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Abstract

This study aimed to identify biomarkers of major depressive disorder (MDD), by relating 

neuroimage-derived measures to binary (MDD/control), ordinal (severe MDD/mild MDD/control), 

or continuous (depression severity) outcomes. To address MDD heterogeneity, factors (severity of 

psychic depression, motivation, anxiety, psychosis and sleep disturbance) were also used as 

outcomes. A multi-site, multimodal imaging (diffusion MRI, dMRI, and structural MRI, sMRI) 

cohort (52 controls and 147 MDD patients) and several modeling techniques- penalized logistic 

regression (PLR), random forest (RF) and support vector machine (SVM)- were used. An 

additional cohort (25 controls and 83 MDD patients) was used for validation. The optimally 

performing classifier (SVM) had a 26.0% misclassification rate (binary), 52.2±1.69% accuracy 

(ordinal) and r =0.36 correlation coefficient (p-value<0.001, continuous). Using SVM, R2 values 

for prediction of any MDD factors were <10%. Binary classification in the external dataset 

resulted in 87.95% sensitivity and 32.00% specificity. Though observed classification rates are too 

low for clinical utility, four image-based features contributed to accuracy across all models and 

analyses- two dMRI-based measures (average fractional anisotropy in the right cuneus and left 

insula) and two sMRI-based measures (asymmetry in the volume of the pars triangularis and the 

cerebellum) and may serve as a priori regions for future analyses. The poor accuracy of 

classification and predictive results found here reflects current equivocal findings and sheds light 

on challenges of using these modalities for MDD biomarker identification. Further, this study 

suggests a paradigm (e.g. multiple classifier evaluation with external validation) for future studies 

to avoid non-generalizable results.

Keywords

Major Depressive Disorder (MDD); Magnetic Resonance Imaging (MRI); diffusion MRI; 
structural MRI; Support Vector Machine (SVM)

Introduction

Major depressive disorder (MDD) is a common and debilitating disease. Characterized by 

recurrent feelings of sadness, hopelessness and inability to feel pleasure, 16.6% of the US 

population (Kessler, Berglund, et al., 2005) and 350 million people worldwide (Kessler, 

Chiu, Demler, Merikangas, & Walters, 2005; World Health Organization, 2012) suffer from 

MDD, up to 15% of whom will eventually die by suicide (Palucha & Pilc, 2007). Further, 

MDD is a growing problem. Originally predicted by World Health Organization (WHO) to 

be the second leading cause of disability worldwide by 2020 (Murray & Lopez, 1996), 

MDD fulfilled this prediction in 2013 (Global Burden of Disease Study 2013 Collaborators, 

2015).

Due to the worldwide impact of MDD, it is important to gain a greater understanding of the 

illness. Despite decades of inquiry, however, there are currently no objective MDD 

biomarkers (Mossner et al., 2007). A biomarker is a characteristic that can be objectively 

measured and used as an indicator of either normal or pathogenic processes (Singh & Rose, 

2009). As pointed out by Peterson et al, a biomarker for MDD could aid in diagnosis, the 

search for genetic and environmental causes, predicting course, identifying those at 
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increased risk and developing the next generation of treatments (Peterson & Weissman, 

2011). As such, a biomarker could help reduce the morbidity and mortality of MDD, as it 

has in other areas of medicine (e.g. breast cancer, macular degeneration and myocardial 

infarction) (Gonzalez de Castro, Clarke, Al-Lazikani, & Workman, 2013; Mihaly et al., 

2013; Newman et al., 2012; Ziegler, Koch, Krockenberger, & Grosshennig, 2012). 

Neuroimaging techniques, such as structural and diffusion-weighted magnetic resonance 

imaging (MRI) may be able to provide such a biomarker for MDD, and numerous studies 

have evaluated this possibility (Aizenstein, Khalaf, Walker, & Andreescu, 2014; M. L. 

Phillips, 2012).

From structural MRI, both regional volumes and cortical thickness (i.e., the distance 

between the gray matter/white matter surface and the pial surface) can be estimated. When 

comparing depressed subjects to healthy volunteers, some studies report widespread 

volumetric differences in cortical gray matter regions (Grieve, Korgaonkar, Koslow, Gordon, 

& Williams, 2013; Guo et al., 2014; Takahashi et al., 2010; van Tol et al., 2010) such as 

smaller gyri of the caudal middle frontal and medial orbitofrontal cortices (Han et al., 2014; 

Qiu, Huang, et al., 2014), and smaller volume in subcortical regions, such as the amygdala 

and hippocampus (Amico et al., 2011; Eker & Gonul, 2010; Huang et al., 2013; Jaworska, 

MacMaster, Yang, et al., 2014; Kupfer, Frank, & Phillips, 2012; Whittle et al., 2014) in 

MDD patients. Smaller volumes of the hippocampus, basal ganglia, orbitofrontal cortex and 

prefrontal cortex are also frequently observed in MDD patients (Lorenzetti, Allen, Fornito, 

& Yucel, 2009). However, findings remain highly variable in terms of which brain regions 

show abnormalities and the degree to which they are affected across studies (Han et al., 

2014; Shizukuishi, Abe, & Aoki, 2013). Similarly, decreased (Mackin et al., 2013; Peterson 

et al., 2009; Tu et al., 2012), increased (Qiu, Lui, et al., 2014; Reynolds et al., 2014) or 

bidirectional (Fallucca et al., 2011; Peterson et al., 2009; Tu et al., 2012) differences in 

cortical thickness have been reported in MDD. Regions found to have cortical thinning in 

the largest study to date (~1,900 adult MDD subjects), such as the medial orbitofrontal 

cortex (although with effect sizes likely too small for clinical meaning)(Schmaal et al., 

2016), have been previously reported to be thicker (Qiu, Lui, et al., 2014) or the same 

(Perlman et al., 2017) in other studies of depressed individuals.

Diffusion MRI (dMRI) is used to evaluate orientation and diffusion characteristics of white 

matter and, by inference, white matter microstructure (Murphy & Frodl, 2011). Fractional 

anisotropy (FA), is a common measure used in dMRI to determine integrity of white matter 

fibers by estimating the direction of movement of water molecules (Liao et al., 2013; 

Murphy & Frodl, 2011). Characteristics of healthy white matter include parallel organization 

of white matter fibers and myelination, which leads to restricted movement of water lateral 

to the direction of fiber tracts and more movement along the tract, generally resulting in 

higher estimates of FA. FA values range from zero (isotropic diffusion) to one (anisotropic 

diffusion) (Delorenzo et al., 2013).

dMRI and FA measures have been used to study white matter microstructure abnormalities 

in mood disorders (Henderson et al., 2013; Korgaonkar et al., 2011; Olvet et al., 2014; Peng 

et al., 2013). A 2009 meta-analysis of dMRI studies reported that, in 21 of the 27 studies 

examined, subjects with mood disorders had lower FA in frontal and temporal lobes (Sexton, 
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Mackay, & Ebmeier, 2009). Another meta-analysis documented similar findings, in which 

patients with MDD showed reduced FA values in the white matter of bilateral frontal and 

right occipital areas (Liao et al., 2013). Similar to the volumetric/thickness analyses, 

however, although a trend of reduced FA in MDD has been noted in literature (Murphy & 

Frodl, 2011; Shizukuishi et al., 2013), not all studies detect these differences. Increased and 

decreased FA values in the corpus callosum, parietal and frontal lobes (Aghajani et al., 2014; 

Osoba et al., 2013) or no significant differences between groups (Abe et al., 2010; Kieseppa 

et al., 2010; Olvet et al., 2016; Ugwu, Amico, Carballedo, Fagan, & Frodl, 2015) have been 

reported.

Beyond the first level analyses of volume, cortical thickness or FA differences in MDD, of 

even greater uncertainty are the laterality effects of depression which are still not well 

characterized (Amico et al., 2011; Jaworska, MacMaster, Yang, et al., 2014) as some studies 

have found more robust structural deficits in the right compared to the left cerebral 

hemispheres (Mackin et al., 2013; Peterson et al., 2009; Qiu, Huang, et al., 2014) and vice 

versa (Bijanki, Hodis, Brumm, Harlynn, & McCormick, 2014; Treadway et al., 2015) related 

to MDD severity (Jaworska, MacMaster, Gaxiola, et al., 2014; Jaworska, MacMaster, Yang, 

et al., 2014).

Disagreement in MDD-related neurobiological findings within any one modality potentially 

reflects the variability in depression itself (Joober, 2013) and suggests that multiple 

modalities of imaging and clinical assessment may be required to uncover disease biology 

(M. L. Phillips, 2012). Multimodal imaging potentially reveals crucial variations that could 

only be partially visible in a single modality and therefore could potentially unify conflicting 

findings (Sui, Huster, Yu, Segall, & Calhoun, 2013). Further, multimodal features used to 

achieve the most accurate classification (between depressed and control subjects) or 

prediction of outcome (such as depression severity) can provide biological insight into the 

differences between diagnostic groups. Therefore, in the present study, we used both 

structural and diffusion MRI to classify depressed subjects versus controls on an individual 

level and to predict other outcomes such as overall depression severity or severity of specific 

depression symptoms/factors.

The challenge in such studies is in analyzing the large volume of data, as each modality can 

produce hundreds (regional) to hundreds of thousands (voxel) of variables, yet the number of 

subjects is often limited. To handle these challenges, machine-learning techniques have been 

applied. A recent systematic review highlighted 19 MRI-based studies of classification in 

MDD (Arbabshirani, Plis, Sui, & Calhoun, 2016). Though classification accuracies of the 19 

studies ranged from 54.6% (Serpa et al., 2014) to 90.3% (Mwangi, Ebmeier, Matthews, & 

Steele, 2012), none of the selected discriminating features have been replicated or translated 

into clinical practice. There may be a few reasons for this. One is due to relatively small 

sample sizes. Only two studies included 40 or more depressed subjects, the maximum 

number of depressed subjects was 57 and 12 studies included 30 MDD subjects or fewer 

(Arbabshirani et al., 2016). This is a significant issue, as accuracy decreases with decreasing 

sample size, and is considered the most critical factor (Arbabshirani et al., 2016). Another 

issue is feature selection bias. This occurs when the features with the highest discrimination 

were both extracted from, and used for, classification within the same dataset. This leads to 
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overly inflated accuracy estimates (Arbabshirani et al., 2016). Furthermore, “overfitting” is 

more likely to occur with complex models, particularly if the process of both training and 

testing is repeated multiple times, with varying model parameters (Arbabshirani et al., 

2016). Cross-validation can compensate for this by providing relatively robust estimate of 

prediction performance. However, most studies used only leave-one-out cross validation, 

which may not always lead to consistent model estimates (Shao, 1993). Replication in a 

separate subject sample is a more robust way of ruling out effects of overfitting.

In addition to the above concerns, only one MDD study from this meta-analysis combined 

data from multiple modalities (task-based functional MRI [fMRI], resting state fMRI and 

diffusion MRI). That study involved participants with late life depression (LLD) compared 

to elderly controls and predicted LLD diagnosis and treatment response with accuracies of 

87.27% and 89.47% respectively, suggesting the benefits of multimodal imaging (Patel et 

al., 2015). Though they did not assess classification accuracy, three additional studies have 

incorporated multimodal brain imaging techniques to explore depression pathophysiology, 

focusing on uncovering group-level differences (K. Choi, Craddock, R.C., Holtzheimer, P.E., 

Yang, Z., Hu, X., Mayberg, H., 2008; Matthews et al., 2011; Sexton et al., 2012). Our study 

is therefore unique in that it involves the combination of two MR imaging modalities, a 

focus on MDD (diagnosis and factors) classification and one of the largest cohorts (n = 307) 

reported to date. Critically, our study uses separate cohorts for training and validation, in 

which only a single set of parameters (identified as optimal from the training) was applied to 

the validation set. The advantage of this approach is that it avoids the potential bias of 

within-sample cross-validation. As the purpose of the classification is to identify 

components of the structural and diffusion MRI that may serve as biomarkers of MDD, we 

evaluated two potential classification schemes: (1) MDD vs controls and (2) severe MDD vs 

mild MDD vs controls. We also examined the ability of structural and diffusion MRI to 

predict depression severity (continuous measure). Finally, to reduce the heterogeneity within 

groups, we examined the ability of structural and diffusion MRI to predict the severity of 

factors of depression derived from a factor analysis of the 24-item Hamilton Depression 

Scale, which are continuous measures. The analysis predicting factors was performed 

because clinical management may require deconstructing MDD into multiple dimensions, or 

symptom clusters (Hamilton, 1960). Individual factors comprise different combinations of 

partially orthogonal symptoms. These factors may have different risk factors (Fried, Nesse, 

Zivin, Guille, & Sen, 2014) and may associate with different neurobiological anomalies on 

structural and diffusion MRI. Therefore, we examined whether we could obtain higher 

sensitivity for relating neurobiology to components of clinical presentation versus the entire 

syndrome.

By identifying structural and diffusion MRI-based measures that contribute the most to each 

classification/predictive model, this study thus aims to bridge the gap between neuroscience 

and behavior, in order to enhance current understanding of the pathophysiological 

mechanisms of major depression.
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Materials and Methods

Subjects

All participating individuals provided informed consent for the study, following explanation 

of the experimental procedures of the study. This study was approved by the Institutional 

Review Board (IRB) of each institution. The study was performed in compliance with the 

Code of Ethics of the World Medical Association (Declaration of Helsinki) and the 

standards established by each institution’s IRB and each investigator’s granting agency.

Data for 217 participants (training set: 25 Healthy Controls, 114 MDD; validation set: 12 

Healthy Controls, 66 MDD) in this analysis were acquired from the Establishing Moderators 

and Biosignatures of Antidepressant Response for Clinical Care (EMBARC) study (U01 

MH092250, http://embarc.utsouthwestern.edu/). Details on the EMBARC study design and 

randomization are reported by Trivedi et al (Trivedi et al., 2016). EMBARC dMRI and sMRI 

samples have been used in previous publications including: dMRI- (Olvet et al., 2016) or 

sMRI- (Perlman et al., 2017) only examinations of MDD versus controls and a dMRI-only 

study of anxious depression versus non-anxious depressed groups (Delaparte et al., 2017). 

These single modality studies showed no group differences, motivating the interest in the 

present multimodal examination.

To ensure that the MDD sample was representative and as large as possible, data for an 

additional 90 participants (training set: 27 Healthy Controls, 33 MDD; validation set: 13 

Healthy Controls, 17 MDD) were drawn from ten neuroimaging and depression-related 

studies conducted at the New York State Psychiatric Institute/Columbia University Medical 

Center, from 10/2007 through 10/2011. The dMRI data from 20 of these subjects was 

previously reported in an analysis of suicide attempters (Olvet et al., 2014) and impaired 

attention in MDD (Rizk et al., 2017).

To maximize generalizability, all cohorts were represented in both the training and validation 

sets.

Across all eleven protocols, subjects were between the ages of 18 and 65 years old and had 

the capacity to provide informed consent. MDD common inclusion criteria were DSM-IV 

MDD diagnosis, determined via the Structured Clinical Interview for the DSM (SCID), and 

in a current depressive episode. Common exclusion criteria for all subjects were current 

pregnancy, lifetime history of psychosis or bipolar disorder, meeting DSM-IV criteria for 

substance dependence in the past 6 months or substance abuse in the past 2 months, unstable 

psychiatric or general medical conditions that may require hospitalization or contraindicate 

study medication, clinically significant laboratory abnormalities, history of epilepsy or 

condition requiring an anticonvulsant, protocol excluded medications (including but not 

limited to antipsychotics, and mood stabilizers), or significant risk of suicide. Common 

exclusion criteria for controls also included any other Axis I disorders. All subjects were 

free of antidepressant medication for at least 21 days at the time of scanning.

All image analyses were performed by a single image analysis lab within a standardized 

processing pipeline. All technicians were blinded to subject diagnoses.
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Image Acquisition: Structural MRI (sMRI)

Details on the EMBARC study’s scanning and processing protocols are reported by Iscan et 
al (Iscan et al., 2015). In brief, T1 anatomical images were acquired with 3T scanners across 

5 sites: University of Texas Southwestern Medical Center (TX: Philips Achieva, 8-channel 

head coil), University of Michigan (UM: Phillips Ingenia, 15-channel), Massachusetts 

General Hospital (MGH: Siemens TrioTim, 12-channel), Columbia University Medical 

Center (CU: GE Signa HDx, 8-channel & GE Discovery MR750, 8-channel), and Stony 

Brook University Medical Center (SBU: Siemens TrioTim, 12-channel). MPRAGE 

sequences were used for T1 acquisition at TX, UM, MGH, and SBU, while an IR-FSPGR 

sequence was used at CU. The following MR sequence parameters were maintained across 

the 4 sites: TR: 5.9–8.2ms, TE: 2.4–4.6ms, Flip Angle: 8–12°, Acquisition Matrix: 256×256 

or 256×243, Acceleration Factor: 2, Sagittal Slices: 174–78, and Voxel Dimensions: 1mm3 

isotropic. Structural MRIs from the other protocols were all acquired on a 3T GE Signa HDx 

scanner, using comparable acquisition parameters.

Image Processing: Structural MRI (sMRI)

Region-wise cortical thickness was computed on a Linux-based computing cluster for 68 

Desikan-Killiany (DK) atlas regions (Desikan et al., 2006) with FreeSurfer 5.3’s cortical 

reconstruction pipeline (http://surfer.nmr.mgh.harvard.edu/). The pipeline’s subroutines have 

been described in previous publications, but in brief, the processing steps include skull-

stripping (Segonne et al., 2004), Talairach transformation, subcortical grey/white matter 

segmentation (Fischl et al., 2002), intensity normalization (Sled, Zijdenbos, & Evans, 1998), 

grey/white matter tessellation, topology correction (Fischl, Liu, & Dale, 2001; Segonne, 

Pacheco, & Fischl, 2007) and intensity gradient based surface deformation to generate grey/

white and grey/cerebrospinal fluid surface models (Dale, Fischl, & Sereno, 1999; Fischl et 

al., 2001; Segonne et al., 2007). The resulting surface models were then inflated and 

registered to a spherical surface atlas, allowing parcellation of cortical regions of interest and 

estimation of regional volumes (Fischl, Sereno, & Dale, 1999; Fischl, Sereno, Tootell, & 

Dale, 1999; Fischl et al., 2004). Finally, regional cortical thicknesses were computed by 

taking the mean of the white-pial distance at all vertices within each parcellated region 

(Fischl & Dale, 2000). The surface models (used to calculate cortical thickness) then 

underwent an empirical, systematic inspection process (see (Iscan et al., 2015) for details). 

In short, a trained technician carefully inspected 2D sections of the pial and white surface 

models, overlaid on the T1w image, for fidelity to visible tissue class boundaries. Cases 

where inaccurate tissue delineation persisted for ≥6 consecutive coronal and axial slices 

were deemed inaccurate and thus disqualified from further analyses.

Image Acquisition: Diffusion Weighted MRI (dMRI)

In the EMBARC sample, diffusion images were acquired using a single-shot EPI (echo 

planar imaging) sequence. Scan parameters were as follows: TR=8310–9500 ms, TE=95–

96.3 ms, flip angle 90°, slice thickness=2.5 mm, FOV=240×240 mm2, voxel dimensions 2.5 

mm×2.5 mm×2.5 mm or 1.9 mm×1.9 mm×2.5 mm, acquisition matrix=96 × 96, b value = 

1000 s/mm2, and 64 collinear directions with 1 or 5 non-weighted images. Diffusion images 

in the other protocols were acquired with comparable parameters. However, 25 collinear 
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directions, voxel dimensions of 2.5 mm×2.5 mm×2.5 mm, and an FOV of 256×256 mm2 

were used.

Image Processing: Diffusion Weighted MRI

Each dMRI image was run through a series of quality assurance tests for common artifacts, 

including ghost, ring, slice-wise intensity, venetian blind, and gradient-wise motion artifacts 

(Liu et al., 2010). Diffusion images were then corrected for distortion induced by gradient 

coils and simple head motion using the eddy current correction routine within FSL (FMRIB 

Software Library, http://www.fmrib.ox.ac.uk/fsl/). FSL’s Brain Extraction Tool (BET) 

removed non-brain tissue from the image. Following this, Camino (http://web4.cs.ucl.ac.uk/

research/medic/camino/pmwiki/pmwiki.php) was used to estimate FA by computing the 

least-squares-fit diffusion tensor with non-linear optimization using a Levenburg-Marquardt 

algorithm, constrained to be positive by fitting its Cholesky decomposition (Alexander & 

Barker, 2005; Jones & Basser, 2004).

The dMRI images were coregistered to the cropped T1 images using Advanced 

Normalization Tools (ANTS; http://www.picsl.upenn.edu/ANTS/) and the inverse 

transformation was applied to the Freesurfer-derived cortical map in order to place the 

regions of interest into dMRI space for analysis. Finally, mean FA values in white matter 

were computed for each region. A trained technician manually inspected each aspect of the 

dMRI analysis including level of artifact (based on the cutoffs defined in Liu et al), 
distortion correction, coregistration and FA histogram.

Data Preparation Statistics

In the EMBARC sample, of the 193 MDD subjects in the training set, 178 (92%) unique 

baseline MRI sessions possessed both dMRI and sMRI acquisitions, 121 of these 178 

sessions (68%) passed Freesurfer surface validation, and 114 of the 121 (94%) passed dMRI 

validation. Of the 93 MDD subjects in EMBARC’s validation set, 82 (88%) unique baseline 

MRI sessions possessed both dMRI and sMRI acquisitions, 66 of these 82 (80%) passed 

Freesurfer surface validation, and all remaining 66 passed dMRI validation. Of EMBARC’s 

40 healthy control (HC) scans, 93% passed validation. Two-thirds of the all scans were used 

for the training dataset. Ninety (88%) of the 102 qualifying scans from the other 10 

protocols passed sMRI and dMRI validation. Similar to the EMBARC sample, two-thirds of 

the validated MDD and HC scans from the other protocols were randomized to the training 

dataset.

Features—Since the biological underpinnings of MDD are unknown, a large number of 

potential features were examined. For each subject, 225 features were included: age at 

evaluation, sex, handedness, 145 sMRI-based and 77 dMRI-based features.

sMRI features included:

(1) bilateral gray matter volume of 34 Desikan-Killiany (DK, (Desikan et al., 2006)) and 11 

subcortical Center for Morphometric Analysis (CMA, (Fischl et al., 2004)) regions (68 + 22 

= 90 features),
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(2) volumes of brainstem, CSF and subdivided corpus callosum (7 features),

(3) whole-brain measures: bilateral mean thickness and whole-brain volume (2 + 1= 3 

features) to supplement the regional measures in (1), and:

(4) the asymmetry index (L − R
L + R × 100), where L is the measure on the left and R is the 

measure on the right, was designed to gauge the magnitude and direction of morphological 

asymmetry (Cherbuin, Reglade-Meslin, Kumar, Sachdev, & Anstey, 2010), and was 

computed for the bilateral CMA and DK regions above (45 features).

dMRI features included: the average FA in white-matter segmentations of the 34 bilateral 

DK regions (68 features), 5 corpus callosum regions (5 features), and the bilaterally divided 

cerebrum and cerebellum (4 features).

Outcome Measures—Discrete measure: We evaluated two potential classification 

schemes: (1) MDD vs controls and (2) severe MDD vs mild MDD vs control. 68 patients 

had severe depression with a Hamilton Depression Rating Scale (HAMD) 17 item total 

score >19. Subjects’ characteristics and HAMD scores for training and validation datasets 

are listed in Tables 1 and 2.

Continuous measure: This included depression severity (HAMD total score) and factors. 

Each factor is a sum of the products of the factor’s HAMD items and corresponding loading 

values. The loading values were obtained from a previous factor analysis of the HAMD, 

which was optimized for self-report measures with potentially correlated factors by using 

polychoric correlation (PCC) and a non-orthogonal rotation (Milak et al., 2005). Factor 

scores for the training and validation datasets are shown in Tables 1 and 2.

Factor 1: Psychic Depression, including HAMD items 1–3, 8, 22–24, signifying depressed 

mood, guilt, suicidality, retardation, helplessness, hopelessness and worthlessness;

Factor 2: Loss of Motivated Behavior, including HAMD items 7, 12, 14, 16, involves work 

and activities, somatic and genital symptoms and weight loss;

Factor 3: Psychosis, including HAMD items 17, 19–21, evaluates lack of insight, 

depersonalization, derealization, paranoia, obsessive and compulsive behavior. (This factor 

was not evaluated because the majority of subjects had scores of 0.);

Factor 4: Anxiety, including HAMD items 9–11, 15, involving agitation, hypochondrias, 

psychic or somatic anxiety); and

Factor 5: Sleep Disturbance, including items 4–6, relating to insomnia.

The predictive modeling systems—With the separate dataset available to validate 

model findings, we took an exhaustive approach in applying predictive models to the 

training data. Figure 1 illustrates the workflow of the predictive modeling system. It starts 

with data preprocessing, followed by feature selection, predictive modeling and variable 

importance ranking evaluation blocks, which in turn provide additional information for 
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better feature selection. Validation was performed on the final classifier built on the training 

dataset.

Initial feature selection was based on between-feature correlation after applying centering 

and scaling to all features. Highly correlated image features that had an average correlation 

coefficient with the rest of the features >0.7 were eliminated here. Fifty-six features were 

removed in this step: 36 sMRI measures and 20 dMRI measures. Another initial feature 

selection performed was based on having a well-conditioned matrix of pairwise correlation 

coefficients among all features. A matrix is considered to be ill-conditioned if the 2-norm 

condition number (the ratio of its smallest to the largest eigenvalue) is smaller than a 

tolerance value (2e-15). Jollifee’s method (Jolliffe, 2002) was used to select a subset of 

features that have a well-conditioned correlation coefficient matrix. Using this method, 27 

additional features were removed: 23 sMRI measures, and 4 dMRI measures.

After initial feature selection, different predictive models were built to predict binary 

outcomes: MDD vs HC and ordinal outcomes: HC, mild MDD and severe MDD. These 

included commonly used approaches such as the penalized logistic regression (PLR) model 

with elastic net penalty, random forest (RF) and support vector machine (SVM) with linear 

or nonlinear kernels such as cubic polynomial and radial basis function kernels. Extensions 

of these three classifiers for ordinal classification were used for predicting ordinal outcomes: 

under the PLR framework, cumulative logit model, adjacent category model, backward 

continuation ratio model and forward continuation ratio model were used; under the SVM 

framework, results from binary classifiers were aggregated using three different decoding 

methods – robust tree decoding, maximum vote decoding for the “one-against-all” scheme 

and most frequent vote decoding using the “one-against-one” scheme. Predictive models for 

predicting continuous HAMD and factor scores among MDD patients included penalized 

linear regression with elastic net penalty, random forest and support vector regression.

All predictive models were built using R 3.3.1 (R Core Team, 2015). Prediction performance 

of binary classifiers was measured by area under the receiver operating curve (AUC), 

misclassification rate, sensitivity, specificity, positive predictive value (PPV) and negative 

predictive value (NPV). Prediction performance of ordinal classifiers was measured by 

percentage correctly classified (PCC) and the rank correlations between the predicted class 

and true class such as Spearman’s ρ, Kendall’s τ, Goodman-Kruskal Γ, and Cohen’s κ. 

Prediction performance of models for continuous scores was measured by root mean 

squared error (RMSE) and R2. All tuning parameters of these predictive models were chosen 

based on 10 repeated 5-fold cross validation in the training dataset.

Variable importance ranking was based on the predictive models that had the highest average 

AUCs, highest average PCC, or smallest average RMSE after 10-repeated 5-fold cross 

validation. For predictive models using PLR framework, the features in the final model were 

ranked by their absolute coefficient estimates: the larger the absolute value of the estimated 

coefficient, the greater the contribution this feature provided to the final prediction. For 

predictive models using the SVM framework, the contribution of each feature was reflected 

through its nonzero weights. For predictive models using RF, the variable importance 
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rankings were based on the Gini impurity index (Breiman, 2001). All top ranked features 

from these predictive models were used in the final predictive models.

Validation—Calibration is an essential aspect of external validation (Steyerberg et al., 

2010). Calibration in the large was used to determine whether the mean predicted probability 

of MDD is equal to the mean observed MDD rate in the validation data set (Van Calster et 

al., 2016). The ideal value is zero difference between predicted and observed probabilities. 

The assessment of the overall predictive effect was graphically evaluated in a calibration plot 

and used for estimation of a calibration slope. A calibration plot displays the relationship 

between predicted MDD risk (x-axis) and observed true group label (MDD=1, HC=0, y-

axis) by fitting a flexible nonlinear calibration curve using a nonparametric regression 

method called loess, the local regression using polynomials (Austin & Steyerberg, 2014). 

The estimation of the calibration slope b, is by fitting the following model: 

logit P Y = 1 = a + b × logit p , where a is the model intercept, and p is the predicted risk. 

Therefore, the calibration slope summarizes the relationship between the predicted risks and 

the observed true labels. For example, using this validation, a calibration slope less than 1 

reflects an overestimation of MDD risk, and vice versa for a calibration slope greater than 1 

(Van Calster et al., 2016).

Results

After an initial round of model building for predicting different outcomes, features were 

ranked accordingly. The final predictive models for each type of outcome contained 39 

features that were top ranked. Table A1 has a complete list of these 39 features: 16 sMRI 

measures, 21 dMRI measures, sex and age.

Binary classification for predicting MDD vs HC

The best binary classifiers in PLR, SVM and RF for predicting MDD had AUC ranges from 

0.69 to 0.74 with accuracy rates ranging from 73.45% to 75.05% (Table 3). The classifier 

using SVM with a radial basis function kernel had the best AUC of 0.74±0.02. Table 4 lists a 

combination of all of the top 10 ranked features from each of the three binary classifiers. 

The mean FA in the left medial orbitofrontal cortex and right cuneus contributed highly to 

predicting MDD in this analysis.

To evaluate the influence of the feature selection on algorithm output, an independent 

classification method was also applied to predict MDD vs. healthy control. Half of training 

data patients were randomly selected to tune the algorithm and the rest were used as to 

evaluate the results. Due to the imbalance of the classes, the training set was downsampled 

while all the validation data were used. No feature selection was used. RF and classification 

trees were built for classification. The fact that splitting variables (the most predictive 

variables for RF) used in these two tree-based classification were among the features 

selected for predictive model building confirms the robustness of our feature selection 

strategies.
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Ordinal classification for severity index: severe MDD, mild MDD and HC

Different ordinal classifiers under the SVM and PLR framework in addition to RF were 

constructed to predict severe MDD, mild MDD and HC. The predictive performance of the 

best classifiers using SVM, PLR and RF is summarized in Table 5. The highest average PCC 

from 10 repeated 5-fold cross-validation, 52.2%, was from an SVM classifier assigning 

subjects to each class using most frequent vote based on pairwise SVM classifiers. A 

combination of all of the top 10 ranked features from these ordinal classifiers is listed in 

Table 6. Mean FA in the left medial orbitofrontal cortex and right cuneus again contributed 

highly in placing subjects into correct subcategories in each of three ordinal classifiers.

Prediction of Hamilton scores among Patients with MDD

When using PLR, SVM and RF to build predictive models for HAMD total score and its 

factor scores, SVM using a radial basis function kernel had the best predictive performance 

for HAMD score, Factor 1 and 4; RF had the best predictive performance for factor 5; PLR 

had the best performance for Factor 2 (Table 7). Permutation tests applied to these best 

models for predicting each continuous outcome suggested that the corresponding RMSEs 

were not significantly below chance levels, except for Factor 2 and Factor 5. Frequently top-

ranked variables in predicting all 5 continuous scores can be found in Table 8. Two variables 

that contribute highly in predicting all five different continuous scores are mean FA in the 

right cuneus and the volume of the right choroid plexus.

Comparisons across Models

Among all top ranked features from predictive models built for all outcomes here, four 

common elements contributed to model accuracy, as indicated in the center area of Figure 2. 

These include mean FA in the right cuneus and left insula and asymmetry in the volume of 

the pars triangularis and cerebellum.

As an additional check of the importance of these four features, the above models were re-

run with the inclusion of all features (i.e., without doing any feature selection). Without 

feature selection, these four common features remained highly ranked in one or more of the 

analyses: mean FA in the right cuneus (binary: rank=1; ordinal: 2; continuous outcomes: 2), 

mean FA in the left insula (binary: 47; ordinal: 7; continuous: 3); volume asymmetry in the 

pars triangularis (binary: 38; ordinal: 16; continuous: 4); and volume asymmetry in the 

cerebellum (binary: 37; ordinal: 81; continuous: 4).

As mentioned in the feature reduction step, highly correlated features were removed. Only 

one feature removed in this stage was highly correlated to any of the four common features. 

This was grey matter volume of the left ventral diencephalon (Pearson’s correlation 

coefficient = 0.8520 with mean FA in the left insula).

External Validation on predicting MDD vs HC

Because of the low performance of both ordinal classification and predictive modeling, 

external validation analysis was only performed on the binary classifier for MDD vs HC. A 

patient was classified as having MDD if her/his predicted probability of having MDD was 

greater than 50%. The prediction performance for three predictive models (as in Table 3) are 
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summarized in Tables 9 and 10. The binary classifier based on RF had the highest accuracy 

rate of 78.7% and the highest AUC value of 0.6733, but similar to other two classifiers, the 

specificity was very low. (This result supports the criticism about RF on imbalanced datasets 

(Dudoit & Fridlyand, 2003).) The calibration plot of this binary classifier actually suggests 

that it consistently underestimates the probability of MDD and hence even though this 

method has a better discrimination index (AUC=0.6733, 95% CI: 0.5508 – 0.7957), the 

calibration in the large is worse than SVM or PLR (Figure 3).

Discussion

Major Depressive Disorder is a prevalent disease with a growing global impact. Although 

numerous imaging studies have uncovered neurobiological differences associated with 

MDD, clinically translatable markers have yet to be identified. This may be due to limited 

sample sizes used in previous studies, leading to overfitting of data, and not using a separate 

replication sample, resulting in inconsistency of results across studies. To overcome these 

previous limitations, the current study involved an exploration in 199 subjects, using a multi-

site design and validation of findings in a separate cohort of 108 subjects.

Modeling/Methodology

To represent a generalizable sample, image-derived data in this study were acquired from 8 

sites with 7 different MRI scanners. Because systematic differences in image-derived 

measures across scanners have been reported (Iscan et al., 2015; Madan, 2017), adjusting for 

site/scanner differences was considered. Two ways of adjusting for these differences were 

explored (data not shown): 1) using linear regression to estimate the site/scanner differences 

after controlling for age, sex and handedness and then normalizing each imaging feature to 

the reference site/scanner with the most samples; 2) using quantile normalization. In most 

cases, adjusting for site/scanner within this study did not improve predictive performance, 

and in a few cases, this adjustment reduced predictive performance (data not shown). 

Further, top ranked features were similar among models with and without adjusting for these 

differences. Therefore, with the intention of generalizing our predictive models, no site/

scanner adjustment was implemented in the current study.

In this study, multiple classification techniques were applied to a training set of 199 subjects 

(52 HC, 147 MDD) with two different imaging modalities (dMRI and sMRI). Regional grey 

matter (volume, asymmetry and thickness from sMRI) and white matter (fractional 

anisotropy from dMRI) measures comprised 222 features. In addition to these image-based 

features, sex, age at diagnosis and handedness were used as predictors of clinical status. We 

did not include clinical factors such as length of illness or number of depressive episodes in 

our prediction analysis. Though doing so could potentially improve prediction accuracy, 

there are challenges in accurately assessing these variables (Kruijshaar et al., 2005; Patten, 

2003; Takayanagi et al., 2014; Wells & Horwood, 2004), and the focus of this work was to 

relate objective measures of brain biology to depression outcomes. Further, potential 

correlations between these variables and depression measures (Kessler et al., 2007) could 

confound biological interpretations.
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We did not restrict the dataset to a priori regions due to a lack of consensus on MDD 

neurobiology. The large number of initial features, however, required data reduction prior to 

analysis. Therefore, highly correlated features and those with ill-conditioned pairwise 

matrices (matrices where one input has a large effect on the outcome) were removed to 

reduce dimensionality.

An iterative procedure was then used for final feature selection, with 39 out of 225 features 

chosen for building the final predictive models (see Table A1 in Appendix). This procedure 

involved applying the three classifiers discussed below to the binary, ordinal and continuous 

outcomes, ranking the variables in terms of prediction, and then compiling the top 10 

features across the three classifiers for each analysis. This resulted in 37 top image-based 

features in addition to age and sex. To determine whether feature selection is sensitive to 

choice of data reduction procedure, we also performed the MDD/control and continuous 

prediction without feature selection and obtained similar results. Further, a recently 

proposed variable selection algorithm, stability selection, was also applied (data not shown) 

(Hofner, Boccuto, & Goker, 2015; Hofner & Hothorn, 2017; Meinshausen & Bühlmann, 

2010; Shah & Samworth, 2013). All features except one selected by this method for 

different outcomes fall within 39 features in Table A1. Iterative sure independence screening 

methods, in which variable selection is integrated into the model building process, were also 

applied (Fan, Feng, & Song, 2011; Fan & Li, 2001; Fan, Samworth, & Wu, 2009; Tibshirani, 

1996; Zhang, 2010). However, the predictive performance did not improve and hence the 

related results were not reported. Nonetheless, a combination of the top 10 important 

features ranked by these methods were similar to those reported in Tables 4, 6 and 8. These 

results provide confidence that the results were not sensitive to the use, or choice of, feature 

selection technique.

The three classifiers applied were PLR, RF and SVM. Each model has differing strengths. 

For example, SVM has advantages when dealing with binary class data whereas RF is 

advantageous for multi-class data with outliers (Hastie, Tibshirani, & Friedman, 2001). 

Penalized logistic regression has also been shown to handle outliers better than the SVM 

(Hastie et al., 2001). The No Free Lunch (NFL) theory asserts that there is no one optimal 

classifier across different data sets (Wolpert & Macready, 1997). Therefore, the optimal 

modeling strategy may be data dependent. For this reason, three of the most popular and 

effective modeling techniques were applied.

Model Results

For binary classification (MDD/HC), all three models had similar accuracy, with 

misclassification rates of ~26%. In the validation set, results were poor, with a mean 87.95% 

sensitivity but only 32% specificity. Note that, in the validation analysis, a subject was 

predicted as having MDD if her/his predicted probability of having MDD was greater than 

50%. Raising this threshold did not improve results (data not shown). The low specificity 

results from false classification of the majority of healthy controls as depressed subjects. 

Due to the limited number of misclassified MDD patients, it becomes challenging to 

determine patient or site characteristics associated with the misclassification.
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The low specificity may have been an effect of the imbalance in subject numbers between 

the two classes: ~74% of the sample were MDD patients. Literature in the machine learning 

field has recognized the influence of imbalanced data on the performance of most traditional 

machine learning methods (Sun, Wong, & Kamel, 2009). The most popular approach to 

handle class imbalance is the synthetic minority oversampling technique (SMOTE), which 

oversamples by introducing new, non-replicated minority class examples using the nearest 

neighbors of these cases (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). The SMOTE 

resampling technique was used, but did not improve the performance of predicting MDD or 

severe MDD (data not shown). In the binary classification of MDD/healthy control, the 

specificity increased to 0.3–0.49 for different predictive models but at the expense of 

decreasing sensitivity from 0.95–0.99 to 0.51–0.74. The overall accuracy decreased as well 

as AUC values. Similarly, in a classification of severe MDD (i.e., 131 non-severe vs 68 

severe subjects), the sensitivity increased from ~0.3 to ~0.6 but at the expense of a 

specificity drop from ~0.8 to ~0.6, as well as a decrease in accuracy and AUC values. 

Therefore, it is unlikely that this finding is a result of the imbalance, and results without 

using any resampling technique are presented here.

The relatively high misclassification rate in the binary classification analysis may be a result 

of treating all depressed patients as a single group. Depression is a heterogeneous disease. In 

fact, there are nearly 1,500 combinations of symptoms that meet DSM criteria for a 

depression diagnosis and MDD patients may share only a single symptom (Ostergaard, 

Jensen, & Bech, 2011). Such heterogeneity may arise from differing neurobiological 

underpinnings (Joober, 2013). To reduce the heterogeneity, therefore, the same models used 

in the binary classification were also used to determine whether neurobiology can be used to 

stratify individuals based on levels of depression severity (control vs mild MDD vs severe 

MDD). However, the best predictor model was SVM with a percentage correctly classified 

(PCC) close to chance (52.20 ± 1.69%). Despite the lack of predictive success, the top 

ranked regions overlapped with those of the binary analysis, providing some confidence in 

the importance of these regions as classifiers. Specifically, 11 of the 15 top ranked binary 

features (Table 4) are top ranked features in the ordinal (control vs mild MDD vs severe 

MDD) analysis (Table 6, 21 top features). Further, the top two predictive features across all 

models were the same as the binary analysis - mean FA in the left medial orbitofrontal 

cortex and the right cuneus, with average ranks of 1.67 and 4.67, respectively.

To examine whether finer resolution of depression severity is needed in order to relate 

severity to neurobiology, we also examined prediction of a continuous severity measure 

(HAMD total score). However, the highest correlation between combinations of high-

ranking features and HAMD scores explained only 13% of the variance.

Although the above analyses increase in resolution (from binary classification, to three 

groups, to a continuous measure), they still rely on aggregate measures of depression 

severity, which does not overcome the issue of depression heterogeneity. We therefore 

sought to also examine clusters of correlated symptoms, using our previously published 

factor analysis of the HAMD. This is in line with NIMH’s Research Domain Criteria (RDoC 

(Insel & Cuthbert, 2009)), which provides a neuroscience-based approach to classifying 

psychopathology using an expanding set of domains relating to different functions (e.g., 
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“anxiety” or “arousal”). These factors included psychic depression, motivation, anxiety, and 

sleep (excluding psychosis). However, the finer resolution of symptoms did not result in 

improved model accuracy, as the R2 value of the prediction was less than 0.14 in all cases.

Despite the disparate nature of the symptom categories, many of the same features were 

implicated in predicting each of the factors (Table 8), as well as overall severity (as assessed 

by the HAMD). This suggests that, despite the low accuracy of any individual model, which 

would prevent clinical translation, examining aggregate model results provides insight into 

the neurobiological underpinnings of MDD. 36.6% (11 features) were implicated across 

binary and severity prediction and 4 features were implicated across all measurements 

(Figure 2), although rankings for each feature differed across classifiers. These four features 

consisted of two dMRI-based measures (average FA in the right cuneus and left insula) and 

two sMRI-based measures (asymmetry in the volume of the pars triangularis and the 

cerebellum).

The cuneus is a region in the occipital lobe containing the primary visual cortex and is 

associated with the processing of visual cues (Parker, Zalusky, & Kirbas, 2014). White 

matter tracts through the cuneus connect the precuneus to the parietal lobe (Parker et al., 

2014). The precuneus has been shown to be a critical component of the default mode 

network (DMN) (Cunningham, Tomasi, & Volkow, 2017; Fransson & Marrelec, 2008; 

Klaassens et al., 2017; Utevsky, Smith, & Huettel, 2014), the network of brain regions 

implicated in self-referential thought and activated in the absence of a specific task. MDD 

has been associated with an inability to downregulate the DMN (Sheline et al., 2009), which 

might be associated with maladaptive rumination and difficulties disengaging from negative 

cues. As such, connectivity from the precuneus (through the cuneus) may be altered in 

MDD. Further, the orbitofrontal cortex receives information regarding visual cues indirectly 

from the primary visual areas (Rolls, 2004a). The orbitofrontal cortex, which was an 

important feature in the ordinal analysis, is implicated in both reward processing and the 

integration of sensory and emotional information (Hare, O’Doherty, Camerer, Schultz, & 

Rangel, 2008; Kringelbach & Rolls, 2004; Price & Drevets, 2010; Rolls, 2004b). 

Obitofrontal-cuneus structural connectivity, which may affect cuneus FA, may therefore be 

altered in MDD. Although the group-wise FA differences in the cuneus were not significant 

(HC FA: 0.37±0.03, MDD FA: 0.36±0.04, p-value = 0.35), these FA measures contributed to 

overall classification. Potentially relating to these dMRI-based findings, cuneus volumetric 

asymmetry was a significant predictor in both the binary and continuous analysis. 

Examining the data revealed that the right cuneus volume was 3.2±11.9% larger than left 

cuneus volume in the controls and 5.5±11.9% larger than the left cuneus volume in the 

MDD cohort. This may reflect right-sided hyperactivity in MDD (Briceno et al., 2013) or 

right hemisphere selective involvement in processing negative emotion and negative self-

referential thinking, in conjunction with left hemisphere hypoactivity and bias for positive 

stimuli and pleasure (Hecht, 2010).

Unlike the cuneus, group-level differences in FA were observable in the left insula at a trend 

level (HC FA: 0.49±0.04, MDD FA: 0.48±0.03, p-value = 0.07), although the average 

difference was too small to be clinically meaningful. The insula is involved in integrating 

sensory interoception signals, cognition and motivation (Namkung, Kim, & Sawa, 2017). As 
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such, insula dysfunction (including structural and functional abnormalities) has been 

implicated in MDD (Namkung et al., 2017). The insula also has extensive connections to the 

DMN, and differences in connectivity between the insula and the DMN network as well as 

the amygdala may result in pathological inward focus in MDD (Sliz & Hayley, 2012). 

Further, the right and left anterior insula may respond to differing stimuli, with the left being 

activated by prominent sensory input and emotional feelings (Sliz & Hayley, 2012).

Consistent with the lateral findings in the cuneus, the right pars triangularis (also referred to 

as BA45) volume was 12.0±15.2% larger than left pars triangularis volume in the controls 

and 15.2±16.0% larger than the left pars triangularis volume in the MDD cohort. Reflecting 

this, the average pars triangularis laterality measure was negative in both cohorts (HC 

laterality: −7.1±8.2, MDD laterality: −9.0±9.2, p-value = 0.18). The pars triangularis is part 

of the inferior frontal gyrus and, along with BA44, is considered part of Broca’s area, in 

which language processing occurs (Ardila, Bernal, & Rosselli, 2016). Interestingly, a recent 

meta-analysis using activation likelihood estimation (ALE) on 28 studies including 403 

participants determined that the functional connectivity network of the inferior temporal 

gyrus (another critical language area) in healthy controls consists of the left prefrontal cortex 

(including BA45), the left insula, bilateral precuneus, cerebellum and occipital areas (as well 

as the left temporal lobe) (Ardila, Bernal, & Rosselli, 2015). As such, this language network 

includes all four top predictors in this work. Dysfunction in this network may be one reason 

why depression is associated with slower speech and an increase in pausing (Maser, 1987). 

Further, changes in verbal fluency appear to be a hallmark of the disease (Lim et al., 2013).

Consistent with the lateral findings in the cuneus and pars triangularis, though to a lesser 

magnitude, the right cerebellum volume was 1.1±3.1% larger than left cerebellum volume in 

the controls and 2.3±4.4% larger than the left cerebellum volume in the MDD cohort. 

Reflecting this, the average cerebellum laterality measure was negative in both cohorts (HC 

laterality: −0.6±1.6, MDD laterality: −1.2±2.3, p-value = 0.06). The role of the cerebellum 

in psychiatric disorders continues to be elucidated (Baldacara, Borgio, Lacerda, & 

Jackowski, 2008; J. R. Phillips, Hewedi, Eissa, & Moustafa, 2015; Shakiba, 2014). In MDD, 

cerebellar volume may be reduced, activity may be increased and connectivity with cortical 

brain regions disrupted (J. R. Phillips et al., 2015).

The above suggest that these features (mean FA in the right cuneus and left insula, 

asymmetry in the volume of the pars triangularis and cerebellum) may play a significant role 

in MDD, and should be examined in future studies. Also, importantly, the significance of 

these features is not immediately apparent from examining them in isolation (i.e. examining 

group differences). This emphasizes the need for techniques examining multiple features in 

parallel. As the pathophysiology of MDD continues to be studied, more insight can be 

gained into the specific roles of these features, and importantly, the laterality effect, which is 

not often addressed, may be uncovered.

Limitations

Although we evaluate one of the largest MDD sMRI and dMRI imaging cohorts, across 

geographically diverse imaging centers, our inclusion/exclusion criteria may prevent these 

findings from representing all MDD patients, particularly those with comorbities or on 
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medication, who were excluded from the current study. Further, there are numerous other 

measures that may be extracted from sMRI and dMRI modalities that were not examined in 

this study, and may yield more clinically significant results. Additionally, the choice of brain 

atlas for the regional analysis can impact model results. There are available atlases with finer 

parcellations than the Desikan-Killiany atlas used in this work. Those would increase the 

number of model variables (and therefore complexity) but also would allow detection of 

smaller regional effects that may be subsumed by large regional averages. To balance these 

concerns, future work could involve finer parcellations of the four regions implicated in this 

study. Finally, MDD is a heterogeneous disease. Though our analysis of depression factors 

attempts to account for this, there still may be multiple biological pathways resulting in the 

same symptom manifestation, which would confound study results. And, as these factors 

were derived from a previous study, they may not be universally applicable to all 

populations. For example, using Cronbach’s alpha and Loevinger’s coefficient of 

homogeneity (Olsen, Jensen, Noerholm, Martiny, & Bech, 2003) confirmed good internal 

reliability of the HAMD and factors 1 and 5, with safely acceptable reliability of factor 2 

and just acceptable reliability of factor 4.

Conclusion

From this study, we can draw several important conclusions. 1) Despite our use of multiple 

models with differing advantages, a large training dataset, and a separate validation analysis, 

the final overall model performance was too low for clinical application. 2) Although four 

features (mean FA in the right cuneus and left insula, asymmetry in the volume of the pars 

triangularis and cerebellum) were implicated across all analyses, low classification and 

prediction accuracy using these features indicates that they cannot represent the entire 

pathophysiology of MDD. However, they may be relevant for future investigations of MDD 

neurobiology. 3) It has already been suggested that dMRI-based measures cannot be used to 

distinguish MDD in large samples (K. S. Choi et al., 2014) and this could be one reason for 

the equivocal results to date. In agreement with lack of previous consensus among sMRI and 

dMRI findings in MDD, the results of our powerful, comprehensive approach suggest that 

the sMRI and dMRI features used here may not provide a usable marker for diagnostic 

classification or prediction of depression severity on their own.

To improve predictive power, future work would involve utilizing these study characteristics 

(large cohort, multimodality features, robust methods, external validation) to combine the 

four sMRI and dMRI measures implicated across all analyses with other potential 

neurobiomarkers such as those derived from PET and/or EEG, or other behavioral measures. 

Such an approach could bring us closer to the first clinically relevant biomarker of MDD.
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Appendix

Table A1:

List of the 39 features used in predictive modeling

Category Variable

Demographics
Sex

Age

Gray Matter Volume Asymmetry of Various Cortical Regions (sMRI)

Pars Triangularis

Pericalcarine

Precentral

Transverse Temporal

Cuneus

Lingual

Paracentral

Cerebellum

Gray Matter Volume of Various Cortical Regions (sMRI)

Left Inferior Temporal

Pars Orbitalis

Frontal Pole

Pars Triangularis

Gray Matter Volume of Various Subcortical Regions (sMRI) Right Choroid Plexus

Volume (sMRI) Brainstem

Mean Thickness of the Entire Hemispheres (sMRI)
Left Mean Thickness

Right Mean Thickness

Mean Fractional Anisotropy of Various Regions (dMRI)

Anterior Corpus Callosum

Left Banks of the Superior Temporal Sulcus

Left Inferior Parietal

Left Insula

Left Lateral Occipital

Left Lateral Orbitofrontal

Left Medial Orbitofrontal

Left Middle Temporal

Left Pars Triangularis

Left Precuneus

Left Transverse Temporal

Left Cerebellum

Right Banks of the Superior Temporal Sulcus

Right Caudal Anterior Cingulate

Right Cuneus

Left Entorhinal
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Category Variable

Right Fusiform

Right Lateral Orbitofrontal

Right Lingual

Right Parahippocampal

Right Rostral Anterior Cingulate
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Figure A1: 
Bar plot for the 5-fold cross-validated performances for each task. MDD: Major Depressive 

Disorder; PLR: penalized logistic regression model with elastic net penalty, SVM: support 

vector machine, RF: random forest; AUC: area under the curve; PCC: percentage correctly 

classified; RMSE: root mean squared error

References:

Abe O, Yamasue H, Kasai K, Yamada H, Aoki S, Inoue H, … Ohtomo K (2010). Voxel-based analyses 
of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Res, 181(1), 
64–70. doi:10.1016/j.pscychresns.2009.07.007 [PubMed: 19959342] 

Aghajani M, Veer IM, van Lang ND, Meens PH, van den Bulk BG, Rombouts SA, … van der Wee NJ 
(2014). Altered white-matter architecture in treatment-naive adolescents with clinical depression. 
Psychol Med, 44(11), 2287–2298. doi:10.1017/S0033291713003000 [PubMed: 24330845] 

Aizenstein HJ, Khalaf A, Walker SE, & Andreescu C (2014). Magnetic resonance imaging predictors 
of treatment response in late-life depression. J Geriatr Psychiatry Neurol, 27(1), 24–32. doi:
10.1177/0891988713516541 [PubMed: 24381231] 

Alexander DC, & Barker GJ (2005). Optimal imaging parameters for fiber-orientation estimation in 
diffusion MRI. Neuroimage, 27(2), 357–367. doi:10.1016/j.neuroimage.2005.04.008 [PubMed: 
15921931] 

Yang et al. Page 22

Hum Brain Mapp. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Amico F, Meisenzahl E, Koutsouleris N, Reiser M, Moller HJ, & Frodl T (2011). Structural MRI 
correlates for vulnerability and resilience to major depressive disorder. J Psychiatry Neurosci, 36(1), 
15–22. doi:10.1503/jpn.090186 [PubMed: 20964952] 

Arbabshirani MR, Plis S, Sui J, & Calhoun VD (2016). Single subject prediction of brain disorders in 
neuroimaging: Promises and pitfalls. Neuroimage. doi:10.1016/j.neuroimage.2016.02.079

Ardila A, Bernal B, & Rosselli M (2015). Language and visual perception associations: meta-analytic 
connectivity modeling of Brodmann area 37. Behav Neurol, 2015, 565871. doi:
10.1155/2015/565871 [PubMed: 25648869] 

Ardila A, Bernal B, & Rosselli M (2016). How Localized are Language Brain Areas? A Review of 
Brodmann Areas Involvement in Oral Language. Arch Clin Neuropsychol, 31(1), 112–122. doi:
10.1093/arclin/acv081 [PubMed: 26663825] 

Austin PC, & Steyerberg EW (2014). Graphical assessment of internal and external calibration of 
logistic regression models by using loess smoothers. Stat Med, 33(3), 517–535. doi:10.1002/sim.
5941 [PubMed: 24002997] 

Baldacara L, Borgio JG, Lacerda AL, & Jackowski AP (2008). Cerebellum and psychiatric disorders. 
Rev Bras Psiquiatr, 30(3), 281–289. [PubMed: 18833430] 

Bijanki KR, Hodis B, Brumm MC, Harlynn EL, & McCormick LM (2014). Hippocampal and left 
subcallosal anterior cingulate atrophy in psychotic depression. PLoS One, 9(10), e110770. doi:
10.1371/journal.pone.0110770 [PubMed: 25338068] 

Breiman L (2001). Random forests. Machine Learning, 45(1), 5–32. doi:Doi 10.1023/A:
1010933404324

Briceno EM, Weisenbach SL, Rapport LJ, Hazlett KE, Bieliauskas LA, Haase BD, … Langenecker SA 
(2013). Shifted inferior frontal laterality in women with major depressive disorder is related to 
emotion-processing deficits. Psychol Med, 43(7), 1433–1445. doi:10.1017/S0033291712002176 
[PubMed: 23298715] 

Chawla NV, Bowyer KW, Hall LO, & Kegelmeyer WP (2002). SMOTE: synthetic minority over-
sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.

Cherbuin N, Reglade-Meslin C, Kumar R, Sachdev P, & Anstey KJ (2010). Mild Cognitive Disorders 
are Associated with Different Patterns of Brain asymmetry than Normal Aging: The PATH through 
Life Study. Front Psychiatry, 1, 11. doi:10.3389/fpsyt.2010.00011 [PubMed: 21423423] 

Choi K, Craddock RC, Holtzheimer PE, Yang Z, Hu X, Mayberg H (2008). A Combined Functional–
Structural Connectivity Analysis of Major Depression Using Joint Independent Components 
Analysis. Psychiatric MRI/MRS, 16, 3–9.

Choi KS, Holtzheimer PE, Franco AR, Kelley ME, Dunlop BW, Hu XP, & Mayberg HS (2014). 
Reconciling variable findings of white matter integrity in major depressive disorder. 
Neuropsychopharmacology, 39(6), 1332–1339. doi:10.1038/npp.2013.345 [PubMed: 24352368] 

Cunningham SI, Tomasi D, & Volkow ND (2017). Structural and functional connectivity of the 
precuneus and thalamus to the default mode network. Hum Brain Mapp, 38(2), 938–956. doi:
10.1002/hbm.23429 [PubMed: 27739612] 

Dale AM, Fischl B, & Sereno MI (1999). Cortical surface-based analysis. I. Segmentation and surface 
reconstruction. Neuroimage, 9(2), 179–194. doi:10.1006/nimg.1998.0395 [PubMed: 9931268] 

Delaparte L, Yeh FC, Adams P, Malchow A, Trivedi MH, Oquendo MA, … DeLorenzo C (2017). A 
comparison of structural connectivity in anxious depression versus non-anxious depression. J 
Psychiatr Res, 89, 38–47. doi:10.1016/j.jpsychires.2017.01.012 [PubMed: 28157545] 

Delorenzo C, Delaparte L, Thapa-Chhetry B, Miller JM, Mann JJ, & Parsey RV (2013). Prediction of 
selective serotonin reuptake inhibitor response using diffusion-weighted MRI. Front Psychiatry, 4, 
5. doi:10.3389/fpsyt.2013.00005 [PubMed: 23508528] 

Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, … Killiany RJ (2006). An 
automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral 
based regions of interest. Neuroimage, 31(3), 968–980. doi:10.1016/j.neuroimage.2006.01.021 
[PubMed: 16530430] 

Dudoit S, & Fridlyand J (2003). Classification in microarray experiments In Speed TP (Ed.), Statistical 
analysis of gene expression microarray data (pp. 93–158). Boca Raton, FL: Chapman & Hall/
CRC.

Yang et al. Page 23

Hum Brain Mapp. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Eker C, & Gonul AS (2010). Volumetric MRI studies of the hippocampus in major depressive 
disorder: Meanings of inconsistency and directions for future research. World J Biol Psychiatry, 
11(1), 19–35. doi:10.1080/15622970902737998 [PubMed: 19347777] 

Fallucca E, MacMaster FP, Haddad J, Easter P, Dick R, May G, … Rosenberg DR (2011). 
Distinguishing between major depressive disorder and obsessive-compulsive disorder in children 
by measuring regional cortical thickness. Arch Gen Psychiatry, 68(5), 527–533. doi:10.1001/
archgenpsychiatry.2011.36 [PubMed: 21536980] 

Fan J, Feng Y, & Song R (2011). Nonparametric independence screening in sparse ultra-high-
dimensional additive models. Journal of the American Statistical Association, 106(494), 544–557. 
[PubMed: 22279246] 

Fan J, & Li R (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. 
Journal of the American Statistical Association, 96(456), 1348–1360.

Fan J, Samworth RJ, & Wu Y (2009). Ultrahigh dimensional feature selection: beyond the linear 
model. Journal of Machine Learning Research, 10, 2013–2038. [PubMed: 21603590] 

Fischl B, & Dale AM (2000). Measuring the thickness of the human cerebral cortex from magnetic 
resonance images. Proc Natl Acad Sci U S A, 97(20), 11050–11055. doi:10.1073/pnas.200033797 
[PubMed: 10984517] 

Fischl B, Liu A, & Dale AM (2001). Automated manifold surgery: constructing geometrically accurate 
and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging, 20(1), 
70–80. doi:10.1109/42.906426 [PubMed: 11293693] 

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, … Dale AM (2002). Whole brain 
segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 
33(3), 341–355. [PubMed: 11832223] 

Fischl B, Sereno MI, & Dale AM (1999). Cortical surface-based analysis. II: Inflation, flattening, and 
a surface-based coordinate system. Neuroimage, 9(2), 195–207. doi:10.1006/nimg.1998.0396 
[PubMed: 9931269] 

Fischl B, Sereno MI, Tootell RB, & Dale AM (1999). High-resolution intersubject averaging and a 
coordinate system for the cortical surface. Hum Brain Mapp, 8(4), 272–284. [PubMed: 10619420] 

Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, … Dale AM (2004). 
Automatically parcellating the human cerebral cortex. Cereb Cortex, 14(1), 11–22. [PubMed: 
14654453] 

Fransson P, & Marrelec G (2008). The precuneus/posterior cingulate cortex plays a pivotal role in the 
default mode network: Evidence from a partial correlation network analysis. Neuroimage, 42(3), 
1178–1184. doi:10.1016/j.neuroimage.2008.05.059 [PubMed: 18598773] 

Fried EI, Nesse RM, Zivin K, Guille C, & Sen S (2014). Depression is more than the sum score of its 
parts: individual DSM symptoms have different risk factors. Psychol Med, 44(10), 2067–2076. 
doi:10.1017/S0033291713002900 [PubMed: 24289852] 

Global Burden of Disease Study 2013 Collaborators. (2015). Global, regional, and national incidence, 
prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 
countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 
386(9995), 743–800. doi:10.1016/S0140-6736(15)60692-4 [PubMed: 26063472] 

Gonzalez de Castro D, Clarke PA, Al-Lazikani B, & Workman P (2013). Personalized cancer 
medicine: molecular diagnostics, predictive biomarkers, and drug resistance. Clin Pharmacol Ther, 
93(3), 252–259. doi:10.1038/clpt.2012.237 [PubMed: 23361103] 

Grieve SM, Korgaonkar MS, Koslow SH, Gordon E, & Williams LM (2013). Widespread reductions in 
gray matter volume in depression. Neuroimage Clin, 3, 332–339. doi:10.1016/j.nicl.2013.08.016 
[PubMed: 24273717] 

Guo W, Liu F, Yu M, Zhang J, Zhang Z, Liu J, … Zhao J (2014). Functional and anatomical brain 
deficits in drug-naive major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry, 54, 
1–6. doi:10.1016/j.pnpbp.2014.05.008 [PubMed: 24863419] 

Hamilton M (1960). A rating scale for depression. J Neurol Neurosurg Psychiatry, 23, 56–62. 
[PubMed: 14399272] 

Yang et al. Page 24

Hum Brain Mapp. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Han KM, Choi S, Jung J, Na KS, Yoon HK, Lee MS, & Ham BJ (2014). Cortical thickness, cortical 
and subcortical volume, and white matter integrity in patients with their first episode of major 
depression. J Affect Disord, 155, 42–48. doi:10.1016/j.jad.2013.10.021 [PubMed: 24210630] 

Hare TA, O’Doherty J, Camerer CF, Schultz W, & Rangel A (2008). Dissociating the role of the 
orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. J 
Neurosci, 28(22), 5623–5630. doi:10.1523/JNEUROSCI.1309-08.2008 [PubMed: 18509023] 

Hastie T, Tibshirani R, & Friedman JH (2001). The elements of statistical learning : data mining, 
inference, and prediction : with 200 full-color illustrations. New York: Springer.

Hecht D (2010). Depression and the hyperactive right-hemisphere. Neurosci Res, 68(2), 77–87. doi:
10.1016/j.neures.2010.06.013 [PubMed: 20603163] 

Henderson SE, Johnson AR, Vallejo AI, Katz L, Wong E, & Gabbay V (2013). A preliminary study of 
white matter in adolescent depression: relationships with illness severity, anhedonia, and 
irritability. Front Psychiatry, 4, 152. doi:10.3389/fpsyt.2013.00152 [PubMed: 24324445] 

Hofner B, Boccuto L, & Goker M (2015). Controlling false discoveries in high-dimensional situations: 
boosting with stability selection. BMC Bioinformatics, 16, 144. doi:10.1186/s12859-015-0575-3 
[PubMed: 25943565] 

Hofner B, & Hothorn T (2017). stabs: Stability Selection with Error Control, R package version R 
package version 0.6–2. Retrieved from https://CRAN.R-project.org/package=stabs

Huang Y, Coupland NJ, Lebel RM, Carter R, Seres P, Wilman AH, & Malykhin NV (2013). Structural 
changes in hippocampal subfields in major depressive disorder: a high-field magnetic resonance 
imaging study. Biol Psychiatry, 74(1), 62–68. doi:10.1016/j.biopsych.2013.01.005 [PubMed: 
23419546] 

Insel TR, & Cuthbert BN (2009). Endophenotypes: bridging genomic complexity and disorder 
heterogeneity. Biol Psychiatry, 66(11), 988–989. doi:10.1016/j.biopsych.2009.10.008 [PubMed: 
19900610] 

Iscan Z, Jin TB, Kendrick A, Szeglin B, Lu H, Trivedi M, … DeLorenzo C (2015). Test-retest 
reliability of freesurfer measurements within and between sites: Effects of visual approval process. 
Hum Brain Mapp, 36(9), 3472–3485. doi:10.1002/hbm.22856 [PubMed: 26033168] 

Jaworska N, MacMaster FP, Gaxiola I, Cortese F, Goodyear B, & Ramasubbu R (2014). A preliminary 
study of the influence of age of onset and childhood trauma on cortical thickness in major 
depressive disorder. Biomed Res Int, 2014, 410472. doi:10.1155/2014/410472 [PubMed: 
24734233] 

Jaworska N, MacMaster FP, Yang XR, Courtright A, Pradhan S, Gaxiola I, … Ramasubbu R (2014). 
Influence of age of onset on limbic and paralimbic structures in depression. Psychiatry Clin 
Neurosci, 68(12), 812–820. doi:10.1111/pcn.12197 [PubMed: 24773595] 

Jolliffe IT (2002). Principal component analysis (2nd ed.). New York: Springer.

Jones DK, & Basser PJ (2004). “Squashing peanuts and smashing pumpkins”: how noise distorts 
diffusion-weighted MR data. Magn Reson Med, 52(5), 979–993. doi:10.1002/mrm.20283 
[PubMed: 15508154] 

Joober R (2013). On the simple and the complex in psychiatry, with reference to DSM 5 and research 
domain criteria. J Psychiatry Neurosci, 38(3), 148–151. doi:10.1503/jpn.130051 [PubMed: 
23601364] 

Kessler RC, Amminger GP, Aguilar-Gaxiola S, Alonso J, Lee S, & Ustun TB (2007). Age of onset of 
mental disorders: a review of recent literature. Curr Opin Psychiatry, 20(4), 359–364. doi:10.1097/
YCO.0b013e32816ebc8c [PubMed: 17551351] 

Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, & Walters EE (2005). Lifetime prevalence 
and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey 
Replication. Arch Gen Psychiatry, 62(6), 593–602. doi:10.1001/archpsyc.62.6.593 [PubMed: 
15939837] 

Kessler RC, Chiu WT, Demler O, Merikangas KR, & Walters EE (2005). Prevalence, severity, and 
comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. 
Arch Gen Psychiatry, 62(6), 617–627. doi:10.1001/archpsyc.62.6.617 [PubMed: 15939839] 

Kieseppa T, Eerola M, Mantyla R, Neuvonen T, Poutanen VP, Luoma K, … Isometsa E (2010). Major 
depressive disorder and white matter abnormalities: a diffusion tensor imaging study with tract-

Yang et al. Page 25

Hum Brain Mapp. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://CRAN.R-project.org/package=stabs


based spatial statistics. J Affect Disord, 120(1–3), 240–244. doi:10.1016/j.jad.2009.04.023 
[PubMed: 19467559] 

Klaassens BL, van Gerven JMA, van der Grond J, de Vos F, Moller C, & Rombouts S (2017). 
Diminished Posterior Precuneus Connectivity with the Default Mode Network Differentiates 
Normal Aging from Alzheimer’s Disease. Front Aging Neurosci, 9, 97. doi:10.3389/fnagi.
2017.00097 [PubMed: 28469571] 

Korgaonkar MS, Grieve SM, Koslow SH, Gabrieli JD, Gordon E, & Williams LM (2011). Loss of 
white matter integrity in major depressive disorder: evidence using tract-based spatial statistical 
analysis of diffusion tensor imaging. Hum Brain Mapp, 32(12), 2161–2171. doi:10.1002/hbm.
21178 [PubMed: 21170955] 

Kringelbach ML, & Rolls ET (2004). The functional neuroanatomy of the human orbitofrontal cortex: 
evidence from neuroimaging and neuropsychology. Prog Neurobiol, 72(5), 341–372. doi:10.1016/
j.pneurobio.2004.03.006 [PubMed: 15157726] 

Kruijshaar ME, Barendregt J, Vos T, de Graaf R, Spijker J, & Andrews G (2005). Lifetime prevalence 
estimates of major depression: an indirect estimation method and a quantification of recall bias. 
Eur J Epidemiol, 20(1), 103–111. [PubMed: 15756910] 

Kupfer DJ, Frank E, & Phillips ML (2012). Major depressive disorder: new clinical, neurobiological, 
and treatment perspectives. Lancet, 379(9820), 1045–1055. doi:10.1016/S0140-6736(11)60602-8 
[PubMed: 22189047] 

Liao Y, Huang X, Wu Q, Yang C, Kuang W, Du M, … Gong Q (2013). Is depression a disconnection 
syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. J Psychiatry 
Neurosci, 38(1), 49–56. doi:10.1503/jpn.110180 [PubMed: 22691300] 

Lim J, Oh IK, Han C, Huh YJ, Jung IK, Patkar AA, … Jang BH (2013). Sensitivity of cognitive tests 
in four cognitive domains in discriminating MDD patients from healthy controls: a meta-analysis. 
Int Psychogeriatr, 25(9), 1543–1557. doi:10.1017/S1041610213000689 [PubMed: 23725644] 

Liu Z, Wang Y, Gerig G, Gouttard S, Tao R, Fletcher T, & Styner M (2010). Quality control of 
diffusion weighted images. Paper presented at the SPIE Medical Imaging.

Lorenzetti V, Allen NB, Fornito A, & Yucel M (2009). Structural brain abnormalities in major 
depressive disorder: a selective review of recent MRI studies. J Affect Disord, 117(1–2), 1–17. doi:
10.1016/j.jad.2008.11.021 [PubMed: 19237202] 

Mackin RS, Tosun D, Mueller SG, Lee JY, Insel P, Schuff N, … Weiner MW (2013). Patterns of 
reduced cortical thickness in late-life depression and relationship to psychotherapeutic response. 
Am J Geriatr Psychiatry, 21(8), 794–802. doi:10.1016/j.jagp.2013.01.01310.1016/j.jagp.
2013.01.01310.1097/JGP.0b013e31825485a110.1097/JGP.0b013e31825485a1 [PubMed: 
23567394] 

Madan CR (2017). Advances in Studying Brain Morphology: The Benefits of Open-Access Data. 
Front Hum Neurosci, 11, 405. doi:10.3389/fnhum.2017.00405 [PubMed: 28824407] 

Maser JD (1987). Depression and expressive behavior. Hillsdale, N.J.: L. Erlbaum Associates.

Matthews SC, Strigo IA, Simmons AN, O’Connell RM, Reinhardt LE, & Moseley SA (2011). A 
multimodal imaging study in U.S. veterans of Operations Iraqi and Enduring Freedom with and 
without major depression after blast-related concussion. Neuroimage, 54 Suppl 1, S69–75. doi:
10.1016/j.neuroimage.2010.04.269 [PubMed: 20451622] 

Meinshausen N, & Bühlmann P (2010). Stability selection. Journal of the Royal Statistical Society: 
Series B (Statistical Methodology), 72(4), 417–473.

Mihaly Z, Kormos M, Lanczky A, Dank M, Budczies J, Szasz MA, & Gyorffy B (2013). A meta-
analysis of gene expression-based biomarkers predicting outcome after tamoxifen treatment in 
breast cancer. Breast Cancer Res Treat, 140(2), 219–232. doi:10.1007/s10549-013-2622-y 
[PubMed: 23836010] 

Milak MS, Parsey RV, Keilp J, Oquendo MA, Malone KM, & Mann JJ (2005). Neuroanatomic 
correlates of psychopathologic components of major depressive disorder. Archives of General 
Psychiatry, 62(4), 397–408. doi:Doi 10.1001/Archpsyc.62.4.397 [PubMed: 15809407] 

Mossner R, Mikova O, Koutsilieri E, Saoud M, Ehlis AC, Muller N, … Riederer P (2007). Consensus 
paper of the WFSBP Task Force on Biological Markers: biological markers in depression. World J 
Biol Psychiatry, 8(3), 141–174. doi:10.1080/15622970701263303 [PubMed: 17654407] 

Yang et al. Page 26

Hum Brain Mapp. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Murphy ML, & Frodl T (2011). Meta-analysis of diffusion tensor imaging studies shows altered 
fractional anisotropy occurring in distinct brain areas in association with depression. Biol Mood 
Anxiety Disord, 1(1), 3. doi:10.1186/2045-5380-1-3 [PubMed: 22738088] 

Murray CJ, & Lopez AD (1996). Evidence-based health policy--lessons from the Global Burden of 
Disease Study. Science, 274(5288), 740–743. [PubMed: 8966556] 

Mwangi B, Ebmeier K, Matthews K, & Steele J (2012). Multi-center diagnostic classification of 
individual structural neuroimaging scans from patients with major depressive disorder. Brain, 
135(5), 1508–1521. [PubMed: 22544901] 

Namkung H, Kim SH, & Sawa A (2017). The Insula: An Underestimated Brain Area in Clinical 
Neuroscience, Psychiatry, and Neurology. Trends Neurosci, 40(4), 200–207. doi:10.1016/j.tins.
2017.02.002 [PubMed: 28314446] 

Newman AM, Gallo NB, Hancox LS, Miller NJ, Radeke CM, Maloney MA, … Radeke MJ (2012). 
Systems-level analysis of age-related macular degeneration reveals global biomarkers and 
phenotype-specific functional networks. Genome Med, 4(2), 16. doi:10.1186/gm315 [PubMed: 
22364233] 

Olsen LR, Jensen DV, Noerholm V, Martiny K, & Bech P (2003). The internal and external validity of 
the Major Depression Inventory in measuring severity of depressive states. Psychol Med, 33(2), 
351–356. [PubMed: 12622314] 

Olvet DM, Delaparte L, Yeh FC, DeLorenzo C, McGrath PJ, Weissman MM, … Parsey RV (2016). A 
Comprehensive Examination of White Matter Tracts and Connectometry in Major Depressive 
Disorder. Depress Anxiety, 33(1), 56–65. doi:10.1002/da.22445 [PubMed: 26477532] 

Olvet DM, Peruzzo D, Thapa-Chhetry B, Sublette ME, Sullivan GM, Oquendo MA, … Parsey RV 
(2014). A diffusion tensor imaging study of suicide attempters. J Psychiatr Res, 51, 60–67. doi:
10.1016/j.jpsychires.2014.01.002 [PubMed: 24462041] 

Osoba A, Hanggi J, Li M, Horn DI, Metzger C, Eckert U, … Walter M (2013). Disease severity is 
correlated to tract specific changes of fractional anisotropy in MD and CM thalamus--a DTI study 
in major depressive disorder. J Affect Disord, 149(1–3), 116–128. doi:10.1016/j.jad.2012.12.026 
[PubMed: 23489404] 

Ostergaard SD, Jensen SO, & Bech P (2011). The heterogeneity of the depressive syndrome: when 
numbers get serious. Acta Psychiatr Scand, 124(6), 495–496. doi:10.1111/j.
1600-0447.2011.01744.x [PubMed: 21838736] 

Palucha A, & Pilc A (2007). Metabotropic glutamate receptor ligands as possible anxiolytic and 
antidepressant drugs. Pharmacol Ther, 115(1), 116–147. doi:10.1016/j.pharmthera.2007.04.007 
[PubMed: 17582504] 

Parker JG, Zalusky EJ, & Kirbas C (2014). Functional MRI mapping of visual function and selective 
attention for performance assessment and presurgical planning using conjunctive visual search. 
Brain Behav, 4(2), 227–237. doi:10.1002/brb3.213 [PubMed: 24683515] 

Patel MJ, Andreescu C, Price JC, Edelman KL, Reynolds CF, & Aizenstein HJ (2015). Machine 
learning approaches for integrating clinical and imaging features in latelife depression 
classification and response prediction. Int. J. Geriatr. Psychiatry, 30, 1056–1067. [PubMed: 
25689482] 

Patten SB (2003). Recall bias and major depression lifetime prevalence. Soc Psychiatry Psychiatr 
Epidemiol, 38(6), 290–296. doi:10.1007/s00127-003-0649-9 [PubMed: 12799778] 

Peng HJ, Zheng HR, Ning YP, Zhang Y, Shan BC, Zhang L, … Li LJ (2013). Abnormalities of 
cortical-limbic-cerebellar white matter networks may contribute to treatment-resistant depression: 
a diffusion tensor imaging study. BMC Psychiatry, 13, 72. doi:10.1186/1471-244x-13-72 
[PubMed: 23452374] 

Perlman G, Bartlett E, DeLorenzo C, Weissman M, McGrath P, Ogden T, … Parsey R (2017). Cortical 
thickness is not associated with current depression in a clinical treatment study. Hum Brain Mapp, 
38(9), 4370–4385. doi:10.1002/hbm.23664 [PubMed: 28594150] 

Peterson BS, Warner V, Bansal R, Zhu H, Hao X, Liu J, … Weissman MM (2009). Cortical thinning in 
persons at increased familial risk for major depression. Proc Natl Acad Sci U S A, 106(15), 6273–
6278. doi:10.1073/pnas.0805311106 [PubMed: 19329490] 

Yang et al. Page 27

Hum Brain Mapp. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Peterson BS, & Weissman MM (2011). A brain-based endophenotype for major depressive disorder. 
Annual review of medicine, 62, 461–474.

Phillips JR, Hewedi DH, Eissa AM, & Moustafa AA (2015). The cerebellum and psychiatric disorders. 
Front Public Health, 3, 66. doi:10.3389/fpubh.2015.00066 [PubMed: 26000269] 

Phillips ML (2012). Neuroimaging in psychiatry: bringing neuroscience into clinical practice. Br J 
Psychiatry, 201(1), 1–3. doi:10.1192/bjp.bp.112.109587 [PubMed: 22753848] 

Price JL, & Drevets WC (2010). Neurocircuitry of mood disorders. Neuropsychopharmacology, 35(1), 
192–216. doi:10.1038/npp.2009.104 [PubMed: 19693001] 

Qiu L, Huang X, Zhang J, Wang Y, Kuang W, Li J, … Gong Q (2014). Characterization of major 
depressive disorder using a multiparametric classification approach based on high resolution 
structural images. J Psychiatry Neurosci, 39(2), 78–86. [PubMed: 24083459] 

Qiu L, Lui S, Kuang W, Huang X, Li J, Li J, … Gong Q (2014). Regional increases of cortical 
thickness in untreated, first-episode major depressive disorder. Transl Psychiatry, 4, e378. doi:
10.1038/tp.2014.18 [PubMed: 24713859] 

R Core Team. (2015). A language and environment for statistical computing. Retrieved from https://
www.R-project.org/.

Reynolds S, Carrey N, Jaworska N, Langevin LM, Yang XR, & Macmaster FP (2014). Cortical 
thickness in youth with major depressive disorder. BMC Psychiatry, 14, 83. doi:
10.1186/1471-244X-14-83 [PubMed: 24645731] 

Rizk MM, Rubin-Falcone H, Keilp J, Miller JM, Sublette ME, Burke A, … Mann JJ (2017). White 
matter correlates of impaired attention control in major depressive disorder and healthy 
volunteers. J Affect Disord, 222, 103–111. doi:10.1016/j.jad.2017.06.066 [PubMed: 28688263] 

Rolls ET (2004a). Convergence of sensory systems in the orbitofrontal cortex in primates and brain 
design for emotion. Anat Rec A Discov Mol Cell Evol Biol, 281(1), 1212–1225. doi:10.1002/
ar.a.20126 [PubMed: 15470678] 

Rolls ET (2004b). The functions of the orbitofrontal cortex. Brain Cogn, 55(1), 11–29. doi:10.1016/
S0278-2626(03)00277-X [PubMed: 15134840] 

Schmaal L, Hibar DP, Samann PG, Hall GB, Baune BT, Jahanshad N, … Veltman DJ (2016). Cortical 
abnormalities in adults and adolescents with major depression based on brain scans from 20 
cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry. 
doi:10.1038/mp.2016.60

Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, & Fischl B (2004). A hybrid approach 
to the skull stripping problem in MRI. Neuroimage, 22(3), 1060–1075. doi:10.1016/
j.neuroimage.2004.03.032 [PubMed: 15219578] 

Segonne F, Pacheco J, & Fischl B (2007). Geometrically accurate topology-correction of cortical 
surfaces using nonseparating loops. IEEE Trans Med Imaging, 26(4), 518–529. doi:10.1109/
TMI.2006.887364 [PubMed: 17427739] 

Serpa M, Ou Y, Schaufelberger M, Doshi J, Menezes P, Scazufca M, … Zanetti M (2014). 
Neuroanatomical classification in a population-based sample of psychotic major depression and 
bipolar I disorder with 1 year of diagnostic stability. Biomed. Res. Int, 706157. [PubMed: 
24575411] 

Sexton CE, Allan CL, Le Masurier M, McDermott LM, Kalu UG, Herrmann LL, … Ebmeier KP 
(2012). Magnetic resonance imaging in late-life depression: multimodal examination of network 
disruption. Arch Gen Psychiatry, 69(7), 680–689. doi:10.1001/archgenpsychiatry.2011.1862 
[PubMed: 22752234] 

Sexton CE, Mackay CE, & Ebmeier KP (2009). A systematic review of diffusion tensor imaging 
studies in affective disorders. Biol Psychiatry, 66(9), 814–823. doi:10.1016/j.biopsych.
2009.05.024 [PubMed: 19615671] 

Shah RD, & Samworth RJ (2013). Variable selection with error control: another look at stability 
selection. Journal of the Royal Statisical Society, 75(1), 55–80.

Shakiba A (2014). The role of the cerebellum in neurobiology of psychiatric disorders. Neurol Clin, 
32(4), 1105–1115. doi:10.1016/j.ncl.2014.07.008 [PubMed: 25439296] 

Shao J (1993). Linear Model Selection by Cross-Validation Journal of the American Statistical 
Association, 88(422), 486–494.

Yang et al. Page 28

Hum Brain Mapp. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.R-project.org/
https://www.R-project.org/


Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, … Raichle ME (2009). The 
default mode network and self-referential processes in depression. Proc Natl Acad Sci U S A, 
106(6), 1942–1947. doi:10.1073/pnas.0812686106 [PubMed: 19171889] 

Shizukuishi T, Abe O, & Aoki S (2013). Diffusion tensor imaging analysis for psychiatric disorders. 
Magn Reson Med Sci, 12(3), 153–159. [PubMed: 23857149] 

Singh I, & Rose N (2009). Biomarkers in psychiatry. Nature, 460(7252), 202–207. doi:
10.1038/460202a [PubMed: 19587761] 

Sled JG, Zijdenbos AP, & Evans AC (1998). A nonparametric method for automatic correction of 
intensity nonuniformity in MRI data. IEEE Trans Med Imaging, 17(1), 87–97. doi:
10.1109/42.668698 [PubMed: 9617910] 

Sliz D, & Hayley S (2012). Major depressive disorder and alterations in insular cortical activity: a 
review of current functional magnetic imaging research. Front Hum Neurosci, 6, 323. doi:
10.3389/fnhum.2012.00323 [PubMed: 23227005] 

Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, … Kattan MW (2010). 
Assessing the performance of prediction models: a framework for traditional and novel measures. 
Epidemiology, 21(1), 128–138. doi:10.1097/EDE.0b013e3181c30fb2 [PubMed: 20010215] 

Sui J, Huster R, Yu Q, Segall JM, & Calhoun VD (2013). Function-structure associations of the brain: 
Evidence from multimodal connectivity and covariance studies. Neuroimage. doi:10.1016/
j.neuroimage.2013.09.044

Sun Y, Wong AKC, & Kamel MS (2009). Classification of imbalanced data: a review. International 
Journal of Pattern Recognition and Artificial Intelligence, 23(4), 687–719.

Takahashi T, Yucel M, Lorenzetti V, Walterfang M, Kawasaki Y, Whittle S, … Allen NB (2010). An 
MRI study of the superior temporal subregions in patients with current and past major 
depression. Prog Neuropsychopharmacol Biol Psychiatry, 34(1), 98–103. doi:10.1016/j.pnpbp.
2009.10.005 [PubMed: 19835925] 

Takayanagi Y, Spira AP, Roth KB, Gallo JJ, Eaton WW, & Mojtabai R (2014). Accuracy of reports of 
lifetime mental and physical disorders: results from the Baltimore Epidemiological Catchment 
Area study. JAMA Psychiatry, 71(3), 273–280. doi:10.1001/jamapsychiatry.2013.3579 [PubMed: 
24402003] 

Tibshirani R (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical 
Society, Series B (Methodological), 58(1), 267–288.

Treadway MT, Waskom ML, Dillon DG, Holmes AJ, Park MTM, Chakravarty MM, … Pizzagalli DA 
(2015). Illness progression, recent stress, and morphometry of hippocampal subfields and medial 
prefrontal cortex in major depression. Biol Psychiatry, 77(3), 285–294. doi:10.1016/j.biopsych.
2014.06.018 [PubMed: 25109665] 

Trivedi MH, McGrath PJ, Fava M, Parsey RV, Kurian BT, Phillips ML, … Weissman MM (2016). 
Establishing moderators and biosignatures of antidepressant response in clinical care 
(EMBARC): Rationale and design. J Psychiatr Res, 78, 11–23. doi:10.1016/j.jpsychires.
2016.03.001 [PubMed: 27038550] 

Tu PC, Chen LF, Hsieh JC, Bai YM, Li CT, & Su TP (2012). Regional cortical thinning in patients 
with major depressive disorder: a surface-based morphometry study. Psychiatry Res, 202(3), 
206–213. doi:10.1016/j.pscychresns.2011.07.011 [PubMed: 22521631] 

Ugwu ID, Amico F, Carballedo A, Fagan AJ, & Frodl T (2015). Childhood adversity, depression, age 
and gender effects on white matter microstructure: a DTI study. Brain Struct Funct, 220(4), 
1997–2009. doi:10.1007/s00429-014-0769-x [PubMed: 24744150] 

Utevsky AV, Smith DV, & Huettel SA (2014). Precuneus is a functional core of the default-mode 
network. J Neurosci, 34(3), 932–940. doi:10.1523/JNEUROSCI.4227-13.2014 [PubMed: 
24431451] 

Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ, & Steyerberg EW (2016). A 
calibration hierarchy for risk models was defined: from utopia to empirical data. J Clin 
Epidemiol, 74, 167–176. doi:10.1016/j.jclinepi.2015.12.005 [PubMed: 26772608] 

van Tol MJ, van der Wee NJ, van den Heuvel OA, Nielen MM, Demenescu LR, Aleman A, … Veltman 
DJ (2010). Regional brain volume in depression and anxiety disorders. Arch Gen Psychiatry, 
67(10), 1002–1011. doi:10.1001/archgenpsychiatry.2010.121 [PubMed: 20921116] 

Yang et al. Page 29

Hum Brain Mapp. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wells JE, & Horwood LJ (2004). How accurate is recall of key symptoms of depression? A 
comparison of recall and longitudinal reports. Psychol Med, 34(6), 1001–1011. [PubMed: 
15554571] 

Whittle S, Lichter R, Dennison M, Vijayakumar N, Schwartz O, Byrne ML, … Allen NB (2014). 
Structural brain development and depression onset during adolescence: a prospective longitudinal 
study. Am J Psychiatry, 171(5), 564–571. doi:10.1176/appi.ajp.2013.13070920 [PubMed: 
24577365] 

Wolpert DH, & Macready WG (1997). No free lunch theorems for optimization. IEEE Transactions on 
Evolutionary Computation, 1(1), 67–87.

World Health Organization. (2012). Depression. Fact sheet N 369. Retrieved from http://www.who.int/
mediacentre/factsheets/fs369/en/

Zhang C-H (2010). Nearly unbiased variable selection under minimax concave penalty. The Annals of 
Statistics, 894–942.

Ziegler A, Koch A, Krockenberger K, & Grosshennig A (2012). Personalized medicine using DNA 
biomarkers: a review. Hum Genet, 131(10), 1627–1638. doi:10.1007/s00439-012-1188-9 
[PubMed: 22752797] 

Yang et al. Page 30

Hum Brain Mapp. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.who.int/mediacentre/factsheets/fs369/en/
http://www.who.int/mediacentre/factsheets/fs369/en/


Figure 1: 
The general workflow of the predictive modeling system, which starts with data 

preprocessing, followed by feature selection, predictive modeling and variable importance 

ranking evaluation blocks, which in turn provide additional information for better feature 

selection. Validation was performed on the final classifier built on the training dataset.
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Figure 2: 
Venn diagram for the number of top ranked variables for all predictive models based on 

training data set (Predictive model for continuous Hamilton Depression Rating Scale 

[HAMD17] scores was based on MDD patients only). MDD: Major Depressive Disorder; 

HC: Healthy Controls
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Figure 3: 
Calibration plot for predicting diagnosis based on three methods and 39 features. Calibration 

in the large quantifies the difference between mean predicted probability of having Major 

Depressive Disorder (MDD) and observed proportion of MDD patients. The closer to 0, the 

better the calibration is. The calibration slope different from 1 suggests that the overall 

predictive performance of 39 features was different from that observed in the validation data. 

A calibration slope less than 1 reflects an overestimation of MDD risk, and vice versa for a 

calibration slope greater than 1 (Van Calster et al., 2016). The c-statistic is identical to the 

AUC values and its confidence intervals are in Table 10. Spikes at the bottom of the graph 

indicate the probability distribution for those with MDD and Healthy Controls (HC). 

Triangles indicate quintiles of subjects according to predicted probability with 95% 

confidence intervals for the observed proportions of patients with MDD. For example, the 

fact that for PLR and SVM, the spikes mostly appear near 0.9, and the triangles are near the 
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right hand side, is consistent with the calibration slope less than 1, i.e., overestimating MDD 

risk.
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Table 1:

Subject characteristics and Hamilton Depression Rating Scale (HAMD 17-item) scores by severity index for 

the training samples. p-values were based on ANOVA comparing severe MDD, mild MDD and HC. For those 

variables that had significant differences among three groups, all pair-wise comparisons were still significant 

except that there was no significant age difference between mild MDD and HC. MDD: Major Depressive 

Disorder; HC: Healthy Controls

Variable MDD 
(N=147)

Severe MDD 
(N=68)

Mild MDD 
(N=79)

Healthy 
Control 
(N=52)

p-values*

p-value 
for 

Severe 
vs Mild

p-value 
for 

Severe 
vs HC

p-value 
for Mild 
vs HC

Male 53 (36.05%) 30 (44.12%) 23 (29.11%) 21 (40.38%) 0.1473

Age (years) 36.78±12.94 40.83±12.31 33.29±12.51 32.48±12.15 0.0002 0.0003 0.0003 0.7113

Left handedness 11 (7.48%) 7 (10.29%) 4 (5.06%) 1 (1.92%)

0.4204Right 
handedness 127 (86.39%) 57 (83.82%) 70 (88.61%) 48 (92.31%)

HAMD 18.83±4.63 22.84±2.80 15.38±2.71 1.04±1.45 <.0001 <.0001 <.0001 <.0001

Factor 1
Psychic 
Depression 
(max=16.04)

6.63±1.97 7.40±1.94 5.97±1.75 0.15±0.57 <.0001 <.0001 <.0001 <.0001

Factor 2
Motivation 
(max=5.84)

2.36±1.20 3.05±1.12 1.76±0.91 0.05±0.19 <.0001 <.0001 <.0001 <.0001

Factor 3
Psychosis 
(max=7.2)

0.44±0.60 0.52±0.67 0.36±0.53 0.00±0.00 0.1046

Factor 4
Anxiety 
(max=10.24)

2.62±1.25 3.14±1.18 2.17±1.13 0.27±0.40 <.0001 <.0001 <.0001 <.0001

Factor 5
Sleep 
(max=4.32)

2.11±1.41 2.93±1.21 1.40±1.17 0.12±0.32 <.0001 <.0001 <.0001 <.0001

Hum Brain Mapp. Author manuscript; available in PMC 2019 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 36

Table 2:

Subject characteristics and Hamilton Depression Rating Scale (HAMD 17-item) scores by severity index for 

the validation samples. p-values were based on ANOVA comparing severe MDD, mild MDD and HC. For 

those variables that had significant differences among three groups, all pair-wise comparisons were still 

significant except that there was no significant age difference between mild MDD and HC. MDD: Major 

Depressive Disorder; HC: Healthy Controls

Variable MDD (N=83) Severe MDD 
(N=32)

Mild MDD 
(N=51)

Healthy 
Control 
(N=25)

p-values*

p-value 
for 

Severe 
vs Mild

p-value 
for 

Severe vs 
HC

p-value 
for Mild 
vs HC

Male 32 (38.55%) 10 (31.25%) 28 (54.9%) 12 (48%) 0.3944 - - -

Age (years) 35.66±12.44 34.94±12.48 36.12±12.52 33.72±13.43 0.7484 - - -

Left handedness 10 (12.05%) 2 (6.25%) 8 (15.69%) 2 (8%)

0.0624 - - -Right 
handedness 69 (83.13%) 26 (81.25%) 43 (84.31%) 22 (88%)

HAMD 18.76±4.50 23.59±2.38 15.73±2.30 1.28±2.01 <.0001 <.0001 <.0001 <.0001

Factor 1
Psychic 

Depression 
(max=11.05)

6.70±1.82 7.47±1.72 6.21±1.73 0.18±0.35 <.0001 0.0004 <.0001 <.0001

Factor 2
Motivation 
(max=5.84)

2.35±1.13 3.16±1.08 1.85±0.83 0.02±0.10 <.0001 <.0001 <.0001 <.0001

Factor 3
Psychosis 

(max=2.18)
0.30±0.50 0.37±0.50 0.25±0.50 0.00±0.00 0.3138 - - -

Factor 4
Anxiety 

(max=6.32)
2.49±1.21 3.35±1.23 1.95±0.83 0.31±0.45 <.0001 <.0001 <.0001 <.0001

Factor 5
Sleep 

(max=4.32)
2.24±1.28 2.99±1.00 1.77±1.21 0.25±0.63 <.0001 <.0001 <.0001 0.0001
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Table 3:

Predictive accuracy of binary classification. Mean±SD were based on 10 sets of average performance 

measures from repeated 5-fold cross validation using 39 features. MDD: Major Depressive Disorder; HC: 

Healthy Controls; PLR: penalized logistic regression model with elastic net penalty, SVM: support vector 

machine, RF: random forest

Outcomes
Area Under the Curve (AUC) Accuracy Rate

PLR SVM RF PLR SVM RF

MDD vs HC 0.73 ± 0.03 0.74 ± 0.02 0.69 ± 0.02 73.45% ± 1.57% 74.00% ± 1.32% 75.05% ± 1.17%
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Table 4:

Combination of the top 10 important features from each classifier for binary classification using penalized 

logistic regression (PLR) model with elastic net penalty, random forest (RF) and support vector machine 

(SVM). Numbers in the parentheses are the average rank from 10 repeated 5-fold cross-validation. Average 

Rank refers to the mean rank across the three algorithms.

Measure Region Rank in PLR 
classifier

Rank in SVM 
classifier

Rank in RF 
classifier

Average 
Rank

Mean FA (dMRI) Left Medial Orbitofrontal 1(2.52) 1(1.30) 1(1.12) 1

Mean FA (dMRI) Right Cuneus 2(15.82) 2(2.82) 2(3.40) 2

Gray Matter Volume (sMRI) Inferior Temporal 6(47.88) 4(6.16) 3(6.56) 4.33

Mean FA (dMRI) Left Middle Temporal 8(49.66) 7(11.74) 4(7.16) 6.33

Mean FA (dMRI) Left Lateral Orbitofrontal 5(44.62) 5(6.54) 10(13.22) 6.67

Gray Matter Volume (sMRI) Left Pars Orbitalis 11(62.82) 3(4.58) 8(9.66) 7.33

Mean FA (dMRI) Right Entorhinal 3(31.18) 6(9.30) 22(20.78) 10.33

Gray Matter Volume 
Asymmetry (sMRI) Cuneus 10(61.40) 8(11.94) 14(16.54) 10.67

Mean FA (dMRI) Left Lateral Occipital 4(44.62) 10(12.50) 20(20.06) 11.33

Gray Matter Volume 
Asymmetry (sMRI) Pars Triangularis 7(49.54) 11(13.06) 19(19.54) 12.33

Mean FA (dMRI) Left Banks of the Superior 
Temporal Sulcus 9(57.12) 24(25.66) 6(8.72) 13

Mean FA (dMRI) Right Rostral Anterior 
Cingulate 13(68.08) 19(21.68) 9(10.36) 13.67

Mean FA (dMRI) Right Fusiform 22(81.58) 23(25.22) 5(8.00) 16.67

Volume Asymmetry (sMRI) Cerebellum 18(74.02) 9(12.08) 26(25.12) 17.67

Mean FA (dMRI) Left Insula 39(141.30) 22(24.02) 7(8.80) 22.67
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Table 5:

Predictive accuracy of ordinal classification. Mean±SD were based on 10 sets of average performance 

measures from repeated 5-fold cross validation using 39 features.

Model Percentage Correctly 
Classified (PCC) Spearman’s rho Kendall’s tau Goodman-Kruskal’s 

gamma Cohen’s Kappa

SVM with most frequent 
class based on pairwise 

classification
52.20 ± 1.69% 0.3591 ± 0.0378 0.3267 ± 0.0340 0.4828 ± 0.0474 0.3468 ± 0.0394

PLR with forward 
continuation 47.05 ± 2.87% 0.3736 ± 0.0320 0.3359 ± 0.0305 0.5062 ± 0.0473 0.3674 ± 0.0339

Random forest 47.80 ± 3.04% 0.2935 ± 0.0492 0.2687 ± 0.0451 0.4213 ± 0.0638 0.1313 ± 0.0253
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Table 6:

Combination of the top 10 ranked features from the best ordinal classifiers using SVM, RF and PLR. Numbers 

in the parentheses are the average rank from 10 repeated 5-fold cross-validation. Average Rank refers to the 

mean rank across the three algorithms. MDD: Major Depressive Disorder; HC: Healthy Controls; PLR: 

penalized logistic regression model with elastic net penalty, SVM: support vector machine, RF: random forest

Measure Region Rank in SVM 
classifier

Rank in RF 
classifier

Rank in PLR 
classifier Average Rank

Mean FA (dMRI) Left Medial Orbitofrontal 1(10.54) 2(4.08) 2(5.06) 1.67

Mean FA (dMRI) Right Cuneus 5(13.82) 3(8.94) 6(7.74) 4.67

Mean FA (dMRI) Left Lateral Orbitofrontal 3(12.42) 6(12.05) 12(14.89) 7

Gray Matter Volume 
Asymmetry (sMRI) Pericalcarine 4(13.76) 22(22.61) 1(4.87) 9

Gray Matter Volume 
Asymmetry (sMRI) Precentral 8(14.34) 5(11.94) 19(19.13) 10.67

Mean FA (dMRI) Right Rostral Anterior 
Cingulate 7(14.32) 20(22.42) 7(8.21) 11.33

Mean FA (dMRI) Right Lingual 9(15.56) 7(13.00) 20(19.31) 12

Gray Matter Volume 
Asymmetry (sMRI) Pars Triangularis 11(16.60) 21(22.45) 4(6.90) 12

Gray Matter Volume (sMRI) Left Pars Orbitalis 21(21.02) 15(21.58) 3(5.32) 13

Mean FA (dMRI) Right Entorhinal 19(20.50) 18(21.94) 5(7.08) 14

Gray Matter Volume (sMRI) Inferior Temporal 10(16.28) 14(20.59) 21(21.43) 15

Gray Matter Volume (sMRI) Right Pars Triangularis 6(14.06) 23(22.85) 17(18.18) 15.33

Mean FA (dMRI) Left Insula 12(16.60) 10(17.77) 28(26.43) 16.67

Age Age 16(17.64) 1(3.64) 33(29.42) 16.67

Mean FA (dMRI) Right Caudal Anterior 
Cingulate 2(10.98) 36(24.98) 16(17.18) 18

Gray Matter Volume 
Asymmetry (sMRI) Lingual 14(17.40) 33(24.57) 9(12.00) 18.67

Mean FA (dMRI) Left Lateral Occipital 23(21.24) 24(22.95) 10(12.66) 19

Cortical Thickness (sMRI) Left Hemisphere (Average) 15(17.62) 9(14.11) 38(32.09) 20.67

Gray Matter Volume (sMRI) Right Choroid Plexus 20(20.92) 8(13.52) 35(29.91) 21

Volume Asymmetry (sMRI) Cerebellum 28(23.04) 28(23.73) 8(11.77) 21.33

Cortical Thickness Right Hemisphere 
(Average) 34(24.64) 4(9.55) 36(30.32) 24.67
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Table 7:

Performance of predicting Hamilton Depression Rating Scale (HAMD) total score and its factor scores in 

Major Depressive Disorder. Mean±SD were based on 10 sets of average performance measures from repeated 

5-fold cross validation using 39 features. PLR: penalized logistic regression model with elastic net penalty, 

SVM: support vector machine, RF: random forest; RMSE: root mean squared error

Variable
RMSE R2

PLR SVM RF PLR SVM RF

HAMD Score 4.6019 ± 0.0851 4.3408 ± 0.0628 4.5138 ± 0.0793 0.0516 ± 0.0219 0.1301 ± 0.0274 0.0632 ± 0.0237

Factor 1:
Psychic Depression 2.0498 ± 0.0381 1.9742 ± 0.0140 2.0226 ± 0.0393 0.0261 ± 0.0096 0.0334 ± 0.0100 0.0302 ± 0.0173

Factor 2:
Motivation 1.1802 ± 0.0245 1.1904 ± 0.0138 1.2130 ± 0.0189 0.0662 ± 0.0265 0.0349 ± 0.0198 0.0224 ± 0.0150

Factor 4:
Anxiety 1.2812 ± 0.0202 1.2328 ± 0.0095 1.2933 ± 0.0199 0.0286 ± 0.0262 0.0374 ± 0.0233 0.0358 ± 0.0170

Factor 5:
Sleep 1.4344 ± 0.0204 1.3926 ± 0.0141 1.3649 ± 0.0157 0.0299 ± 0.0098 0.0502 ± 0.0115 0.0856 ± 0.0227
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Table 8:

Frequently top-ranked variables in predicting HAMD total score and its factor scores (F1-F5) in Major 

Depressive Disorder; 1 means the feature is top ranked in predicting one type of score while 0 means it is not.

Measure Region HAMD F1 F2 F4 F5 Total count of appearance in 
top ranked features

Mean FA (dMRI) Right Cuneus 1 1 1 1 1 5

Gray Matter Volume (sMRI) Right Choroid Plexus 1 1 1 1 1 5

Gray Matter Volume Asymmetry (sMRI) Lingual 1 1 1 0 1 4

Gray Matter Volume Asymmetry (sMRI) Pericalcarine 1 1 1 1 0 4

Gray Matter Volume (sMRI) Right Frontal Pole 1 1 1 1 0 4

Mean FA (dMRI) Left Inferior Parietal 1 1 1 1 0 4

Mean FA (dMRI) Left Transverse Temporal 1 0 1 1 1 4

Volume Asymmetry (sMRI) Cerebellum 1 1 0 1 1 4

Gray Matter Volume Asymmetry (sMRI) Cuneus 1 1 1 0 0 3

Gray Matter Volume Asymmetry (sMRI) Pars Triangularis 1 0 1 0 1 3

Gray Matter Volume Asymmetry (sMRI) Precentral 1 0 1 1 0 3

Cortical Thickness (sMRI) Left Hemisphere (Average) 1 0 0 1 1 3

Mean FA (dMRI) Left Insula 1 1 0 1 0 3

Mean FA (dMRI) Left Pars Triangularis 1 1 0 0 1 3

Mean FA (dMRI) Left Precuneus 1 1 0 0 1 3
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Table 9:

Confusion matrices of binary classifiers on validation dataset.

Model Validation outcomes true Healthy Controls true Major Depressive Disorder

Penalized Logistic Regression
HC 6 11

MDD 19 72

Support Vector Machine
HC 8 10

MDD 17 73

Random Forest
HC 4 2

MDD 21 81
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Table 10:

Other performance metrics and their 95% confidence intervals for binary classifiers on the validation dataset. 

PLR: Penalized Logistic Regression; SVM: Support Vector Machine; RF: Random Forest; AUC: Area under 

the Curve

Model AUC Accuracy (%) Sensitivity (%) Specificity (%) Positive Predictive 
Value (%)

Negative 
Predictive Value 

(%)

PLR 0.5846(0.4523–
0.7169)

72.22(62.78–
80.41)

86.75(77.52–
93.19)

24.00(9.36–
45.13) 79.12(69.33–86.94) 35.29(14.21–61.67)

SVM 0.639(0.5085–
0.7696)

75(65.75–
0.82.83)

87.95(78.96–
94.07)

32.00(14.95–
53.5) 81.11(71.49–88.59) 44.44(21.53–69.24)

RF 0.6733(0.5508–
0.7957) 78.7(69.78–86) 97.59(91.57–

99.71)
16.00(4.54–

36.08) 79.41(70.27–86.78) 66.67(22.28–95.67)
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