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Abstract

Attention-Deficit/Hyperactivity Disorder (ADHD) is a common neurodevelopmental disorder
with only symptomatic care available. Genome-wide association (GWA) studies can provide a
starting point in the search for novel drug targets and possibilities of drug repurposing. Here,

we explored the druggable genome in ADHD by utilising GWA studies on ADHD and its
co-morbid conditions. First, we explored whether the genes targeted by current ADHD drugs
show association with the disorder and/or its co-morbidities. Second, we aimed to identify

genes and pathways involved in the biological processes underlying ADHD that can be targeted
by pharmacological agents. These ADHD-associated druggable genes and pathways were also
examined in co-morbidities of ADHD, as commonalities in their aetiology and management may
lead to novel pharmacological insights. Strikingly, none of the genes encoding targets of first-line
pharmacotherapeutics for ADHD were significantly associated with the disorder, suggesting that
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FDA-approved ADHD drugs may act through different mechanisms than those underlying ADHD.
In the examined druggable genome, three loci on chromosomes 1, 4 and 12 revealed significant
association with ADHD and contained nine druggable genes, five of which encode established
drug targets for malignancies, autoimmune and neurodevelopmental disorders. To conclude, we
present a framework to assess the druggable genome in a disorder, exemplified by ADHD. We
highlight signal transduction and cell adhesion as potential novel avenues for ADHD treatment.
Our findings add to knowledge on known ADHD drugs and present the exploration of druggable
genome associated with ADHD, which may offer interventions at the aetiological level of the
disorder.

Introduction

Attention deficit/hyperactivity disorder (ADHD) is a common and highly heritable
childhood-onset neurodevelopmental disorder that often persists into adulthood [1, 2]. The
prevalence of the disorder in children is 6.5%, while in adults the estimates vary between 2.5
and 3.4% [3]. ADHD patients are at high risk of experiencing difficulties in their education
and social integration [4], elevated rates of incarceration, unemployment and accidental
deaths, all resulting in high societal and economic burden [1, 5-7]. To date, no treatments
cure ADHD, although available therapies offer symptomatic relief.

Current management of ADHD is based on either non-pharmacologic or pharmacologic
treatments as well as the combination of the two. The non-pharmacologic treatments usually
involve psychological and/or behavioural therapies, while the pharmacologic interventions
include stimulant and/or non-stimulant drugs [1, 8]. For ADHD treatment, the U.S. Food
and Drug Administration (FDA) has approved the stimulants methylphenidate (MPH)

and amphetamine (AMP) along with three non-stimulants: atomoxetine, clonidine and
guanfacine [9]. In many guidelines, MPH and AMP are the first-line agents for ADHD
pharmacotherapy, exerting their primary effect by increasing dopamine and norepinephrine
activity [10, 11]. Atomoxetine is a selective norepinephrine re-uptake inhibitor, while

both clonidine and guanfacine are alpha-2 adrenoreceptor agonists [11]. Although all

the pharmaceuticals used to manage ADHD are believed to act on biological pathways
underlying the disorder, their complete mechanisms of action remain unknown, as are the
causal biological mechanisms of ADHD.

An important feature of ADHD relevant to the search of new medications is the existence of
co-morbid conditions [12, 13]. As it has been postulated that biological processes underlying
ADHD may also be involved in the development of its co-morbidities [14], it is prudent

to examine the relationship between ADHD-associated druggable loci and those conditions.
The exploration of associations between a gene encoding or being the target of a drug

and a number of phenotypes has been proposed to aid pharmacotherapeutics by capturing

a broader spectrum of relevant biological information and offering alternatives to existing
pharmaceuticals to treat a disorder (drug repurposing) [15].

Randomised controlled studies have shown that pharmacotherapy reduces the ADHD
symptom burden [16] and observational studies have reported that it improves important
life outcomes, such as academic performance [17], social functioning [18, 19] and the
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rate of motor vehicle accidents [20]. Nonetheless, the current pharmacological treatment of
ADHD is not curative and, although many patients improve markedly, optimal outcomes

are difficult to achieve, especially with regards to signs of executive dysfunction and
emotional dysregulation [21, 22]. There are also lingering concerns about long-term effects
of stimulants on growth and weight [23-25]. Thus, there is a need for more efficient and safe
pharmacological agents to treat and, eventually, cure ADHD.

Improvements in the pharmacotherapeutic options for ADHD may require a fuller
understanding of its underlying biological processes [26]. As knowledge on the genetics
of common disorders evolves, novel strategies for the development of new and improved
pharmacotherapeutics are emerging. For complex disorders, such as ADHD, genomewide
association (GWA) studies can uncover genes and pathways involved in the disease
aetiology, yielding innovative avenues for future drug development and repurposing [27,
28].

In this study, we explored the druggable genome in ADHD by utilising the summary
statistics from GWA studies on ADHD and its major co-morbid conditions. We aimed

to (1) explore whether the genes targeted by current FDA-approved ADHD drugs show
association with the disorder and/or its co-morbidities, (2) identify genes and pathways
involved in the biological processes underlying ADHD, its co-morbidities and quality of
life phenotypes that can be targeted by pharmacological compounds and (3) examine the
identified druggable genes and pathways as potential options for novel drug development
and repurposing.

Materials and methods

Figure 1 shows a flowchart summarising the steps of our study.

Definition of the druggable genome

The druggable genome was defined as described in Finan et al. [29] as a selection of genes
that are potential targets for pharmacological intervention.

The identification of these druggable genes was based on the protein targets of known

and experimental drugs, sequence similarities to those targets (potential druggability), drug—
gene interactions, biotherapeutics and a number of databases documenting pharmacological
molecules and their therapeutic targets.

Definition of ADHD co-morbidities and quality of life phenotypes

For the purpose of this study, we focused only on common conditions with well-documented
evidence for association with ADHD based on large-scale genetic [30] and epidemiological
[31] studies, together with a systematic literature review [32] complemented by a PubMed
search using the following criteria “((ADHD co-morbidity) AND English [Language]) AND
(“2015” [Date-Publication]: “3000” [Date-Publication])”.
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Additional criteria were the availability of large (=20,000 individuals) GWA studies and
their summary statistics. Thus, where such data were not available, we used proxy
phenotypes (e.g. instead of insomnia disorder, we examined insomnia symptoms [33]).

We characterised the co-morbidities into the three main groups: (1) cardiometabolic, (2)
immune-inflammatory-autoimmune (referred to as immune) and (3) neuropsychiatric.

In addition to well-defined clinical diagnoses, ADHD has been reported to be associated
with reduced quality of life, reduced educational attainment and sleep disturbances [1].
Therefore, we also examined the druggable genome overlapping between ADHD and
educational attainment, sleep duration and subjective well-being as proxies for quality of
life and functional outcomes associated with ADHD.

Genetic data

We relied on summary statistics derived from large-scale GWA studies. Where possible,
we restricted our analyses to individuals of European descent only, meta-analysed sample
size equal to or larger than 70% of the total sample, variants with minor allele frequency
above or equal to 1% and of good imputation quality (INFO = 0.8). For ADHD, summary
statistics were acquired from the large-scale meta-analysis of 19,099 cases and 34,194
controls [30]. For the co-morbidities, we curated data from openly available resources or
through correspondence with the authors of the GWA studies of interest (Table 1).

Statistical analyses

Statistical analyses were divided into two main steps to address our first two aims: (1)
examination of genes targeted by current FDA-approved ADHD drugs and (2) examination
of the genes within the druggable genome and their pathways defined as known biological
pathways containing at least one gene from the druggable genome. In step 1, we examined
all genes in all curated GWA data. In step 2, we first examined ADHD and only genes and
pathways that revealed suggestive association with it (p < 0.001) were further analysed in
the GWA data of its co-morbidities and quality of life phenotypes. We applied Bonferroni
correction to account for multiple testing.

Step one: analyses of the genes targeted by current ADHD drugs—The genes
targeted by the current FDA-approved ADHD medications were defined by Gaspar and
Breen [34]. We examined these genes individually (gene-based tests) and altogether (gene-
set analyses) in MAGMA software [35]. Each gene’s degree of association with a phenotype
was calculated based on the individual single nucleotide polymorphisms’ (SNP) association
p-values from their respective GWA studies. SNPs with chromosomal positions within the
boundaries of a gene (start and end of a primary transcript) were assigned to that gene

(i.e. the default settings of MAGMA). The 1000 Genomes CEU population was used as

the reference panel to correct for linkage disequilibrium (LD). We conducted gene-based
analyses of all genes on autosomal chromosomes. Genes represented by a single parameter
(i.e. only one association signal) in MAGMA were excluded. To evaluate each gene’s
contribution to the examined gene-set, the association p-value of each gene was converted to
a Z-value and used as an outcome variable for a regression model with gene-set membership
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as a predictor. Gene size, gene-sets’ gene density and LD were taken into account to adjust
for possible confounding effects and prevent spurious association.

Step two: analyses of genes and pathways within the druggable genome—
The gene associations with ADHD, its co-morbidities and quality of life phenotypes were
tested on two levels: (a) DNA variation and (b) gene expression. The first was tested

in MAGMA as described above. The latter was tested in S-PrediXcan [36]. In short,
S-PrediXcan first predicts tissue-specific gene expression level of each gene based on the
reference transcriptome data [37] and then estimates the correlation between that level
and a phenotype using GWA summary statistics. Given that ADHD is believed to be a
disorder of the central nervous system, we restricted our S-PrediXcan analyses to its tissues.
S-PrediXcan analyses were performed using the default settings of the software. Type 2
diabetes was excluded from these analyses as the available summary statistics did not
contain the necessary data.

The biological pathways were defined as determined by Gene Ontology (GO) [38] and
the Kyoto encyclopaedia of genes and genomes (KEGG) [39]. We restricted our analyses
to pathways represented by more than 10 and less than 1000 genes. The analyses were
conducted in MAGMA [35] as described above.

Characterisation of the druggable genome loci associated with ADHD and/or its co-
morbidities and quality of life phenotypes

To address our third aim, we explored the pharmacology of genes (or their encoded proteins)
pinpointed in our statistical analyses.

To identify the pharmacological agents, we developed a systematic pipeline utilising
publically available databases, where the agents were assessed in four stages: (1) FDA-
approved drugs, (2) drugs in clinical trials, (3) compounds reported in the Drug-Gene
Interaction Database (DGIdb, http://dgidb.org/), and (4) small molecule compounds with
reported molarity measurement for bioactivity.

First, we evaluated each gene of interest in Uniprot (https://www.uniprot.org/) and
characterised the identified FDA-approved drugs and compounds in clinical trials using
Drugbank (https://www.drugbank.ca/), CLUE Repurposing Hub (https://clue.io/repurposing-
app), and DGIdb databases. The FDA approval and clinical trial status of the compounds
were crosschecked using the publically available FDA labels and Clinical Trials.gov (https://
clinicaltrials.gov/) database. The paediatric approval status was investigated on Medscape
(https://reference.medscape.com/) and in FDA labels. For FDA-approved compounds, the
approved indication reported in FDA label was noted. For compounds in clinical trials,

the indication was researched in Clinical Trials.gov, applying the following filters: “not yet
recruiting”, “recruiting”, “enroling by invitation”, “active, not recruiting” and “completed”,
in order to select trials that are currently active. In addition, the mechanism of action on the

specific gene of interest was noted from Drugbank.

Next, the genes were researched as targets in ChEMBL (https://www.ebi.ac.uk/chembl/),
downloading all compounds reported to interact with a gene of interest along with their
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reported “Target Associated Bioactivity” as their affinity or potency to the human gene
product stated in molarity (referred to as “Bioactivity”). The compounds from ChEMBL
were then prioritised from the lowest “Bioactivity” value to the highest and, in order to
investigate the most relevant compounds, the top 50 were characterised further by being
individually investigated in PubChem (https://pubchem.ncbi.nlm.nih.gov/) to confirm their
target-associated bioactivity.

Definition of druggable genome and ADHD co-morbidities

The druggable human genome has been estimated to comprise 4479 genes [29], 3826 of
which were represented by more than one association signal in the ADHD GWA data. These
genes were present in 2758 pathways (2560 GO and 198 KEGG).

Genetic data

We obtained summary statistics from GWA studies for ADHD, eight neuropsychiatric
disorders, three cardiometabolic diseases, five immune diseases and three quality of life
phenotypes (Table 1).

Statistical analyses

In ADHD, we examined 3826 genes and 2759 gene sets in the druggable genome (2560
GO, 198 KEGG and one set of genes targeted by FDA-approved ADHD drugs), bringing the
Bonferroni-corrected significance threshold to p = 7.59E-06.

In the co-morbidities and quality of life phenotypes, we examined 385 genes and three
gene sets (two GO pathways and one set of FDA-approved ADHD genes) in the druggable
genome. The Bonferroni-adjusted significance thresholds for these analyses was set to p=
1.29E-04.

Associations stronger than the determined Bonferroni thresholds were considered
significant.

Step one: analyses of the genes targeted by current ADHD drugs—We identified
23 genes targeted by the FDA-approved ADHD drugs (and revealing more than one
independent association signal in ADHD GWA summary statistics). Individually, none of
these genes showed significant association with ADHD (Table 2). For co-morbid conditions,
several significant associations were noted (Table S1). The strongest one was observed
between DRDZ2and the frequency of alcohol consumption (p = 2.88E-08), followed by
associations between the same gene (DRD2) and SCZ (p = 1.55E-07), CYP2D6and SCZ (p
= 1.81E-06), CHRMZ2 and major depressive disorder (p = 2.56E-06). In addition, SLC6A3
revealed significant association with sleep duration (o = 2.41E-05). All of these genes
encode protein targets of atomoxetine. Furthermore, SLC6AS3 s also targeted by MPH and
AMP, while DRDZis a secondary target of MPH and AMP.

Examining all the genes as a set revealed no significant association with neither ADHD nor
its co-morbidities (Table S2).
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Step two: analyses of genes and pathways within the druggable genome

Analyses of genetic variation (MAGMA): For ADHD, four loci on chromosomes one,
three, four and twelve showed significant association (Table 3). The locus on chromosome
one contains seven druggable genes, while the other three loci contain one druggable gene
each (Figs. S1-S4). The most significant association was observed on chromosome one
(ST3GAL3gene, p=3.10E-12, Table 3 and Fig. S1). While the loci on chromosomes
one, four and twelve revealed strong association signals at the individual SNP level (Figs.
S1-S3), the locus on chromosome three did not (Fig. S4) and, thus, was excluded from
further analyses.

For the co-morbidities, the most significant association was noted between /7PR3and
rheumatoid arthritis (o = 4.88E-38, Fig. 2 and Table S3). This gene was also significantly
associated with SCZ (p = 1.13E-09). Among the three loci associated with ADHD, those
on chromosomes one and four revealed druggable genes also significantly associated with
SCZ, ulcerative colitis, autism spectrum disorder and the frequency of alcohol consumption
(Fig. 2 and Table S3). In addition, educational attainment showed the highest number of
significantly associated genes (Table S3).

Analyses of gene expression (S-PrediXcan): In total, we examined 13 tissues of the central
nervous system (Fig. S5). Transcriptome data for 2225 druggable genes (also examined in
MAGMA) were present in at least one tissue of central nervous system.

For ADHD, the expression levels of two genes—MANBA (p = 1.63E-07 in”cerebellar
hemisphere™) and LEPREI (p=5.05E-09 in “frontal cortex”)—showed significant
association and 18 additional genes showed signs of suggestive association (v < 0.001)
(Table S4).

For co-morbidities, the expression of 13 genes revealed significant associations with a
number of examined phenotypes (Fig. S5 B-S, Table S4). The most significant association
was observed between the expression of HLA-DPB1 and rheumatoid arthritis (o = 2.96E-45
in “cerebellum”, Table S4). The expression levels of the two genes that showed significant
association with ADHD (MANBA and LEPREI) were also significantly associated with
body mass index, rheumatoid arthritis and SCZ (Table S4).

Overall, gene expression analyses highlighted five druggable genes significantly associated
with ADHD and/or its comorbidities and quality of life phenotypes in addition to those
prioritised in analyses of genetic variation.

Pathway analyses—For ADHD, no significant association was noted among either GO
or KEGG pathways, with the strongest signal observed for negative regulation of protein
binding (G0:0032091, p = 1.5E-04). Two GO pathways revealed nominal associations with
ADHD (p<0.001, Table S5) and were analysed for association with its co-morbidities and
quality of life phenotypes, showing no significant associations (Table S5).

The results of KEGG pathways are summarised in Table S6.
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Characterisation of the druggable genome loci associated with ADHD and/or its co-
morbidities and quality of life phenotypes

Genetic variation loci—Out of the nine druggable genes located within the three

loci significantly associated with ADHD, the proteins encoded by five of them are
interacting with pharmaceuticals that are FDA-approved or in clinical trials: PTPRF, TIEL,
MPL, SLC6A9and KCNH3 (Table 3). Among their indications we noted malignancies,
autoimmune diseases, neuropsychiatric disorders (including ADHD, Parkinson’s and
Alzheimer’s diseases), metabolic disorder, haematopoietic processes, inflammation, atrial
fibrillation and spinal cord injury (Table S7). No FDA-approved drugs or drugs in clinical
trials interacted with the druggable locus on chromosome four.

For co-morbid conditions, we examined 14 loci within the druggable genome that all
showed suggestive association with ADHD (p < 0.001) and significant association with
any of the examined co-morbidities. Among the 17 druggable genes within those 14 loci,
13 interact with drugs that are in clinical trials or are FDA-approved, with the majority of
indications being autoimmune disorders and/or malignancies (Table S8).

Gene expression loci—Among the five genes pinpointed by S-PrediXcan (and not
overlapping with those identified in MAGMA), three are targeted by compounds in clinical
trials and two of them are also FDA-approved. All of these compounds are nutraceuticals,
with malignancies and immune dysfunctions among their indications (Tables S9 and S10).

Discussion

Despite ADHD being a highly heritable disorder, it has been challenging to utilise genetic
information in its treatment. Nonetheless, the more insight we gain into the molecular
genetics of ADHD, the more options for its treatment may become available [40]. In this
study, we explored the druggable genome in ADHD, its co-morbid conditions and quality

of life phenotypes utilising largescale GWA studies. We aimed to address three questions:

(1) do any of the genes encoding targets of FDA-approved ADHD drugs show association
with ADHD and/or its co-morbidities, (2) are ADHD and/or its co-morbidities and quality of
life phenotypes associated with genetic variation and expression within the known druggable
genome and if so, (3) can we use those association signals to identify gene targets for novel
drug development and/or repurposing to treat ADHD.

To answer the first question, we examined the association between the genes encoding the
immediate targets of the first-line ADHD pharmacotherapeutics and ADHD as well as its
co-morbidities. We observed no significant association between these genes and ADHD,
suggesting that these drugs may act through mechanisms different to those underlying
ADHD. However, as the current GWA study on ADHD reveals only a small fraction of the
biological processes underlying this condition [30], larger studies are needed to draw any
definitive conclusions.

Overall, drugs that are FDA-approved or currently undergoing clinical trials to treat ADHD
(e.g. dasotraline) target only a limited number of known pharmacological targets, essentially
enhancing catecholamine signalling. This illustrates that all active ADHD drugs belong to
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a small pharmacological niche and we should aim to move beyond it. Hence, we examined
whether any known druggable genes and pathways are associated with ADHD and/or its co-
morbidities and quality of life phenotypes (second question), following by pharmacological
characterisation of identified associations (third question). These analyses aimed to pinpoint
novel avenues for ADHD drug development as well as repurposing. Because the de novo
discovery and development of entirely new drugs targeting unique biology of a disorder is a
tedious and expensive process with a low success rate, the possibility of repurposing already
existing drugs towards new indications may be more effective [40]. Here, we highlight some
of these potential new targets, although this list is not comprehensive.

Within the loci associated with ADHD, 5 druggable genes encode proteins interacting with
drugs that are FDA-approved or are in clinical trials. The common indications of those
pharmaceuticals are autoimmune disorders and malignancies, with some also being tested
in clinical trials for treatment of neurodevelopmental disorders. Interestingly, autoimmune
disorders and malignancies are also common indications for drugs interacting with genes
associated with co-morbidities of ADHD, suggesting that these two fields of research could
present novel paths for ADHD treatment.

The locus on chromosome one shows the strongest association with ADHD and also
contains the most genes interacting with drugs that are FDA-approved or in clinical trials.
Among them, PTPRF is the gene with the most prominent association signal. This gene
encodes a tyrosine phosphatase, a signalling molecule involved in a myriad of cellular
processes, including cell adhesion, neuronal development and functioning [41, 42]. PTPRF
has mainly been studied in the context of cancer. However, its involvement in hyperactivity
[42] and axonal growth [43] has also been reported. Another ADHD-associated gene
interacting with drugs that are FDA-approved and/or are in clinical trials is SLC6AY, a gene
encoding a glycine transporter that is targeted by such compounds as bitopertin, sarcosine
and glycine [44]. In ADHD, glycine supplementation is currently under investigation as a
potential treatment [45]. Similarly, sarcosine has also been tested as a possible ADHD drug,
although the preliminary analyses indicate that its effect may be limited to oppositional
symptoms only [46].

Outside the chromosome one locus, the KCNH3 gene is also interacting with drugs

that are FDA-approved or are in clinical trials. This gene encodes a voltage-dependent
potassium channel, a selective inhibitor of which was recently described [47]. It is also a
non-specific target of blood—brain barrier penetrating drug dalfampridine [48] used to relieve
the symptoms of multiple sclerosis and related neurologic disorders [44, 49]. Knocking out
KCNH3in mice has been reported to enhance cognitive skills, including attention, further
supporting a potential role of dalfampridine-like drugs in the treatment of ADHD [50].

The aforementioned druggable genes also showed significant association with educational
attainment, suggesting that drugs targeting them may have a possible impact on quality of
life of ADHD patients.

The analyses of correlation between ADHD and gene expression levels in brain pinpointed
druggable genes MANBA and LEPREI, among which only LEPRET interacts with a
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number of compounds in clinical trials, such as nutraceutical ascorbate, succinic acid and
L-proline. This gene encodes an enzyme needed for collagen synthesis and assembly, which
has recently been proposed as a novel therapeutic vista for protection and regeneration of
neurons [51]. Moreover, two additional genes, the expression of which correlated with the
examined co-morbidities and quality of life phenotypes are also targeted by nutraceuticals.

In pathway analyses, the GO pathway of negative regulation of protein binding
(G0:0032091) showed the strongest, albeit non-significant, association with ADHD. This
pathway encompasses any process that negatively affects any protein binding, such

as actin binding (e.g. synaptic plasticity), microtubule binding, receptor binding and
homodimerization activity of a protein. The latter processes affect a G-protein-coupled
receptor signalling, tapping into the largest class of targets in current drug development [52,
53] and presenting a myriad of potential opportunities for new drug discoveries in ADHD.
Indeed, one of the novel approaches to pharmacotherapy of ADHD is the use of fasoracetam
that acts on G-protein coupled glutamate receptor [40].

Among the examined co-morbidities, the neuropsychiatric (mostly SCZ) and immune
groups revealed significant associations, with 12 genes interacting with compounds that

are FDA-approved or in clinical trials. Interestingly, one of these genes is KCNJ13, encoding
a druggable potassium channel targeted by dalfampridine, the same compound that also
targets the KCNH3-protein discussed above.

The gene that revealed significant associations with the largest number of co-morbidities

is SEMAS3F. This gene also showed significant association with educational attainment.
SEMASF encodes semaphoring-3F protein involved in cell signalling, affecting cell
adhesion and migration and being explored mostly in cancer therapies [54, 55]. Nonetheless,
the range of therapeutic potential of semaphorins is large [56].

Our study has some limitations. As we examined associations observed in GWA studies,
where it is difficult to obtain adequate sample sizes to detect associations of small effects,
our findings are limited by their statistical power. Moreover, as we imposed a sample size
limit of 20,000 individuals, some of the co-morbid conditions, where GWA studies of such
size were not available, were replaced by proxy phenotypes.

The current statistical methods allow us to identify chromosomal loci only. Further studies
on the genes of interest as well as fine mapping are needed to unambiguously establish
which gene(s) lies on the causal pathway to developing ADHD. This knowledge would
allow for a higher resolution search for therapeutic targets, especially on chromosome one
locus where the LD structure is particularly complicated.

The gene expression analyses have several limitations [57], including the confounding by
genetic associations due to LD, implying a possible substantial bias towards genes located
in the loci revealing genome-wide association with the examined trait. In addition, the
available transcriptome data are limited and are not available in many relevant tissues (e.g.
lack of expression data for KCNH3in brain tissues in reference transcriptome), preventing a
comprehensive investigation of the transcriptome.
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As we used publicly available databases, it was not possible to control their quality.
Furthermore, the information provided in the utilised drug target databases may be
incomplete.

To conclude, we present a framework for assessment of the druggable genome in a disorder,
exemplified by ADHD. We present possibilities for drug repurposing (e.g. dalfampridine)
and highlight processes of signal transduction and cell adhesion (negative regulation of
protein binding, PTPRF, SEMA3F, KCNH3, KCNJ13) as potential novel avenues for
ADHD treatment. Our findings add to the knowledge on known ADHD drugs and present
an exploration of druggable genome associated with ADHD, which may offer intervention at
the aetiological level of the disorder.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 2.
Tile plot of the association between druggable genes and ADHD (p < 0.001), its co-morbid
conditions of ADHD and quality of life phenotypes. ADHD; attention deficit/hyperactivity

disorder, BMI; body mass index, CHD; coronary heart disease, T2DM; type 2 diabetes

mellitus, SWB; subjective well-being
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