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Abstract

Purpose: Heterogeneity in tumor mutational burden (TMB) quantification across sequencing 

platforms limits the application and further study of this potential biomarker of response to 

immune checkpoint inhibitors (ICI). We hypothesized that harmonization of TMB across 

platforms would enable integration of distinct clinical datasets to better characterize the 

association between TMB and ICI response.

Methods: Cohorts of NSCLC patients sequenced by one of three targeted panels or by whole 

exome sequencing (WES) were compared (total n=7297). TMB was calculated uniformly and 

compared across cohorts. TMB distributions were harmonized by applying a normal 

transformation followed by standardization to z-scores. In sub-cohorts of patients treated with ICIs 

(DFCI n=272; MSKCC n=227), the association between TMB and outcome was assessed. Durable 

clinical benefit (DCB) was defined as responsive/stable disease lasting ≥6 months.
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Results: TMB values were higher in the panel cohorts than the WES cohort. Average mutation 

rates per gene were highly concordant across cohorts (Pearson coefficient 0.842-0.866). Subsetting 

the WES cohort by gene panels only partially reproduced the observed differences in TMB. 

Standardization of TMB into z-scores harmonized TMB distributions and enabled integration of 

the ICI-treated sub-cohorts. Simulations indicated that cohorts >900 are necessary for this 

approach. TMB did not associate with response in never smokers or patients harboring targetable 

driver alterations, although these analyses were under-powered. Increasing TMB thresholds 

increased DCB rate, but DCB rates within deciles varied. Receiver operator curves yielded an area 

under the curve of 0.614 with no natural inflection point.

Conclusion: Z-score conversion harmonizes TMB values and enables integration of datasets 

derived from different sequencing panels. Clinical and biologic features may provide context to 

the clinical application of TMB, and warrant further study.

Introduction

Immune checkpoint inhibitors (ICI) have revolutionized the treatment of multiple advanced 

cancers2-6. However, only a minority of patients experience clinical benefit, and clinically 

actionable biomarkers of response are urgently needed.

To date, the only approved biomarkers of ICI response are mismatch repair deficiency and, 

in NSCLC, programmed death-ligand 1 (PD-L1) expression. However, mounting evidence 

has demonstrated an association between tumor mutational burden (TMB) and response to 

ICIs7-17, and there is considerable interest in developing TMB as a clinical biomarker. 

Importantly, TMB quantification from targeted next generation sequencing (NGS) panels 

has been shown to correlate with whole exome sequencing-(WES) derived TMB13,18-20 and 

to associate with ICI response, making the clinical assessment of TMB practically 

feasible19,21.

However, the proliferation of data related to TMB has also generated confusion, as there are 

now multiple commercial and academic NGS panels routinely employed, with important 

differences in gene panel composition, sequencing pipeline, and TMB algorithm22,23. It is 

unclear how these differences affect TMB quantification, nor is it known how to translate 

one platform’s TMB values to another for translational discovery or clinical use. Further, the 

studies describing an association between TMB and response have applied different 

thresholds to define TMB high vs low groups. It is not known whether this threshold 

heterogeneity reflects different TMB quantification arising from different platforms, 

variation across patient cohorts, or unknown clinical or biological effects on the association 

between TMB and response.

Given these questions, we sought to develop a strategy to harmonize TMB across NGS 

platforms. We applied this method to integrate multiple clinically annotated cohorts and to 

more fully characterize the relationship between TMB and ICI response using this larger, 

pooled dataset, adding nuance and context to our current understanding. We focused on 

NSCLC due to the early interest in applying TMB to clinical practice in this disease 

subtype24-26, and to avoid confounding of TMB by tumor type27.
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Methods:

Study population

Three cohorts of NSCLC patients whose tumors had been profiled by targeted NGS panel 

were evaluated. These panel cohorts were compared to a fourth WES cohort from The 

Cancer Genome Atlas (TCGA).

DFCI Cohort—Patients at the Dana-Farber Cancer Institute (DFCI) whose tumors had 

undergone OncoPanel NGS were included if they had advanced NSCLC and had consented 

to institutional review board-approved protocols. The ICI sub-cohort consisted of patients 

treated with ICIs evaluable for response.

MSKCC Cohort—Molecular profiling from Memorial Sloan Kettering Cancer Center’s 

(MSKCC) IMPACT NGS panel21 was obtained from the cBioPortal for Cancer 

Genomics28,29 and limited to NSCLC samples. The ICI sub-cohort consisted of patients 

treated with ICIs whose tumors had undergone NGS sequencing13.

Foundation Cohort—Patient-level mutation calls for samples sequenced by Foundation 

Medicine were obtained (study accession phs001179)30 and filtered to include only NSCLC 

samples.

TCGA Cohort—Somatic WES data from NSCLCs sequenced by TCGA31 were 

downloaded from the cBioPortal.

Next-generation sequencing

The DFCI cohort was sequenced as previously described32,33. In brief, tumor DNA was 

extracted and used for custom-designed hybrid capture library preparation. NGS 

(OncoPanel) was performed, and somatic alterations were identified by custom pipeline. 

Given the absence of matched normal tissue, common single nucleotide polymorphisms 

were filtered if present at >0.1% in Exome Variant Server, NHLBI GO Exome Sequencing 

Project, or gnomAD; variants present ≥2 times in COSMIC were rescued. All variants were 

reviewed for technical quality34. Finally, to minimize inadvertent inclusion of germline 

variants, consistent with previous aggregation efforts35, an additional germline filter was 

applied to exclude events present in the Exome Aggregation Consortium with an allele count 

>10, after rescuing known somatic events.

The MSKCC, Foundation, and TCGA cohorts were sequenced as described13,30,31,36. The 

MSK-IMPACT and TCGA WES pipelines use matched normal samples to isolate somatic 

events. Foundation Medicine uses an internal algorithm to filter putative germline events.

Tumor Mutational Burden

TMB was uniformly calculated for each sample as the number of non-synonymous 

mutations per megabase (Mb) of genome covered. DFCI mutation counts were divided by 

the number of bases covered in each OncoPanel version; v1: 0.753334 Mb; v2: 0.826167 

Mb; v3: 1.315078 Mb. For MSKCC samples, the mutation count was divided by 0.896665, 
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1.016478, and 1.139322 Mb for the 341-, 410- and 468-gene panels, respectively. For 

Foundation samples, 1.1 Mb was used as the length of genome covered19. For TCGA 

samples, 38 Mb was used to approximate exome size, as previously described19.

PD-L1 Testing

A subset of ICI-treated patients had tissue evaluated for PD-L1 expression, reported as the 

percentage of tumor cells with membranous PD-L1 staining. MSKCC specimens were 

stained as previously described13; DFCI specimens were stained using clone E1L3N (Cell 

Signaling Technology, Danvers, MA) at 1:200 dilution with pressure cooker antigen retrieval 

in citrate buffer.

Immunotherapy outcomes

Patients in the DFCI and the MSKCC ICI sub-cohorts were annotated for treatment response 

to anti-PD-(L)1 monotherapy or in combination with anti-cytotoxic T-cell lymphocyte-4 

(anti-CTLA-4). Scans were reviewed by thoracic radiologists at each institution, and 

response determined using Response Evaluation Criteria in Solid Tumors (RECIST), version 

1.137. Progression-free survival was assessed from the start of ICI treatment until the date of 

progression/death; patients without progression were censored at last scan. Consistent with 

prior studies8,13, complete response (CR), partial response (PR), or stable disease (SD) >6 

months was defined as durable clinical benefit (DCB); no durable benefit (NDB) was 

defined as progressive disease (PD) or SD ≤6 months. Patients censored before 6 months of 

follow-up were considered not evaluable.

Statistical analysis

Cohort-specific gene mutation averages were calculated by summing the number of 

mutations in each gene within a cohort and dividing the total by the number of patients in 

the cohort. The means were then transformed to a normal distribution by natural logarithmic 

transformation. The linear correlation between log average mutations per gene in the panel 

cohorts vs TCGA was evaluated using Pearson’s correlation coefficient.

Power transformations were used to normalize cohort-specific TMB distributions; Tukey’s 

Ladder of Powers38 in the “rcompanion” package39 was used to identify the optimal 

transformation coefficient. The normalized distributions were then standardized into z-

scores by subtracting the transformed distribution mean and dividing by the standard 

deviation. Overlap between normalized distributions was calculated using the “overlapping” 

package40.

TMB comparisons were made using the Mann-Whitney U test. The Fisher’s exact test was 

used to test for differences in categorical variables. All p-values are two-sided, taking 

significance at p<0.05. Receiver operator curve (ROC) analyses were performed using the 

pROC and OptimalCutpoints packages41,42. Exploratory cutoffs were selected to: maximize 

the distance to the y=x line (Youden’s index); maximize specificity with sensitivity > 80%; 

maximize both sensitivity and specificity; maximize the kappa statistic; and maximize the 

diagnostic odds ratio. All statistical analyses were performed in R (version 3.4.2).
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Results:

Comparison of TMB quantification across panel and WES platforms

NSCLC patients whose tumors had undergone sequencing via OncoPanel (n=1157), MSK-

IMPACT (n=1520), Foundation Medicine (n = 3476), or TCGA (n = 1144) were included 

(total n=7297, cohort diagram Supplemental Figure S1, clinical characteristics Supplemental 

Tables S1-4). To determine whether TMB differed between platforms, we plotted the 

distribution of TMB within each cohort (Figure 1A). TMB distributions differed between 

cohorts, and targeted panels were associated with higher TMB values than WES. Because 

targeted panels sequence fewer bases with focused inclusion of mutated cancer genes, we 

hypothesized that the higher TMB measurements associated with NGS panels were 

attributable to gene selection. We tested this by subsetting the WES data to include only 

those genes captured by the targeted panels (“downsampling”, Supplemental Methods) 

(Figure 1B), and found that downsampled distributions retained greater TMB counts than 

the unfiltered TCGA distribution, suggesting that gene panel composition contributes to the 

observed difference in TMB distributions between cohorts. However, the relative differences 

were less pronounced than in the real-world cohort comparisons, suggesting that assay-

specific differences, such as depth of sequencing and the absence of a paired germline 

sample, might also contribute to inter-test variation.

To further examine assay-specific sources of variation in TMB across panels, we compared 

the average number of mutations per gene in each cohort against the TCGA averages, 

surmising that this could reflect differences in assay performance or mutation calling (Figure 

1C-E). Concordance between the panel cohorts and TCGA was high (Pearson coefficient 

0.842–0.866), and only rarely mutated genes emerged as outliers, suggesting minimal gene-

specific variability. Comparison of variant classes demonstrated differential enrichment in 

the panel vs WES cohorts, also consistent with assay-specific differences in mutation 

filtration (Supplemental Figure S2).

Harmonization of TMB across platforms using Z-score standardization

We first attempted to harmonize TMB values across cohorts by linearly mapping panel TMB 

distributions onto the TCGA TMB distribution (Supplemental Figure S3A-B). However, 

inconsistent variation in TMB across distributions prohibited use of a linear constant. As 

above, this variability was diminished but still present when the downsampled TMB values 

were analyzed (Supplemental Figure S3C-D). Consequently, we instead pursued the strategy 

of transforming unadjusted TMB values into standardized z-scores that could be compared 

across panels. Use of a power transformation converted the right-skewed TMB distributions 

(Figure 1F) to normal distributions (skewness values ≤0.06, Supplemental Figure S4), and 

standardization to z-scores brought the TMB distributions into good concordance (Figure 

1F), with >85% overlap (Supplemental Figure S5). Cohort size simulation (Supplemental 

Methods) demonstrated that cohorts of > 900 patients are necessary for this approach 

(Supplemental Figure S6).
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TMB z-scores correlate with ICI outcome and allow for cross cohort comparison

We then applied this transformation to TMB in the DFCI and MSKCC ICI-treated sub-

cohorts (n=272 and 227, respectively; total n=499; demographic features Table 1; detailed 
clinical characteristics Supplemental Table S5) and examined whether the derived TMB z-

scores associated with response13,24,26. We confirmed that TMB was higher in patients with 

CR/PR or DCB than with PD or NDB in both sub-cohorts pre-transformation (Figure 2A), 

and that this association held when post-transformation z-scores were used (Figure 2B). We 

noted that while the unadjusted DFCI TMB values were higher than the unadjusted MSKCC 

TMB values, the z-score standardization produced overlapping distributions (Supplemental 

Figure S7), allowing us to combine the DFCI and MSKCC ICI cohorts. In the merged 

cohort, TMB z-scores remained significantly higher in responders (Figure 2C).

TMB is lower in never smokers and may not associate with response

We performed subgroup analyses using the transformed, pooled cohort (DFCI and MSKCC 

ICI-treated patients, n=499) to determine whether specific clinical and biological features 

impact the association between TMB and response. TMB z-scores in ever smokers were 

higher than never smokers (median 0.312 vs −0.456, P<0.0001); notably, TMB in ever 

smokers with NDB was higher than TMB in never smokers with DCB (median 0.171 vs 

−0.456, P=0.00097) (Figure 2D). Among never smokers, TMB did not differ between DCB 

versus NDB (median −0.456 vs −0.456, P=0.749). Sampling simulations (Supplemental 

Methods) suggest this negative finding may be due to decreased power in this subset, 

although lower TMB values and distinct biology may also contribute (Supplemental Figure 

S8). Similar exploratory analyses of patients harboring targetable oncogenic drivers did not 

demonstrate an association between TMB z-score and DCB (total n=74), although power in 

these small driver sub-groups was also limited (Figure 2E). Power simulations suggest that 

cohort sizes >300 may be necessary to detect a difference in TMB between patients with 

DCB vs NDB in groups with lower response rates or effect sizes (Supplemental Figure S9).

TMB thresholds and response

Given the heterogeneity in previously identified thresholds and the percentile cut-points used 

to identify such thresholds, we used our pooled cohort to systematically explore the 

relationship between TMB and response to ICI across the TMB distribution. We calculated 

the rate of DCB and CR/PR with increasing TMB thresholds in the pooled and separate ICI 

cohorts (Figure 3A, Supplemental Figure S10). Table 2 illustrates the TMB z-scores and 

values associated with each threshold. We observed a gradual increase in rate of DCB with 

increasing TMB thresholds. We noted, however, that this could arise from enriching for high 

TMB outliers, and therefore calculated the rate of DCB within each TMB decile (joint 

cohort Figure 3B, separate cohorts Supplemental Figure S11). In this analysis, we noted 

high DCB rates in the highest deciles (DCB rate 40.4% in patients with TMB z-scores 

between the 80th and 90th percentiles, DCB rate 53.1% in patients with TMB z-scores ≥90th 

percentile), and low rates in the lowest deciles (DCB rate 16.7% in patients with TMB z-

score <10th percentile). However, the middle deciles exhibited greater heterogeneity in DCB 

rate. Accordingly, the odds ratio of DCB with increasing TMB thresholds was highest with 

TMB cutoffs ≥80th percentile, and more heterogeneous at lower thresholds (Figure 3C). 
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Similar trends were observed in smokers; there was no increase in DCB rates with 

increasing TMB threshold in never smokers (Supplemental Figure S12). The pattern of 

association between PD-L1 and DCB was similar to TMB, with increasing rates of DCB 

with higher PD-L1 thresholds, but more variability within PD-L1 score groupings 

(Supplemental Figure S13).

Given the heterogeneity of response rates over the mid TMB distribution, we plotted a 

receiver operator characteristic (ROC) curve to formally quantify how well TMB z-scores 

discriminate between DCB and NDB. ROC analysis yielded an area under the curve (AUC) 

of 0.614. The Youden Index cutoff was associated with a sensitivity of 61.8% and a 

specificity of 57.3%, resulting in undertreatment of 12% of patients, and overtreatment of 

30% (Figure 3D, Table 3). Application of other thresholds demonstrated better specificity at 

higher TMB z-score thresholds, but at the expense of missing patients who would have 

responded. Cutoffs and their associated sensitivity/specificity were similar in the cohorts 

considered separately (Supplemental Figure S14). Application of the clinically-used PD-L1 

threshold ≥50% was associated with undertreatment of 13% and overtreatment of 19% of 

patients. TMB z-score did not discriminate between DCB and NDB in never smokers or 

targetable driver mutated patients (AUC 0.493, data not shown). Analysis of TMB 

thresholds with respect to PFS, rather than response, demonstrated similar results 

(Supplemental Figure S15).

Discussion:

We present a pragmatic comparison of TMB calculated from targeted panels and WES, and 

apply TMB z-score conversion to enable harmonized analyses. We demonstrate that this 

approach can translate TMB values across tests and can be used to integrate distinct datasets 

for discovery and further analyses. Additionally, our use of real-world datasets allows us to 

incorporate and account for sources of variation not captured by in silico downsampling 

analyses, such as differences in mutation/indel calling pipelines, depth of coverage, and 

germline filtration. This approach is distinct from other parallel harmonization efforts43,44, 

which focus on standardization of TMB definitions and reporting, and eventually aim to 

generate ‘gold standard’ cell lines for benchmarking. We anticipate that our approach will be 

of immediate use to both clinicians and researchers, and further anticipate that this approach 

can be easily applied to other platforms and relevant tumor types.

Although the association between TMB and response to ICIs in NSCLC has been 

demonstrated, less is understood about how clinical and biologic features affect this 

association. Here we found that TMB did not associate with DCB in never smokers and in 

patients harboring targetable oncogenic mutations. Importantly, these analyses were 

underpowered to detect a difference, and our power simulations indicated that larger cohorts 

are needed, cautioning against definitive conclusions in these small subgroup analyses. 

However, we also observed that never smokers who benefitted from ICIs had markedly 

lower TMB values than ever smokers who did not, suggesting that further study to identify 

TMB-independent predictors of response in never smokers may be warranted, and raising 

the important possibility that the clinical application of TMB as a biomarker will need to 

take clinical and biologic features into account.
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The importance of context is further emphasized by our analysis of TMB thresholds. Prior 

analyses have generally focused on identifying a single threshold to define ‘TMB high’ and 

‘TMB low’ subgroups, with variation in selected thresholds across studies13,15,26,45. Our 

systematic analysis of TMB thresholds illustrates additional nuances in the relationship 

between TMB and response. We observed enrichment in DCB with higher TMB thresholds 

as expected, but weaker discrimination in the mid-range of TMB values without a single, 

natural biological inflection point. These findings may account for some of the observed 

heterogeneity among previously proposed thresholds, as there may be a range of values that 

discriminate similarly between responders and non-responders. Additionally, our data 

suggest that the choice of a given threshold must be decided within a goal-specific context 

that considers the relative efficacy of the alternative treatment; a TMB threshold selected to 

enrich for response to first-line therapy may be different than a threshold selected for 

second-line therapy. Notably, TMB is independent of PD-L1 expression12,13, with similar 

biomarker performance: increasing expression is associated with improved efficacy without 

a natural cut-point; there is variability in DCB enrichment within deciles of expression; and 

distinct thresholds are appropriately applied based on the specific treatment scenario (i.e. >/

=50%, >/=1%, or none)3,5,46. Ultimately, these data do not answer whether and how TMB 

should be applied to clinical practice, as this must be examined through prospective clinical 

trials, but add nuance to our understanding of how TMB associates with response.

One limitation of this study is that our comparison of TMB assumes that the observed 

distinctions reflect differences in platform rather than patient/samples. We were not able to 

account for clinical and tumor features due to inconsistent sample annotation, but note that 

our large cohorts help mitigate any sampling bias, and the overall consistencies in shape of 

distribution are reassuring. It is an open question as to whether TMB distributions should be 

more narrowly defined by sample features such as histology or stage, and the normalization 

we describe here can be adjusted as more is learned. At present, however, TMB is compared 

across patients and biopsy specimens without reference to these sample characteristics, 

making this aggregated approach consistent with current clinical practice.

In conclusion, we provide a practical approach to the challenge of standardizing TMB across 

platforms, and we apply this approach to integrate distinct datasets to better understand how 

TMB associates with response. Much remains to be learned about how and why TMB 

associates with response to ICI, and how best to apply TMB in the clinic for precision 

immunotherapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Context Summary:

Key Objective: It is not known how to account for differences in tumor mutational 

burden (TMB) generated by different sequencing assays. We sought to address assay 

heterogeneity in TMB quantification by developing a technique to harmonize TMB 

across assays, and applied this technique to pool distinct clinical cohorts to better 

characterize the association between TMB and response to immune checkpoint 

inhibitors.

Knowledge generated: TMB differs across sequencing assays due to differences in gene 

panels and sequencing pipelines. Standardization of TMB into z-scores enabled inter-

assay comparison and pooling of distinct clinical cohorts. From this pooled analysis, we 

observed that TMB may not associate with response in patients who are never smokers or 

harbor targetable oncogenes, and TMB thresholds yield significant trade-offs in 

sensitivity and specificity.

Relevance: Z-score standardization harmonizes TMB values across assays for pooled 

analysis. Clinical and biologic features may modulate the association between TMB and 

response.
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Figure 1. Comparison of tumor mutational burden (TMB) distribution and gene mutation rates 
across targeted panel and whole exome sequencing (WES) cohorts.
(A-B) TMB distributions (A) in the panel cohorts and (B) obtained by subsetting the WES 

cohort to the panel gene sets (downsampling) are higher than the WES TMB distribution. 

The x-axis depicts the percentile of each TMB value, the y-axis depicts TMB in mutations/

megabase. 8 high outliers in (A) not shown. (C-E) Average mutation rates per gene in each 

panel cohort are highly correlated with average gene mutation rates in the WES cohort. 

Natural log average mutations per gene in (C) DFCI, (D) MSKCC, and (E) Foundation 

cohorts are shown on the y-axis, natural log average mutations per gene in the TCGA cohort 

are on the x-axis. Each point represents a gene. Dashed line depicts y = x. Pearson’s 
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correlation coefficients are shown. (F) Normalization and standardization of TMB 

distributions bring the NGS and WES cohort distributions into alignment. The left panel 

shows the kernel density plot of unadjusted TMB values in each cohort, the right panel 

shows the transformed density plot of TMB z-scores demonstrating high overlap.
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Figure 2. Correlation of tumor mutational burden (TMB) and TMB z-scores with outcome.
(A) In both the DFCI and MSKCC ICI cohorts, TMB is greater in patients with complete or 

partial response (CR/PR) than with progressive disease (PD) (DFCI: median, 12.0 vs 10.8 

mut/Mb, P = 0.03; MSKCC: median, 8.9 vs 6.9 mut/Mb, P = 0.02), and in those with 

durable clinical benefit (DCB) vs no durable benefit (NDB) (DFCI: median, 12.0 vs 10.5 

mut/Mb, P = 0.003; MSKCC: median 8.9 vs 6.9 mut/Mb, P = 0.007). (B) DFCI and 

MSKCC TMB z-score distributions overlap. Z-scores are higher in patients with CR/PR vs 

PD, and DCB vs NDB in each cohort respectively (DFCI: median, CR/PR 0.30 vs PD 0.14, 

P = 0.03; median, DCB 0.30 vs NDB 0.10, P = 0.003; MSKCC: median, CR/PR 0.46 vs 

0.17 mut/Mb, P = 0.02; median, DCB 0.46 vs NDB 0.17, P = 0.006). (C) TMB z-scores are 

higher in patients with CR/PR and DCB in the joint cohort (median, CR/PR 0.47 vs PD 

0.14, P = 0.002; median, CR/PR 0.47 vs SD 0.14, P = 0.007; median, DCB 0.46 vs NDB 
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0.14, P = 6.43e-05). (D) TMB z-scores in the joint cohort are higher in ever smokers with 

DCB vs NDB (median 0.579 vs 0.171, P = 6.046e-05), but were not associated with 

response in never smokers (median −0.456 vs −0.456, P = 0.749). TMB z-scores were 

significantly higher in ever smokers with NDB than never smokers with DCB (median 0.171 

vs −0.456, P = 0.00097). (E) TMB z-scores in the joint cohort do not associate with response 

in patients with mutations in targetable oncogenic drivers. *p<0.05; **p<0.01, ***p<0.001. 

Box plots represent medians, interquartile ranges, and vertical lines extend to the 95th 

percentiles.
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Figure 3. Rate of response to immune-checkpoint inhibitors by tumor mutational burden (TMB) 
threshold.
(A) Rate of durable clinical benefit (DCB) increases with increasing TMB cut-off 

thresholds. TMB z-score deciles were selected as cut-points, and rate of DCB was calculated 

for patients in the joint cohorts whose TMB z-scores were ≥ the cut-point. Bars depict rate 

of DCB. Left-most bar depicts rate of DCB in the unselected cohort (TMB ≥ 0th percentile). 

(B) Rate of DCB within TMB z-score deciles is more variable. Bars depict rate of DCB 

among patients whose TMB z-scores are ≥ the lower bound and < the upper bound. (C) 

Odds ratio of DCB varies with increasing TMB z-score cut-points. Bars depict odds ratio, 

significant p-values are indicated above bars. (D) Receiver operator characteristic (ROC) 

curve demonstrates a trade-off in sensitivity vs specificity of durable clinical benefit at 

varying TMB z-score values (area under the curve [AUC], 0.614). Exploratory cut-points, 

with their associated specificity and sensitivity, are indicated. *p<0.05; **p<0.01, 
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***p<0.001. Error bars represent standard error. Numbers over bar graphs indicated number 

of patients in each group.
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Table 1.
ICI-Treated Sub-Cohort Patient Characteristics.

Abbreviations: CR, complete response; CTLA-4, cytotoxic T-cell lymphocyte associated protein-4; DCB, 

durable clinical benefit; ICI, immune checkpoint inhibitor; NDB, no durable benefit; PD, progressive disease; 

PD-(L)1, programmed cell death-1 or programmed death-ligand 1; PR, partial response; SD, stable disease.

DFCI ICI Cohort MSKCC ICI Cohort

Characteristic No. (%) Characteristic No. (%)

No of patients 272 No of patients 227

Med age at diagnosis (range) 65 (24-90) Med age at diagnosis (range) 66 (22-92)

Sex Sex

 Male 132 (49)  Male 116 (51)

 Female 140 (51)  Female 111 (49)

Histology Histology

 Squamous 37 (14)  Squamous 31 (14)

 Adenocarcinoma 213 (78)  Adenocarcinoma 179 (79)

 Other 22 (8)  Other 17 (7)

Smoking status Smoking status

 Ever 241 (89)  Ever 183 (81)

 Never 31 (11)  Never 44 (19)

Line of therapy Line of therapy

 First 86 (32)  First 47 (21)

 Second 132 (48)  Second 122 (54)

 Third or higher 54 (20)  Third or higher 58 (26)

Treatment Treatment

 PD-(L)1, monotherapy 251 (92)  PD-(L)1, monotherapy 195 (86)

 PD-(L)1 + CTLA-4 combination 21 (8)  PD-(L)1 + CTLA-4 combination 32 (14)

Best overall response Best overall response

 CR/PR 56 (21)  CR/PR 39 (17)

 SD 72 (26)  SD 80 (35)

 PD 144 (53)  PD 108 (48)

Clinical benefit Clinical benefit

 DCB 83 (31)  DCB 69 (30)

 NDB 189 (69)  NDB 158 (70)

Actionable mutations Actionable mutations

 EGFR 21 (8)  EGFR 18 (8)

 BRAF V600E 6 (2)  BRAF V600E 1 (<1)

 ALK 2 (1)  ALK 1 (<1)

 ROS1 1 (<1)  ROS1 4 (2)

 RET 3 (1)  RET 1 (<1)

 MET exon 14Δ 9 (3)  MET exon 14A 7 (3)
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Table 2.

TMB z-score associated with each decile cut-off in the joint ICI cohort. Equivalent TMB values in the DFCI, 

MSKCC, Foundation and TCGA cohorts are shown.

Percentile TMB z-score DFCI TMB MSKCC TMB
Foundation

TMB
TCGA TMB

(mutation count)

10th −1.04 4.81 2.27 2.83 1.84 (55)

20th −0.47 7.22 3.89 4.45 3.35 (101)

30th −0.24 8.42 4.78 5.30 4.18 (125)

40th 0.00 9.87 5.90 6.36 5.25 (158)

50th 0.17 11.07 6.89 7.27 6.10 (183)

60th 0.45 13.24 8.76 8.97 7.58 (228)

70th 0.70 15.47 10.82 10.80 9.41 (282)

80th 0.95 18.05 13.34 13.00 11.31 (339)

90th 1.38 23.49 19.10 17.90 15.43 (463)
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Table 3.

Test characteristics and performance of TMB cut-off values in the joint ICI cohort (n = 499). Right-most 

columns describe number of patients with DCB who would not have been treated at that threshold (false 

negative), and the number of patients who would have been treated with NDB (false positive).

Abbreviations: DCB, durable clinical benefit; NDB, no durable benefit; OR, odds ratio; Sens, sensitivity; 

Spec, specificity; TMB, tumor mutational burden.

Z-score
cut-off

DFCI
TMB

MSKCC
TMB

% Sens. % Spec. % DCB OR
(p-value)

# ≥ cut-
off (%)

# with DCB not
treated (%)

# treated w/
NDB (%)

−0.46 7.34 3.77 86.2 24.2 33 1.99 (0.008) 394 (79) 21 (4) 263 (53)

0.28 11.9 7.18 61.8 57.3 39 2.10 (< 0.001) 245 (49) 58 (12) 151 (30)

1.08 20.6 15.1 26.3 88.2 54 2.99 (< 0.01) 80 (16) 111 (22) 39 (8)

3.10 61.4 68.2 0.7 99.7 67 4.60 (0.22) 3 (1) 150 (30) 1 (0.2)
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