ROS reactive oxygen species

VMAT2 vesicular monoamine transporter 2

D1R dopamine D1 Receptor

Aβ β-Amyloid

BACE1 β-site APP cleaving enzyme 1

NFTs neurofibrillary tangles

DA Dopamine

4-PL four-parameter logistic
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RT room temperature

ISH in situ hybridization

ROI region of interest

CSF cerebrospinal fluid

DAT dopamine transporter

6-OHDA 6-hydroxydopamine

ApoE Apolipoprotein E

GABA gamma-aminobutyric acid

LID L-Dopa-induced dyskinesia

CREB cAMP response element binding protein

BDNF brain-derived neurotrophic factor

NMDA N-methyl-D-aspartate
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Figure 1. 
8-oxo-dG levels in the caudate and putamen from patients with diseases (PD: n=10, PDD: 

n=7, DLB: n=10, AD: n=26) and age-matched controls (n=10). Value shown are means ± 

SEM as the concentration of 8-oxo-dG (pg) per total DNA (µg). A p value of <0.05 was 

considered significant. The only statistical significance is between the PD vs AD (p = 

0.0039) as demonstrated with the bracket.
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Figure 2. 
8-oxo-G levels in the caudate and putamen from patients with diseases (PD: n=10, PDD: 

n=7, DLB: n=10, AD: n=26) and age-matched controls (n=10). Value shown are means ± 

SEM as the concentration of 8-oxo-G (pg) per total RNA (µg). A p value of <0.05 was 

considered significant: ** indicates p < 0.01, *** indicates p < 0.001, **** indicates p < 

0.0001, vs. the controls. Significant differences between two non-control groups are 

indicated with brackets and corresponding p-values [Putamen: PD vs AD (p = 0.0086), PDD 

vs AD (p = 0.0162), DLB vs AD (p = 0.002)].
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Figure 3. 
A: Concentration of dopamine in the caudate and putamen from patients with diseases (PD: 

n=10, PDD: n=7, DLB: n=10, AD: n=26) and age-matched controls (n=10). Value shown 

are means ± SEM. B: Concentration of dopamine vs level of 8-oxo-dG in the caudate from 

diseases brains, significantly association was observed only in AD group (p = 0.026). C: 

Concentration of dopamine vs VMAT2 expression in the putamen from diseases brains, 

significantly association was observed only in DLB group (p = 0.050). rs, the Spearman’s 

rank correlation coefficient.
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Figure 4. 
Quantitative autoradiographic analysis of VMAT2 density in the caudate and putamen from 

patients with diseases (PD: n=10, PDD: n=7, DLB: n=10, AD: n=26) and age-matched 

controls (n=10). A: Quantitative analysis of the VMAT2 density (fmol/mg) in the caudate 

and putamen from subjects. Value shown are means ± SEM. Statistical significances 

between two disease groups are indicated with brackets and corresponding p-values (p < 

0.0001 were found for PD vs AD, PDD vs AD, and DLB vs AD in the caudate, as well as 

PD vs AD in the putamen). B: Autoradiograms show total binding of 4 nmol/L [3H]DTBZ 

(Panel B top row) and nonspecific binding in the presence of 1 µM S(−)-tetrabenazine (Panel 

B bottom row) in the striatal regions of 5 representative subjects. The numbers 1 and 2 
designate the following regions: caudate (1) and putamen (2). C: [3H]Microscale standards 

(ranging from 0 to 36.3 nCi/mg) were also counted. D: Density of VMAT2 as concentration 

of 8-oxo-dG in the caudate and putamen from AD brains (p = 0.027 and p = 0.024, 
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respectively), as well as that in the caudate from PD brains (p = 0.042). rs, the Spearman’s 

rank correlation coefficient.
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Figure 5. 
Quantitative autoradiographic analysis of D1R density in the caudate and putamen of 

patients with diseases (PD: n=10, PDD: n=7, DLB: n=10, AD: n=26) and age-matched 

controls (n=10). A: Quantitative analysis of the D1R density (fmol/mg) in the caudate and 

putamen of subjects. Value shown are means ± SEM. Statistical significances between two 

disease groups are indicated with brackets and corresponding p-values [Caudate: PD vs AD 

(p = 0.0021); Putamen: PD vs AD (p = 0.0005), PDD vs AD (p = 0.0004), DLB vs AD (p = 

0.0041)]. A p value of < 0.05 was considered significant: ** indicates p < 0.01, *** 

indicates p < 0.001, vs. the controls. B: Autoradiograms show total binding of 1.5 nM 

[3H]SCH23390 (Panel B top row) and nonspecific binding in the presence of 1 µM (+) 

butaclamol (Panel B bottom row) in the striatal regions of the same 5 representative subjects. 

The numbers 1 and 2 designate the following regions: caudate (1) and putamen (2). C: 

[3H]Microscale standards (ranging from 0 to 36.3 nCi/mg) were also counted.

Li et al. Page 27

J Neurochem. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
RNAscope in situ hybridization (ISH) analysis of BACE1 transcriptional expression in the 

caudate and putamen from patients with AD (n=10) and age-matched controls (n=10). A: 

RNAscope in situ hybridization (ISH) labeling for BACE1 mRNA in the caudate and 

putamen from the AD subject included in the previous group of 5 representative subjects. 

Scale bar in the whole slide section: 10 mm. Scale bar in the high magnification mode Aβ 
plaque and NFT sections: 500 µm. Rectangle drawn in the whole slide section is magnified 

to highlight AB plaques and labeled as AD putamen image directly to the right. The 

numbers 1 and 2 designate the following regions: caudate (1) and putamen (2). B: Positive 

cells (red with arrow pointing to them) in the caudate and putamen of AD and control 

subjects with scale bar: 100 µm. C: semi-quantitative regional analysis of ISH signal in ROI, 

the signals were quantified as the average red dots count per mm2. Value shown are means ± 

SEM. T-test was used. A p value of < 0.05 was considered significant, *indicates p < 0.05 
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vs. the controls. D: BACE1 mRNA expression as density of D1R in the caudate and putamen 

from patients with AD and age-matched controls. rs, the Spearman’s rank correlation 

coefficient. The only significant correlation was in the caudate of the AD group (p = 0.02).
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Figure 7. 
Data analysis of all assay results of the caudate and putamen of the AD cases chosen for 

BACE1 mRNA analysis (n=10) and age-matched controls (n=10). A: Oxidative damage of 

nucleic acid in the caudate and putamen from 10 AD cases and age-matched controls. A p 
value of < 0.05 was considered significant: *indicates p < 0.05 and ** indicates p < 0.01, vs. 

the controls. B: Biological consequence of oxidative damage to dopamine system in the 

caudate and putamen from 10 AD cases and age-matched controls. A p value of < 0.05 was 

considered significant, *indicates p < 0.05 vs. the controls. C: Density of VMAT2 and DNA 

oxidative adducts levels (rs = −0.678, p = 0.015), density of VMAT2 and RNA oxidative 

adducts levels (rs = −0.717, p = 0.030), as well as density of D1R and RNA oxidative 

adducts levels (rs = −0.750, p = 0.020) in the caudate from 10 AD cases. rs, the Spearman’s 

rank correlation coefficient.
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Table 1.

Baseline information and clinical features of the study subjects. PMI: Post Mortem Interval; Braak NFT stage: 

Braak neurofibrillary tangle stage; Braak Aβ stage: Braak amyloid beta plaque stage.

Control PD PDD DLB AD P

Participants 10 10 8 10 27

Male/Female 6/4 7/3 7/1 5/5 13/14 NA

Age 83±2 78±2 77±3 81±2 82±2 NA

PMI (h) 18.8±5 16.0±3.2 10.8±1.6 18.0±3.7 10.6±1 NA

Brain weight (g) 1326±60 1299±40 1346±41 1273±38 1127±47 NA

Onset 65±3 60±3 66±4 71±2 NA

Progression 14±1 16±3 14±3 10±1 NA

Braak NFT stage Stage 0 :1 Stage I :5 Stage I :3 Stage I :7 Stage V :13 *

Stage I :2 Stage II :2 Stage II :2 Stage II :2 stage VI :14

Stage II :4 Stage III :3 Stage III :3 Stage V :1

Stage III :3

Braak Aβ stage All normal Normal :3 Normal :1 Normal :1 All stage C NA

Stage A :1 Stage A :2 Stage A :1

Stage B :2 Stage B :1 Stage B :2

Stage C :5 Stage C :4 Stage C :6

L-Dopa response Yes: 9 Yes: 6 Yes: 9

Modest:1 Modest:2 Modest:1

*
indicates p < 0.05 vs. the controls.
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Table 2.

Data analysis of all assay results of the caudate and putamen of the ten AD cases chosen for BACE1 mRNA 

analysis and age-matched controls

Assays Caudate Putamen

Mean ± SME p value Mean ± SME p value

8-oxo-dG (pg/μg total DNA)
Control 20.67 ± 2.581 16.59 ± 1.928

AD 26.49 ± 7.545 ˃ 0.05 14.17 ± 0.823 ˃ 0.05

8-oxo-G (pg/μg total DNA)
Control 33.08 ± 4.313 48.41 ± 6.115

AD 22.07 ± 1.838* 0.0376 37.46 ± 4.851 ˃ 0.05

Dopamine (ng/g wet wt)
Control 19.29 ± 6.986 17.21 ± 5.083

AD 29.66 ± 9.108 ˃ 0.05 25.89 ± 4.060 ˃ 0.05

VMAT2 Density (fmol/mg)
Control 133.5 ± 10.28 123.4 ± 10.62

AD 176.6 ± 17.08 0.051 152.5 ± 18.34 ˃ 0.05

D1 Receptor Density (fmol/mg)
Control 25.28 ± 3.410 24.63 ± 3.318

AD 43.98 ± 1.292**** < 0.0001 40.38 ± 2.904** 0.0030

BACE1 mRNA Levels
Control 2.804 ± 0.1252 2.664 ± 0.092

AD 2.948 ± 0.1615 ˃ 0.05 3.025 ± 0.101* 0.0197
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