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Abstract

Purpose: To apply tracer kinetic models as temporal constraints during reconstruction of under-

sampled brain tumor dynamic contrast enhanced (DCE) MRI

Methods: A library of concentration v.s time profiles is simulated for a range of physiological 

kinetic parameters. The library is reduced to a dictionary of temporal bases, where each profile is 

approximated by a sparse linear combination of the bases. Image reconstruction is formulated as 

estimation of concentration profiles and sparse model coefficients with a fixed sparsity level. 

Simulations are performed to evaluate modeling error, and error statistics in kinetic parameter 

estimation in presence of noise. Retrospective under-sampling experiments are performed on a 

brain tumor DCE digital reference object (DRO), and 12 brain tumor in-vivo 3T datasets. The 

performances of the proposed under-sampled reconstruction scheme and an existing compressed 

sensing based temporal finite-difference (tFD) undersampled reconstruction were compared 

against the fully sampled inverse Fourier Transform based reconstruction.

Results: Simulations demonstrate that sparsity levels of 2 and 3 model the library profiles from 

the Patlak and extended Tofts-Kety (ETK) models, respectively. Noise sensitivity analysis showed 

equivalent kinetic parameter estimation error statistics from noisy concentration profiles, and 

model approximated profiles. DRO based experiments showed good fidelity in recovery of kinetic 

maps from 20-fold under-sampled data. In-vivo experiments demonstrated reduced bias and 

uncertainty in kinetic mapping with the proposed approach compared to tFD at under-sampled 

reduction factors >=20.

Corresponding Author: Sajan Goud Lingala, PhD, Assistant Professor, Roy J Carver Department of Biomedical Engineering, 5609 
Seamans Center, University of Iowa, Iowa city, IA-52242, sajangoud-lingala@uiowa.edu. 

HHS Public Access
Author manuscript
Med Phys. Author manuscript; available in PMC 2021 January 01.

Published in final edited form as:
Med Phys. 2020 January ; 47(1): 37–51. doi:10.1002/mp.13885.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions: Tracer kinetic models can be applied as temporal constraints during brain tumor 

DCE-MRI reconstruction. The proposed under-sampled scheme resulted in model parameter 

estimates less biased with respect to conventional fully sampled DCE MRI reconstructions and 

parameter estimation. The approach is flexible, can use non-linear kinetic models, and does not 

require tuning of regularization parameters.

INTRODUCTION

Dynamic Contrast Enhanced MRI (DCE-MRI) is a powerful technique that provides a 

quantitative measure of vessel permeability and interstitial volumes. In the brain, it 

characterizes the blood brain barrier (BBB) leakiness, which has proven to be valuable in 

several applications1. These include assessing conditions with large BBB breakdown such as 

gradation of brain tumors2,3, multiple sclerosis lesions4,5, and conditions with subtle and 

chronic BBB breakdown such as diabetes6, and Alzheimer’s disease7. Outside the brain, 

DCE-MRI has applications in cancer assessment and therapeutic monitoring in several body 

parts including breast8,9, prostate10, and liver11.

DCE-MRI involves a challenging trade-off between the achievable spatial resolution, 

temporal resolution, and volume coverage. Acceleration strategies that exploit redundancies 

along the time dimension have shown significant potential to improve these trade-offs. These 

include schemes such as view-sharing12–14, highly constrained back projection (HYPR)15, 

and compressed sensing16–21. Several sparsifying spatio-temporal transforms have been 

proposed including spatio-temporal wavelet transform, spatio-temporal finite-difference, 

temporal Fourier transform. A major challenge with these “off-the-shelf” object models is 

that the modeling assumptions do not fit the data, which limits the achievable acceleration 

rates. Data-driven schemes that learn sparse representations from the data have been 

proposed22–25, and have shown to out perform off-the shelf transforms. However, these are 

often associated with highly non-convex optimization. Furthermore, image reconstruction 

with existing transforms involves tuning one or more regularization parameters, which poses 

challenges to the standardization of these methods.

In this manuscript we explore the use of physical tracer kinetic models for constrained 

reconstruction. This approach has been used extensively in dynamic positron emission 

tomography (PET) imaging26–29, and has recently been adapted in MRI for the applications 

of relaxometry30–33, perfusion34,35, permeability36,37, and diffusion imaging38,39. Broadly, 

these methods can be classified into methods based on direct reconstruction of parameters 

from under-sampled data, or methods that use representations derived from parametric 

models as constraints in image reconstruction.

We propose a model-constrained approach for DCE-MRI reconstruction, where established 

contrast-agent kinetic models used in post-processing are employed as temporal constraints 

in reconstruction. From a specific kinetic model, and a physiological range of kinetic 

parameters, we construct a library of concentration vs. time profiles. Kinetic model specific 

temporal basis functions are derived from the library using the k-singular value 

decomposition (k-SVD) algorithm40. Through noise-less and noise-based simulations, we 

deduce a relation between the sparsity parameter in k-SVD and the complexity level of the 
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kinetic model. We design a constrained reconstruction method where the kinetic model 

based temporal bases are used to constrain the recovery of concentration v.s time profiles 

from under-sampled (k-t) data. We utilize an iterative multi-scale optimization algorithm for 

improved robustness to undesirable local minima solutions.

The proposed approach has similarities with recent work on direct reconstruction of kinetic 

parameters from under-sampled DCE-MRI data36,37. We use the same tracer kinetic model 

for reconstruction and post-processing to exploit the redundancy in the DCE-MRI pipeline. 

The major difference is in formulation of the optimization problem. Direct reconstruction 

involves estimation of kinetic parameters directly from under-sampled data36. When using 

the Patlak model, a Newton based solver is used. When using the ETK model37 a variable 

splitting strategy is used to iterate between sub-problems of data consistency, concentration 

time profile estimation, and kinetic parameter estimation. One major challenge is that the 

kinetic parameter estimation is treated as a black box. For models like ETK, this fitting 

problem is nonlinear and is applied to concentration vs. time profiles containing noise and 

potential artifact at every iteration. Errors in kinetic parameter estimation propagate to the 

main reconstruction step. A second limitation is substantial compute times as kinetic model 

estimation is performed at every iteration. In contrast, the proposed approach decouples 

kinetic parameter estimation from the reconstruction of concentration profiles. This avoids 

calling the computationally expensive kinetic parameter estimation during reconstruction. 

The proposed optimization iterates between data consistency, concentration profile 

estimation, and k-sparse projection of concentration profiles onto a set of temporal basis 

functions. Kinetic parameter estimation needs to be performed only once.

Since our formulation decouples reconstruction of concentration profiles from parameter 

estimation, it allows for flexibility to adapt to complex non-linear kinetic models. 

Furthermore, since the sparsity parameter, is fixed a priori, the proposed approach does not 

require any tuning of free parameters (e.g. regularization parameters). The flexibility allows 

for its potential utility in DCE-MRI of most organs and disease conditions. In this work, we 

demonstrate effectiveness with both the Patlak and extended Tofts-Kety (ETK) models, and 

demonstrate application to brain tumor assessment.

METHODS

Tracer kinetic model-based temporal bases:

A library of concentration vs. time profiles ZlxN is simulated using a kinetic model, an 

arterial input function (AIF), and a physiologic range of kinetic parameters (Fig.1). l denotes 

the number of profiles in the library; and N denotes the number of time instances. For the 

ETK model41, we used the range: Ktrans = 0 − 0.8 min−1 in steps of 0.01 min−1, vp = 0 

− 60% in steps of 1%, ve = 0 − 100% in steps of 1% to yield a library of size lxN = 

494100×50. Similarly, for the Patlak model42, we used the range: Ktrans = 0 − 0.8 min−1 in 

steps of 0.01 min−1, vp = 0 − 60% in steps of 1% to yield a library size lxN = 4941×50. We 

assume a hematocrit (hct) of 0.4, which is equivalent to the range of blood volume (vb) 

between 0–100 % as vb=vp/(1-Hct). N was chosen as 50 to match our in-vivo DCE-MRI 

acquisition settings (i.e, temporal resolution of 5 secs and the total scan time of 250 

seconds). This can however be adjusted based on the temporal resolution and scan time of 
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the DCE-MRI acquisition. A population based AIF was used43. The settings of the Parker 

model that specifies the population based AIF were the same as described in43. The range of 

kinetic parameters was motivated by brain tumor DCE literature1, which suggests 0–0.34 

min−1 for Ktrans, 0–60% for vp assuming hematocrit of 0.4, and 0–100% for ve. We 

expanded the Ktrans range by ~2.5x, and used the full range for vp and ve to ensure 

conservative coverage of the kinetic parameter space. The k-SVD dictionary-learning 

algorithm40 is then used to reduce the large library to a smaller dictionary of temporal basis 

functions (denoted by VrxN). k-SVD represents any time profile in Z, for instance the pth 

row of Z, zp(t), as a sparse linear combination of basis functions vi(t) from V:

zp t
1XN

≈ upVrXN

zp
q − sp t

 such that, up
rx1 0

≤ q;
[1]

where r denotes the number of basis functions in V, and is chosen as r = 100 ≪ l. q is the 

sparsity parameter. ‖up‖0 denotes the l0 norm of the vector up = {u1, u2, … , ur}. zp
q − sp(t)

denotes the q-sparse projection of zp(t) onto V. k-SVD jointly estimates the sparse 

coefficient matrix Ulxr and the dictionary VrxN as:

Ulxr, VrxN = minU, V∑p = 1
l zp t − upV 2

2; such that, up 0 ≤ q; [2]

where up denotes the pth row of U.

Image Reconstruction:

We pose the estimation of the concentration vs. time profiles CM×N (M - number of pixels; 

N - number of time frames), and the sparse coefficient matrix UMxr from under-sampled k-t 

space data (b) as:

minC,U A(C) − b 2
2

data consistency 
; s . t . , C = UV; up 0 ≤ q; p = 1, 2, …, M

TK model constraint 

;
[3]

C contains the concentration v.s time profile c(x, t) for every pixel x ∈ (x, y) stacked row 

wise. c(x, t) are constrained to be a q-sparse linear combination of the kinetic model-derived 

temporal bases in VrxN. The operator A(C) = Fu(Sm(T(C))) denotes the forward model 

which maps C to the measured multi-coil (k,t) data. Fu denotes the Fourier Transform 

operator on a specified (k-t) under-sampling pattern. Sm contains the receiver coil sensitivity 

maps. To estimate the coil maps, the standard sum of squares method is applied on high 

SNR multi-coil images obtained after gridding reconstruction of the time collapsed raw k-t 

data; the coil maps are assumed to capture object phase. T is an operator that relates the 

concentration profile to the signal intensity profile s(x, t) by the steady state spoiled gradient 

echo (SPGR) equation:
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s(x, t) = T(c(x, t)) =
M0(x)sinα 1 − e

−TR R1(x, 0) + c(x, t)r1

1 − cosα e
−TR R1(x, 0) + c(x, t)r1

+ s(x, 0) −
M0(x)sinα 1 − e

−TR R1(x, 0)

1 − cosα e
−TR R1(x, 0)

;

[4]

where r1 is the contrast agent relaxivity, TR is the repetition time, α is the flip angle, R1(x, 

0) and M0(x) are respectively the pre-contrast R1 (reciprocal of T1) and the equilibrium 

longitudinal magnetization. s(x, 0) is the pre-contrast first frame, which is fully-sampled. 

The bracketed term in the second row of [5] resolves differences between the pre-contrast 

signal s(x, 0) and the predicted pre-contrast signal based on the baseline R1(x, 0) and M0(x) 

maps (from a separate T1 mapping acquisition). Similarly, the operation of mapping 

concentration profile from the signal intensity profile can be expressed as44:

c(x, t) = T−1(s(x, t))

=

− 1
TR ln

1 − s(x, t) − s(x, 0)
s(x, 0)sinα + 1 − e

−TR R1(x, 0)

1 − cosα e
−TR R1(x, 0)

1 − cosα s(x, t) − s(x, 0)
s(x, 0)sinα + 1 − e−TR[R, 0]

1 − cosα e
−TR R1(x, 0)

− R1(x, 0)

ℜ1 ;

[5]

We solve [4] by alternately (a) updating U using orthogonal matching pursuit (OMP) sparse 

projection40,45, and (b) updating C by enforcing consistency with acquired data. To be 

robust to spurious local minima, we use an iterative multi-scale minimization approach, 

where we solve the problem at a coarser spatial resolution during the initial iterations and as 

the iterations proceed, we gradually update the resolution to its full resolution. This is 

achieved by multiplication of spatial Fourier Transform of s(x, t) by a 2D Gaussian filter 

(G(kσ)) specified by filter width kσ; where kσ is initialized to 0.1 percent of kmax, and 
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gradually updated to 100 percent of kmax, where kmax specifies the extent of k-space 

coverage. This heuristic strategy is used in several non-convex problems such as in image 

registration46, and recently in MR-fingerprinting47,48. Starting with an initial guess obtained 

from Cinit = AH(b), we iterate until a stopping criterion of 
Ci − Ci−10

Ci 2

2
< ε = 0.01 or until 

the maximum number of iterations of 150 are achieved. After reconstructing C, we estimate 

the kinetic parameters by fitting the estimated concentration profiles to the kinetic model 

using the open source Rocketship49 package. The pseudo code of the algorithm is shown 

below. The code and examples of the algorithm are publicly available at the following URL: 

https://github.com/sajanglingala/DCE_dictionary_recon/.

Initialization: Cinit = AH(b); kσ = 0.001 * kmax

while kσ < kmax

• For all time frames, spatially blur s(x, t) by the 2D Gaussian filter G(kσ)

• kσ = kσ * 2

• Map signal intensity profiles to concentration profiles: c(x, t) = T−1(s(x, t));

 while 
Ci − Ci−10

Ci 2

2
< ε

• TK Model constraint update

– OMP update of up, s.t, upV ≈ c(x, t); ‖up‖0 ≤ q; p ∈ {1,2, … , M};

• Map the q-sparse projected concentration profiles to the signal intensity profiles: s(x, t) = T(upV);

• Data consistency update

– Compute s k, t j = Fu Sm s x, t j ; for j ∈ {1,2, … , N}; and insert the measured data at 

the sampling locations s ku, t j = b;

• Map the above k-t space data to the concentration time profiles: c x, t = AH s k, t j ;

 end

end

Simulations

The sparsity parameter q in [2] is determined based on simulation studies with the Patlak 

and the ETK models. Noise-less simulations are performed and the mean approximation 

error μerr = 1
l ∑p = 1

l zp t − zp
q − sp t

2
2
, and maximum approximation error: 

maxerr = maxp = 1
l zp t − zp

q − sp t 2
2
 are computed for different values of q.

Noise based simulations were performed for broad ranges of kinetic parameter values to a) 

determine any systematic bias and uncertainty in the kinetic parameter space that may be 

induced by sparsity based modeling of the concentration time profiles, and b) to deduce the 

correspondence between the sparsity level (q) and the kinetic model.
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Noisy concentration profiles were obtained as:

zp
n(t) = zp(t) + n(t); p = 1, …, l ; [6]

where n(t) denotes i.i.d. white Gaussian noise with zero mean and 0.005 standard deviation, 

which was chosen to match the typical signal-to-noise ratio (SNR) from in vivo brain DCE-

MRI data acquired at our institution on a 3T commercial system with an eight-channel head 

array coil. Noise in the concentration time profiles was assumed to be additive i.i.d. 

Gaussian. Concentration time profiles are real valued (negative values can occur in the 

presence of noise), and have a one-to-one mapping with real-valued signal intensity time 

profiles in the forward model. Monte-Carlo simulations with 500 realizations of n(t) were 

performed to evaluate the bias and uncertainty in estimating kinetic parameters from a) the 

noisy profiles zp
n t , and b) the q – sparse projections of zp

n t  on V: zp
n, q − sp t .

We performed covariant error analysis for two parameters (Ktrans, vp) with the Patlak and the 

ETK model over a broad range of kinetic parameters. With both the models, we evaluated 

the bias and uncertainty in estimating Ktrans and vp before and after q-sparse projections. 

With the ETK model, for simplicity, we focus only on analysis in a two dimensional space 

with a fixed ve =0.6. The open-source Rocketship package49 was used for kinetic parameter 

estimation.

Evaluation with a digital reference object

An anatomically-realistic brain tumor DCE-MRI digital reference object (DRO) was 

generated based on the method and data described in50. Briefly, the population based AIF 

with the Parker model, known kinetic parameters, the ETK model, and the steady state 

spoiled gradient signal equation was used to generate the dynamic images. We then 

multiplied by coil sensitivities, took the Fourier Transform, and added realistic complex 

Gaussian noise to each channel. Coil maps, noise covariance matrix, and the signal to noise 

(SNR) level were obtained from in-vivo data acquired at 3T. Comparisons were performed at 

a SNR = 30 to mimic measurements at 3T.

This phantom data was retrospectively under-sampled using a randomized golden-angle 

Cartesian (GOCART) sampling pattern51, and evaluations in fidelity of the kinetic 

parameters were performed at under-sampling factor of R=20. GOCART51 is originally a 3D 

golden angle Cartesian sampling scheme, with random sampling of the ky-kz phase encode 

locations along each Cartesian radial spoke. In this study, we perform retrospective under-

sampling in the kx-ky plane in a representative slice. This strategy was chosen to simulate 

ky-kz under-sampling in prospective acquisitions.

Reconstruction was performed using the fully-sampled direct inverse Fourier Transform 

based approach (considered as reference), and the proposed constrained reconstruction 

approach with full-sampling (R=1), and under-sampling (R=20). Kinetic modeling was 

performed both using the ETK model, and a simpler Patlak model. The latter was used to 

analyze any errors due to model mismatch. The proposed constrained reconstruction was 
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implemented with temporal dictionaries derived from the kinetic model (Patlak or ETK) that 

corresponded to the same kinetic model used for subsequent parameter estimation.

Evaluation with in-vivo data

We reviewed 110 fully-sampled DCE-MRI raw datasets from patients with known or 

suspected brain tumor, receiving a routine brain MRI with contrast on a clinical 3T scanner 

(HDxt, GE Healthcare, Waukesha, WI). The data acquisition was based on a 3D Cartesian 

SPGR sequence with field of view (FOV): 22×22×4.2 cm3; spatial resolution: 0.9×1.3×7.0 

mm3; temporal resolution: 5 seconds; 50 time frames; and eight receiver coils; flip angle of 

15 degrees, TE/TR=1.3 ms/6 ms. Driven equilibrium Single Pulse Observation of T1 

(DESPOT1) was performed before the DCE sequence, where three images with flip angles 

of 2,5, 10 degrees were acquired to estimate T1 and M0 maps before the contrast arrival. 

Gadobenate dimeglumine (Multihance, Bracco) (0.05 mmol/kg) was administered into an 

upper extremity vein using a power injector (ACIST EmpowerMR Injector, Bracco), at a rate 

of 3 ml/sec, followed by a 20ml saline flush.

Of these 110 cases, we identified a cohort of 12 cases, which had different brain tumor 

characteristics (shape, size, heterogeneity), and also had enhancing tumors of atleast 1 cm 

(as determined by standard bi-directional assessment)52. The demographics of these patients 

are shown in Table 1, and the post-contrast images (last spatial frame from the DCE-scans) 

are shown in Figure 2. The protocol was approved by our institutional review board (IRB).

(k-t) under-sampling was performed retrospectively on fully-sampled raw data using the 

GOCART (randomized golden angle Cartesian) sampling trajectory51 at acceleration factors 

R=20 and R=40. Image reconstruction was performed with the proposed dictionary based 

approach, an existing compressed sensing approach that uses a temporal finite difference 

(tFD) sparsity constraint19, and compared against the reference fully sampled inverse 

Fourier Transform based approach. ETK derived bases with a fixed sparsity level of q=3 was 

used in the proposed approach. The ETK model was chosen as it accounts for backflux of 

contrast from the extravascular space to the plasma, which in turn improves the accuracy of 

Ktrans estimation, and has shown to be applicable to brain tumor data53. All the patient 

datasets were acquired with a fixed injection timing, however timing delays between 5–10 

seconds (1–2 frames) existed amongst different patients. As described earlier, a population 

based AIF with a fixed delay was used to generate the library. Patient specific AIF delays 

were estimated as described by Lebel et al54. Briefly, the k-space origin was frequently 

sampled, and plotted as a function of time. The region of maximum slope was regressed to 

the baseline to determine the bolus arrival time. Either padding zeroes initially to the 

acquired data or omitting the last time frames corrected for any delay mismatch to the 

library. The tFD based formulation is convex and is guaranteed to achieve the global 

minimum. Therefore the multi-scale optimization heuristic was not applied during tFD 

optimization. We used the alternating direction method of multipliers (ADMM) algorithm 

where the stopping criterion was if the rate of change between reconstructions at successive 

iterations fell below 10−5 percent. The regularization parameter in tFD constrained 

reconstruction was tuned to provide the smallest normalized root mean squared image 

reconstruction error (nRMSE) in tumor ROIs with respect to the reference fully sampled 
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datasets. All reconstructions were implemented in MATLAB (The MathWorks, Inc., Natick, 

MA) and executed on an Intel core i7 3.5 GHz machine with 32-GB memory.

The convergence of the proposed multi-scale iterative optimization was evaluated 

empirically. Reconstruction estimates with different initializations of the concentration 

profiles were compared: zero filled reconstruction (Cinit = AH(b)); low spatial resolution 

estimate obtained from the center 3×3 window of the k-space data in every time frame (Cinit 

= Clow.res); and from the reference fully sampled data (Cinit = Cref);

After image reconstruction, the ETK model was used to estimate the kinetic parameters with 

a population based AIF43. Bland-Altman analysis was performed to evaluate systematic bias 

and uncertainty of the reconstructed Ktrans and v p maps (from the proposed and tFD 

approaches) with respect to the reference fully sampled Kre f
trans and vp,ref. Comparisons using 

ve maps were not considered, as its estimation is associated with high uncertainty with the 

ETK model49.

To evaluate error in the kinetic maps on using the ETK model to constrain the reconstruction 

of time intensity curves, we analyzed the kinetic maps from the proposed reconstruction 

against conventional direct inverse Fourier Transform reconstruction on fully sampled data 

(R=1).

On one of the in-vivo datasets where the Patlak model produced less than one percent 

modeling error with the population based AIF, the proposed reconstruction scheme 

implemented with the Patlak dictionary was also compared against the direct Patlak 

parameter estimation method36. The direct estimation approach was implemented based on 

open source code (https://github.com/usc-mrel/DCE_direct_recon). The reconstruction 

quality in the resulting Ktrans and vp maps from under-sampled data (at R=10–30) were 

compared against the maps obtained by conventional fully sampled (R=1) inverse Fourier 

Transform reconstructions.

RESULTS

Simulations

Figure 3 shows the maximum and average approximation errors (maxerr, and μerr) between 

the concentration vs. time profiles in the library, and the profiles obtained from q-sparse 

projections onto V at different sparsity levels (q). q-sparse projections of the curves 

generated from the Patlak and the ETK models are respectively shown in Figure 3a, and 3b. 

These curves are chosen to represent different types of tumor enhancement dynamics55. 

With q=1, we observe considerable bias in approximating the kinetic model generated 

curves with both the Patlak and the ETK models. However, for the Patlak model, a choice of 

q≥2 provided excellent agreement with the profiles in the library (maxerr/μerr = 10−28%/

10−30%). Similarly, for the ETK model, a choice of q≥3 approximated the profiles in the 

library with (maxerr/μerr = 2%/0.008%).

Figures. 4 and 5 demonstrates the bias and uncertainty in estimating kinetic parameters in 

presence of noise. Over a broad range of kinetic parameters, we observe that estimating the 
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kinetic parameters from noisy profiles and the q-sparse projected profiles are equivalent 

when q≥2 (for the Patlak model), and q ≥ 3 (for the ETK model). Based on these 

simulations, we fixed q=2 for the Patlak model, and q=3 for the ETK model.

Figure 6 shows evaluations on the brain tumor DRO which is constructed based on the ETK 

model. When the simpler Patlak model is applied on the reconstructed concentration time 

profiles, an under-estimation in Ktrans (a factor of about 10 fold) and over estimation in vp (a 

factor of about 2.5 fold) is observed. This bias is observed in both the reference fully 

sampled inverse Fourier Transform reconstruction, and the proposed reconstruction 

suggesting that model selection error is independent of the choice of the reconstruction (see 

Fig. 6 ii).

When evaluated against the kinetic parameter estimates from reference reconstructions, the 

proposed reconstruction showed robust quality maps from 20 fold under-sampled data (Fig. 

6 i and ii). This is also depicted in the difference maps where the reconstruction error lies at 

the level of background noise.

Evaluation with in-vivo data

Figure 7 shows the kinetic maps from the proposed reconstruction against conventional 

direct inverse Fourier Transform reconstruction on fully sampled data (R=1). Two 

representative brain tumor datasets that have different spatial characteristics are shown: (a) 

glioblastoma with thin rim, necrotic core, connected to a solid tumor; (b) meningioma with 

homogenous spatial tumor characteristics. As depicted in the kinetic maps, the maps 

obtained from the two approaches are qualitatively equivalent, with the error being in the 

background noisy regions. This is also highlighted in the difference maps. For both the 

reconstructions, the ve maps are noisy due to the increased uncertainity in estimating ve 

from short scan times (5 minutes in this study)56

Figure 8 shows the evolution of the objective function in [3] as a function of CPU 

reconstruction time with different initializations of concentration time profiles a) from low-

resolution dynamic images Clow.res.; b) from zero-filled dynamic images C = AH(b); c) from 

reference dynamic images Cref. The multi-scale optimization gradually updates the 

complexity of the problem. Due to spatial low-pass filtering, the under-sampling artifacts in 

initial iterations are considerably reduced making the problem well-posed. C is updated 

gradually with increasing resolution, as a result of which a monotonic convergence is 

observed. We empirically found this approach to be robust to local minima; the final 

solutions were identical with different initializations.

Figure 9 shows retrospective under-sampling comparisons of Ktrans at R=20. tFD 

reconstructions resulted in considerable under estimation of Ktrans in 9 of the 12 cases, while 

the proposed method was found to be robust to this bias. tFD also relied on adjusting the 

regularization parameter. In contrast, the proposed parameter free reconstruction provided 

Ktrans estimates closer to that of the reference. It also provided superior fidelity in 

maintaining spatial characteristics of the tumors in all cases (eg. depiction of thin tumor 

boundaries in cases 1 to 5).
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Figure 10 shows Bland-Altman plots of the difference between estimated TK parameters (at 

R=20, R=40) and reference TK parameters on all the 12 cases combined. In comparison to 

tFD, the proposed approach showed reduced bias and reduced certainty during estimation of 

Ktrans, and vp. A systematic bias of under estimating Ktrans, and vp was present in tFD, 

which is also qualitatively shown in Figure 9.

Figure 11 shows the comparison of the estimated TK parameters from the proposed 

approach with Patlak dictionary against the direct Patlak parameter estimation at R=20,30,40 

on case 7. Both the proposed approach and the direct reconstruction provided good spatial 

fidelity of the TK maps as depicted in Figure 11 (i). The proposed approach however 

demonstrated subtle benefits in terms of reduced bias, and reduced noise amplification as 

shown in the Bland Altman plots of Figure 11(ii).

DISCUSSION

We have developed a new DCE-MRI reconstruction approach that applies kinetic models 

routinely used in post-processing as temporal constraints during reconstruction. Based on 

simulation studies, we deduced a relation between sparsity parameter q in k-SVD to the 

complexity of the kinetic model. We have demonstrated equivalence of Patlak and ETK 

models with dictionaries constructed respectively with q=2 and q=3. This approach exploits 

the smooth time intensity DCE patterns by using temporal basis functions derived from a 

kinetic model. This is in contrast to generic off-the-shelf transform bases that are blind to the 

kinetic model behavior of the time intensity profiles. We also proposed a robust multi- scale 

iterative optimization algorithm to solve the resulting l0 norm based non-convex objective 

function. We empirically demonstrated robustness to local minima. The tFD approach has a 

convex formulation with a guaranteed global minimum, and therefore, no multi-scale 

optimization heuristics were applied during tFD minimization. In-vivo validation with 12 

brain tumor cases demonstrated superior recovery performance with the proposed method 

compared to tFD (reduced bias, uncertainty in kinetic mapping, and better spatial fidelity of 

kinetic maps) at up to R=40.

The proposed framework can be extended in several ways. A uniform grid of kinetic 

parameters was used in this study to generate the library of possible concentration profiles 

from a chosen kinetic model. However, it is possible to perform application- specific 

discretization of the kinetic parameters to improve sensitivity and accuracy in modeling time 

curves that lie in a particular zone in the kinetic parameter space. We have demonstrated that 

for the 2-parameter Patlak model, a choice of two temporal bases from the dictionary was 

adequate to reliably model the concentration temporal profiles. For the 3-parameter ETK 

model, three temporal bases was adequate. We expect that if this approach is extended to 

more complex models (eg. fast exchange, shutter speed, two compartment exchange model), 

the complexity of the bases representation may also increase. Increasing model complexity 

is expected to place more stringent limits on the maximum achievable acceleration rates.

This study demonstrates the utility of the kinetic model based reconstruction approach in the 

application of brain tumor imaging. The framework may be extended to DCE-MRI of other 

diseases and body parts by appropriately considering different ranges of kinetic parameters 
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and kinetic models. Other applications would also warrant validation with digital reference 

objects specific to that body part, disease, and kinetic parameter ranges. Complementary 

constraints such as spatial sparsity could be added to further improve the recovery.

Limitations of the study:

A limitation of this feasibility study is the use of population-averaged AIF43. Population-

averaged AIF’s are known to produce a potential bias in the final kinetic maps57, however in 

this study, the bias identically affects the reference maps, and maps produced by the 

proposed reconstruction and the temporal finite difference reconstruction that is used for 

comparison. The framework can be extended to account for patient specific AIFs. For 

instance, the full patient specific AIFs can be obtained from a preprocessing reconstruction 

or could be characterized by including richer dictionaries that parameterize the shape and 

amplitude of the AIF58,59. Our preliminary findings show that with whole brain scans and 

transform sparsity reconstruction, we could extract good fidelity AIFs that are free of inflow 

enhancement artifacts54. Such a reconstruction could potentially be a preliminary pre-

processing step. These extensions are a scope of our future work.

In this study, our DCE-MRI protocol employed a flip angle of 15 degrees, and in-vivo data 

was acquired at ½ dose (0.05 mMol/kg). With these settings, there exists some non-linearity 

in mapping between concentration profiles and signal intensity time profiles at 

concentrations > 1.0 mM. The linearity can however be improved with the use of flip angles 

≥ 25 degrees. R2* effects were not included in the forward imaging model60. Our DCE-MRI 

scans were performed with ½ dose (0.05 mmol/kg), and used a short TE of 2ms. We have 

examined several clinical datasets at our institution and have found phase and R2* effects to 

be insignificant in tissue and in vessels. We therefore did not consider R2* or off-resonance 

effects, but these could be easily added to the forward model.

ve has shown clinical value in studies with long scan times of 10 minutes or more (eg.61). At 

our institution (and most of our peer institutions) the standard of care brain tumor protocol 

utilizes a DCE-MRI scan time of 5 minutes, which is insufficient to recover ve. This is 

documented in the literature where estimation of ve had high uncertainty with short scan 

times56, and longer scan times o upto 10 mins are recommended56,62. We have included a 

range of values for ve in the library because accounting for backflux is known to improve the 

estimation of Ktrans and vp
41.

In this study, we have only focused our analysis only on tumor ROIs. We intend to perform 

comprehensive statistical studies against controls (non-leaking areas from the whole brain) 

in a future study with prospective under-sampling that can enable whole-brain coverage.

Comparison of the proposed approach against direct reconstruction of Patlak parameters 

showed subtle improvements in estimating the TK parameters with less noise amplification, 

and reduced bias on a single dataset. Comprehensive evaluation against the direct 

reconstruction method when using non-linear models and multiple datasets were not 

performed in this study as this warrants establishing a detailed study of optimization routines 

in direct reconstruction (eg. Newton based36, variable splitting37). An important distinction 

of the proposed work is that it decouples computationally expensive kinetic parameter 
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estimation from the reconstruction of concentration vs time profiles. Kinetic parameter 

estimation need only be performed once as a final step. In contrast, direct reconstruction, as 

described in Guo et.al37, requires kinetic parameter estimation at every iteration. This itself 

can require on the order of minutes to hours for typical DCE-MRI datasets with sizes of at 

least 128×128 pixels and 50-time frames. Precise reconstruction times depend on the choice 

of optimization solver and their implementation (eg. efficiency and whether they exploit 

GPUs). We have not performed detailed comparisons of reconstruction times, as this is 

beyond the scope of this feasibility study.

The T1 maps were estimated prior to reconstruction using DESPOT1 with three flip 

angles63. However, using fully sampled data, the joint estimation of T1 and kinetic 

parameter maps has recently been shown to improve accuracy of DCE kinetic parameter 

maps64. An extension of the proposed framework to include joint T1 estimation would 

warrant the inclusion of multiple T1-based simulated concentration curves in the library, and 

exploration of superior learning approaches (alternate to k-SVD) that offer better 

compression capabilities to efficiently represent a richer library. Furthermore, there could be 

a number of approaches to improve pre-contrast T1 mapping in a separate step. For instance, 

increasing the number of flip angle measurements, use of constrained imaging methods (e.g. 

model-based reconstruction, MR fingerprinting).

The proposed approach has similarities and important distinctions with prior art. Similar to 

MR-fingerprinting48,65, our approach exploits physical models for reconstruction. However, 

it does not modify the acquisition parameter settings. It takes a two-step approach of first 

reconstructing the concentration time profiles, and then estimating the kinetic parameters in 

a final step. In comparison to MR-Fingerprinting, our approach is sensitive to motion 

because the basis functions do not account for motion. However, if reasonable estimates of 

the motion deformation fields are known or can be estimated from the data, it can be 

corrected by integration into the forward model66,67.

Our experiments in this work show incoherence along time benefits the reconstruction. 

However, a detailed evaluation of various sampling pattern choices including coherent 

sampling, and evaluation against incoherent sampling is yet to be done, and is a scope of 

future work.

Data inconsistencies such as motion, or B1 non-uniformity, may violate the assumption of 

the appropriateness of the kinetic model on the concentration time profiles. This is equally 

true with existing compressed sensing methods. However, the framework can seamlessly 

accommodate prior information in the forward model to improve data consistency (eg. 

integration of motion maps, B1 maps). The proposed reconstruction assumes the chosen 

kinetic model to be appropriate to the data. While the kinetic model of choice can be 

motivated based on the application at hand, the framework is flexible to generate 

comprehensive libraries from more than one kinetic model. Future application specific 

studies with chosen kinetic models are however needed to deduce the relation between the 

complexity of the library and the sparsity parameter (q) during dictionary generation, and 

subsequently acceleration capabilities.
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Figure 1: 
Construction of dictionary of temporal basis functions from a specified tracer kinetic model 

(a). Based on a physiological range of kinetic parameters and an arterial input function 

(AIF), a library of concentration v.s time profiles is generated (b). A subset of the profiles in 

the library are highlighted in red. Using k-SVD, the library is then reduced to a smaller set 

of temporal basis functions in a dictionary (c). The basis functions generated with the ETK 

model is shown in (c). The basis functions themselves are not representative of kinetic 

model profile, and hence can be non-positive. Instead, the linear combination of them are 

designed to mimic any profile in (b). Approximate MATLAB computational times 

respectively for generating the library (~400,000 profiles) and learning the dictionary were 

11.5 minutes and 3.5 hours.
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Figure 2: 
Post-contrast images of 12 brain tumor cases with different brain tumor characteristics 

(shape, size, heterogeneity). All cases had enhancing tumors of at least 1 cm as determined 

by standard bi-directional assessment52. Fully sampled raw multi-coil (k-t) space data from 

these patients were used as reference in retrospective under sampling studies. TK parameter 

estimation was performed in the tumor regions of interests (ROI) as marked by the red 

shaded regions.
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Figure 3: 
Kinetic model generated concentration v.s time profiles and their representation using k-

SVD derived temporal bases. (a) and (b) respectively show representative profiles depicting 

different tumor enhancement dynamics from the Patlak, and ETK models. The maximum 

and average approximation errors are evaluated over the physiological range of kinetic 

parameters. A model-sparsity choice of q=2 was determined to be adequate for the Patlak 

model (maxerr/μerr = 10−28%/10−30%). Similarly, q=3 was adequate for the ETK model 

(maxerr/μerr = 2%/0.008%).
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Figure 4: 
Error statistics (bias and uncertainty) in estimating kinetic parameters in presence of noise 

with the Patlak model. The first row in (a) shows the bias and uncertainty in estimating 

kinetic parameters from the noisy concentration vs time profiles and is considered as 

reference. Rows (b) and (c) show the bias and uncertainty in kinetic parameter estimation 

after q-sparse projection of the noisy profiles with different values of q, and is evaluated 

against the reference. It can be seen from (b) that q=1 demonstrates considerable bias (eg. 

see the white arrow in bias maps while estimating vp). However, when q=2, the bias and 

uncertainty maps are equivalent to the reference, which motivated the choice of q=2 for the 

Patlak model.
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Figure 5: 
Error statistics (bias and uncertainty) in estimating kinetic parameters in presence of noise 

with the ETK model. The first row in (a) shows the bias and uncertainty in estimating kinetic 

parameters from the noisy concentration vs time profiles and is considered as reference. 

Rows (b-d) show the bias and uncertainty in kinetic parameter estimation after q-sparse 

projection of the noisy profiles with different values of q, and is evaluated against the 

reference. It can be seen from (b) and (c) that q=1, and q=2 demonstrates considerable bias 

and uncertainty (also see white arrows in (b) and (c)). However in (d), when q=3, the bias 

and uncertainty maps are similar to the reference in (a) over a broad range of the parameter 

space. This motivated our choice of q=3 for the ETK model.
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Figure 6: 
Evaluations using a brain tumor digital reference object (DRO). The DRO is constructed 

based on the ETK model. (i) and (ii) shows the kinetic parameters after respectively 

applying the ETK and the Patlak model on the concentration time profiles obtained from (a) 

the reference fully sampled inverse Fourier Transform reconstruction (R=1); (b) the 

proposed reconstruction applied on fully sampled data (R=1); and (c) the proposed 

reconstruction applied on under-sampled data (R=20). The proposed reconstruction employs 

the ETK based dictionary in (i), and the Patlak based dictionary in (ii). From (i) and (ii), it is 

seen that when a simpler Patlak model is used in post-processing, the resulting Ktrans is 

under estimated in comparison to the ETK based Ktrans estimates (about a factor of 10 fold). 

This under estimation is observed in all the reconstructions (a-c) suggesting kinetic model 

selection error is independent of the type of the reconstruction scheme. From (a-c), it can be 

seen that proposed reconstruction shows good quality in the kinetic parameter estimates at 

R=1 and R=20, which is also highlighted in the difference maps scaled by a factor of 3 in (d-

e).
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Figure 7: 
Comparison of kinetic parameters obtained from concentration time profiles from reference 

fully sampled data (first row) against the profiles after 3-sparse projections onto the ETK 

dictionary (second row). The third row denotes the difference map that highlight the kinetic 

modeling errors. The difference map is scaled up by a factor of 3 for better visualization. 

Two representative brain tumor datasets that have different spatial characteristics are shown: 

(a) glioblastoma with thin rim, necrotic core, connected to a solid tumor; (b) meningioma 

with homogenous spatial tumor characteristics. The kinetic maps in the first two rows are 

observed to be qualitatively equivalent suggesting 3-sparse projection mimics ETK 

modeling. Compared to the Ktrans, and vp maps, the uncertainty in ve is large attributed to 

the short scan time duration of 5 minutes.
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Figure 8: 
Convergence of cost function in [3]: (a) shows the evolution of cost with different 

initializations of the concentration time profiles (C). (b) demonstrates the Ktrans estimated 

from the initial guesses (top row), and from the final estimated concentration time profiles 

(bottom row). Due to the iterative multi-scale optimization, the algorithm ensures cycling 

through problems of increasing complexity. The black arrows in (a) indicate the instances at 

which the scale (spatial resolution) is incremented. It can be seen in (a) that the cost 

converges to the same minima irrespective of the initializations. The final estimated Ktrans in 

(b) from the different initializations are identical (see red dotted box).
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Figure 9: 
Evaluation of Ktrans maps derived from the proposed dictionary based and tFD 

reconstructions (R=20) against the reference Ktrans maps (R=1). The 12 cases are sorted 

based on decreasing difference between the proposed and tFD methods. The tFD 

reconstructions demonstrated under-estimation of Ktrans (visually evident in cases 1 to 9, see 

arrows). tFD also relied on tuning of a regularization parameter. In contrast, the proposed 

parameter-free model-based reconstruction provided Ktrans estimates closer to that of the 

reference, and has improved fidelity in preserving spatial characteristics of the tumors (eg. 

thin boundaries of the tumor, see arrows in cases 1–5).
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Figure 10: 
Bland-Altman plots of a) the difference between estimated Ktrans (at R=20, R=40) and 

reference Ktrans; b) the difference between estimated vp (at R=20, R=40) and reference vp; 

for the proposed (left column) and tFD (right column) reconstructions. Each dot corresponds 

to one pixel within the tumor ROIs of all the 12 cases. The mean and 1.96 times the standard 

deviation (μ±1.96σ) of the difference entities are quantitatively shown. These are also 

qualitatively marked by the solid red and dotted red lines. As seen from the plots, the 

proposed approach had lower bias (μ) and uncertainty (σ) in estimating Ktrans, and vp in 

comparison to tFD. tFD depicted a systematic bias in under-estimating Ktrans, and vp in 

comparison to the proposed approach This can also be noted from the qualitative 

comparisons in Fig. 9.
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Figure 11: 
(i) Comparison of Ktrans and vp derived from the methods of direct reconstruction of Patlak 

parameters36, and the proposed approach with a Patlak dictionary at R=10, 20, 30 against the 

reference fully sampled reconstruction followed by Patlak modeling (R=1). (ii) shows the 

Bland-Altman plots of the difference between estimated Ktrans (at R=10, 20, 30) and the 

reference Ktrans for the direct reconstruction and proposed reconstruction with the Patlak 

dictionary. Each dot corresponds to one pixel within the tumor ROI of case 7 as marked in 

Figure 2. The mean and 1.96 times the standard deviation (μ±1.96σ) of the difference 

entities are quantitatively shown in (ii). Both direct reconstruction, and the proposed 

dictionary reconstruction provides good spatial fidelity in the reconstructed maps (in i). 
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From the Bland Altman plots in (ii), the proposed approach demonstrated subtle 

improvements over the direct reconstruction in terms of a smaller bias and reduced noise 

amplification.
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Table 1:

Patient demographic information and diagnosis of the brain tumor cases used in this study.

Case no. Age/Sex Diagnosis

1 74/M Glioblastoma

2 60/M Metastatic Melanoma

3 44/F Meningioma

4 79/F Metastatic melanoma

5 63/M Meningioma

6 68/M Glioblastoma

7 73/M Metastatic melanoma

8 38/F Meningioma

9 67/M Renal Cell Carcinoma

10 71/M Pituitary adenoma

11 73/F Meningioma

12 54/F Meningioma

Med Phys. Author manuscript; available in PMC 2021 January 01.


	Abstract
	INTRODUCTION
	METHODS
	Tracer kinetic model-based temporal bases:
	Image Reconstruction:
	Simulations
	Evaluation with a digital reference object
	Evaluation with in-vivo data

	RESULTS
	Simulations
	Evaluation with in-vivo data

	DISCUSSION
	Limitations of the study:

	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Figure 10:
	Figure 11:
	Table 1:

