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Abstract

The identification of prognostic factors and building of risk assessment prognostic models will 

continue to play a major role in 21st century medicine in patient management and decision 

making. Investigators are often interested in examining the relationship between host, tumor-

related, and environmental variables in predicting clinical outcomes. We make a distinction 

between static and dynamic prediction models. In static prediction modelling, typically variables 

collected at baseline are utilized in building models. On the other hand, dynamic predictive models 

leverage the longitudinal data of covariates collected during treatment or follow-up, and hence 

provide accurate predictions of patients prognoses. To date, most risk assessment models in 

oncology have been based on static models. In this article, we cover topics that are related to the 

analysis of prognostic factors, centering on factors that are both relevant at the time of diagnosis or 

initial treatment and during treatment. We describe the types of risk prediction and then provide a 

brief description of the penalized regression methods. We then review the state-of-the art methods 

for dynamic prediction and compare the strengths and the limitations of these methods. While 

static models will continue to play an important role in oncology, developing and validating 

dynamic models of clinical outcomes need to take a higher priority. It is apparent that a framework 

for developing and validating dynamic tools in oncology is still needed. One of the limitations in 

oncology that modelers may be constrained by the lack of access to the longitudinal biomarker 

data. It is highly recommended that the next generation of risk assessments consider the 

longitudinal biomarker data and outcomes so that prediction can be continually updated.

Introduction

Identifying prognostic factors and building risk assessment prognostic models will continue 

to play a major role in 21st century medicine in patient management and decision making 

[1]. Prognostic factors in oncology associate host and tumor variables to clinical outcomes 

independent of treatment [2]. Gospodarowicz et al., classify factors as either tumor-related, 

host or environmental factors [3]. Tumor-related factors are variables that are related to the 

tumor and reveal the tumor biology and pathology (such as size of tumor, lymph node 

involvement, presence of metastasis and molecular markers (over expression of PTEN gene, 

presence of androgen receptor variant AR-V7). Host-related factors are associated to the 

patients’ characteristics, such as age and comorbities. Lastly, environmental factors are 
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external to the patient such as access to healthcare [3]. Prognostic models are increasingly 

used in the design, conduct, and analysis of clinical trials. For example, in several trials of 

prostate cancer, randomization was stratified by the predicted survival probability 

determined by prognostic model of overall survival [4–7]. In the TAILORx trial, 

OncotypeDx, a 21-gene score that predicts likelihood of recurrence, is used to classify 

women with breast cancer by their risk group of recurrence [8]. Prognostic factors have also 

been used for enriching the patient population in trials with targeted therapies. For example, 

in the TOGA trial, gastric cancer patients with HER-2 positive were randomized to either 

trastuzumab plus chemotherapy or chemotherapy alone [9].

In this article, we cover topics that are related to the analysis of prognostic factors, centering 

on factors that are both relevant at the time of diagnosis or initial treatment and during 

treatment or follow-up. We use the terms prognostic models, risk models, and risk 

assessments interchangeably. This article is organized in the following way. We first 

describe the type of risk prediction and then provide a brief description of the penalized 

regression methods. We then review the state of the art methods for dynamic prediction and 

compare the strengths and the limitations of these methods. We next offer a concise 

discussion of validation and metrics for assessing models. Lastly, we present 

recommendation for the next generation of risk assessments methods to be built in modern 

oncology.

I. Types of Risk Predictions

Investigators are interested in examining the relationship between host and tumor-related in 

predicting clinical outcomes (Figure 1A). We make a distinction between static and dynamic 

prediction. In static prediction modelling, typically variables collected at baseline are 

utilized in building models. For example, prostate specific antigen (PSA) measurements at 

baseline are utilized for prediction of recurrence. On the other hand, dynamic predictive 

models explicitly leverage the longitudinal data of covariates that are collected during 

treatment or follow-up. In advanced patients with cancer, the disease has substantially 

evolved and has a heterogeneous presentation within the patient [10]. The inter and intra-

patient variability should be taking into account in statistical modeling [11, 12]. Dynamic 

prediction incorporates time-dependent covariates so that risk prediction would be 

continually updated with new observations to reflect the patient’s prognosis.

We define terminology that is typically used in dynamic risk prediction. The term landmark 

time is defined as a current time point at which we have data (host, tumor-related variables 

and outcomes). The term horizon time is defined as a future time point at which we want to 

predict a time-to-event outcome, such as overall survival. Dynamic predictive models 

essentially capture the historical information of the longitudinal measurements from the 

study baseline (t) to the landmark time (u), such that the risk at horizon time can be 

accurately predicted (Figure 1B).

II. Identification of Prognostic Factors

Several popular strategies exist for identifying prognostic factors in static risk assessment. 

Standard variable selection approaches such as forward selection, backward selection, etc. 
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with logistic regression for binary endpoints [13], proportional hazards regression for time-

to-event endpoints have been applied [14]. Criticism for the stepwise variable selection has 

been well documented [15, 16]. It is also worth noting that classification trees, such as 

recursive partitioning for both binary and time to event endpoints [17–20]have been 

frequently utilized [2, 21–26].

We concentrate on penalized methods that fit and shrink p predictors and in doing so reduce 

the variance of the coefficient estimates [27]. Thus, these method would improve the 

accuracy of the model [28] The least absolute shrinkage and selection operator (LASSO) 

and adaptive LASSO (ALASSO) have been widely employed to develop prognostic models 

of clinical outcomes [29, 30]. We will briefly describe ridge and penalized methods. Ridge 

regression minimizes the residual sum of squares function, but it has a caveat as it does not 

reduce all the coefficients exactly to zero [28]. Let yi be the response, xij is the jth covariate 

value (j = 1,2,…,p) corresponding to the ith individual , βj is the regression coefficient jth 

covariate and λ is a tuning parameter. Similar to ridge regression, the first term in LASSO is 

the residual sum of squares and LASSO minimizes this function subject to the l1 penalty (Eq 

1):

∑
i = 1

n
yi − β0 − ∑

j = 1

p
β jxi j

2
+ λ ∑

j = 1

p
β j (1)

A large tuning parameter causes the coefficients estimates to be equal to zero, then the 

LASSO will have the sparsity property [28]. LASSO is an improvement over ridge 

regression, although it has the main limitation of tending to select too many unimportant 

variables and it also performs poorly in situations when p>n [20, 31–33]. Adaptive LASSO 

has been proposed as an improvement over LASSO in order to overcome the limitation of 

LASSO [34]. ALASSO minimizes this function (Eq 2):

∑
i = 1

n
yi − β0 − ∑

j = 1

p
β jxi j

2
+ λ ∑

j = 1

p
w j β j (2)

ALASSO utilizes a weighted penalty term in the L1 penalty where w = (w1,w2,…,wp) is the 

weight vector. If β is a n-consistent estimator, e.g. β(OLS), of β (= β1, β2,…, βp), then an 

appropriate choice of the weight w is 1/ β . ALASSO is considered to be an improvement 

over LASSO as it has consistent variable selection as well as lower prediction error. 

Consequently, ALASSO tends to select fewer non-zero coefficients than the LASSO despite 

having smaller prediction error. The ALASSO enjoys the oracle property [30, 34].

Elastic net regression utilizes a combination of l1 penalty and ridge l2 penalty and is a 

compromise between LASSO and ridge regression, and one of its main advantages when p > 

n is that it retains more than n variables in the model [35]. Hastie et al. provide a thorough 

comparison of these shrinkage techniques [28].

We applied LASSO and ALASSO from CALGB 90401, a phase III clinical trial in advanced 

prostate cancer with the overall goal of building a model of overall survival [5]. We had 22 
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variables that were common between CALGB 90401 and the Enthuse trial (external data set) 

[36]. Because of missing data in the covariates, we utilized methods to impute them as 

described by [37]. The regression’s estimates from the proportional hazards model, LASSO 

and ALASSO are presented in Table 1. We considered LASSO and ALASSO and applied 

both the Akaike information criteria and the Bayesian information criterion to choose the 

optimal model of overall survival. LASSO and ALASSO selected eight and nine variables, 

respectively (Table 1). We determined the ALASSO model as the final optimal model since 

it included the site of metastases for bone disease. Figure 2 presents the solution path for 

ALASSO and we observe that LDH greater than upper limit of normal and ECOG 

performance status were selected early in the l1 path compared to the other variables. This is 

followed by visceral disease, alkaline phosphatase, albumin, hemoglobin, pain, bone 

metastases and then PSA (the BIC stopped at PSA). The final model selected the following 

prognostic factors: LDH greater than upper limit of normal, ECOG performance status, 

metastatic site (presence of visceral disease, presence of bone metastases), PSA, alkaline 

phosphatase, albumin, hemoglobin and analgesic opioid use.

We have focused on variable selection when the number of predictors is small relative to the 

sample size. There are two main challenges in identifying potential prognostic factors in 

high dimensional space: computational intensity and a high false discover rate [38, 39]. It is 

important to point that several pre-screening methods are useful in identifying prognostic 

features in both the large p, small n problem and in ultra-high dimensional space [31, 32, 

39–41].

The concept of variable selection is more challenging in building dynamic models as the 

main goal is to identify important factors that are related to the longitudinal process and the 

outcomes. In recent years, a few statistical studies extended the penalized method for the 

joint modeling of longitudinal data and survival outcomes [42, 43]. The general idea is to 

postulate the joint likelihood linking the two submodels via latent random variables and to 

add shrinkage operators to select fixed and random effects. He et al. [42] proposed a variable 

selection method for joint modeling with a univariate longitudinal outcome, Chen and Wang 

[43] extended the framework to incorporate multiple longitudinal outcomes. While these 

methods have not been implemented in oncology, the statistical development paves the way 

for dynamic risk prediction.

Heterogeneity of treatment effect (HTE) is another important area to consider when building 

prognostic models. It is the nonrandom, explainable variability in the direction and 

magnitude of treatment effects for individuals within a population [44]. There are different 

sources for HTE and it may arise from an underlying causal mechanism, artifacts, 

measurements or methods [45, 46]. One main goal of the HTE analyses is to predict whether 

a patient might benefit from a treatment. Traditionally, the Cox regression method has been 

employed to identify subgroups of patients who may benefit from treatment [14]. Recursive 

partitioning has also been utilized to identify a subgroup of patients [47]. While these 

classification tress methods have several advantages, they can create complicated structures 

and produce overfitting [19, 41, 47]. Other methods, such as permutation methods, SIDES, 

doubly robust augmented inverse probability weighted estimator, and virtual twins have been 

developed to take HTE into consideration [45, 48–52]. The personalized prediction can be 
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adequately addressed by the dynamic prediction framework, although it is an area for future 

research.

III. Estimating Patient-Specific Outcome Prediction and Constructing Risk Groups

Once the final model is chosen, the next step is estimating patient-specific outcome 

prediction. The estimated survival function at time t is (Eq 3):

S t = S0 t expR
(3)

where R is the estimated linear predictor or risk score for the ith individual 

xi
Tβ = ∑ j = 1

p β jxi j , S0 t = exp −H0 t  is the baseline survival function, and H0 t  is the 

baseline cumulative hazard function. Turning to our prognostic model of overall survival in 

prostate cancer, we computed a risk score from the estimated regression coefficients and the 

predicted survival at 24-months using the baseline cumulative hazard. We present the 

profiles of two patients with different baseline prognostic factors and their predicted overall 

survival at 24 months (Table 2) [5]. We observe that Patient 2 has a worse predicted survival 

probability at 24-months than Patient 1.

Another important task in static predictive modelling is to construct prognostic risk groups, 

which can be formed based on their quantiles from the estimated linear predictor. In our 

overall survival model, we constructed two- and three- prognostic risk groups and 

determined the cut-points from the training set based on quantiles (33th, 50th and 67th 

percentiles) [5]. While demonstrating that the overall survival curves differ across the three 

risk groups are appropriate, it is not a sufficient approach [53]. The optimal strategy would 

be to compute a measure of discriminative ability of the model.

IV. Methods for Dynamic Modelling

Let Ti denote the true failure time, let fi (t) denote a set of longitudinal measurements at 

some time points up to landmark time t. We are interested in predicting the probability that a 

new patient i* is event-free at least up to horizon time u > t given survival up to t. The 

conditional probability is defined as (Eq 4)

πi * u t = Pr T i * ≥ u T i * > t, f i *(t), Dn , (4)

where Dn denotes a sample from the target population and on which the prediction is based. 

This formulation enables a dynamic updating scheme. Indeed, if a new measurement for 

patient i* is observed at time t′ > t, we can update the risk prediction by calculating πi*(u|t
′).

There are two general dynamic risk prediction frameworks: joint modelling and landmark 

analysis. Joint modeling is comprised of two linked submodels, one for the longitudinal 

process, one for the time-to-event data, and both are dependent on a common set of latent 

random variables [54, 55]. In particular, the longitudinal data are usually modeled by a linear 

mixed effects model. The time-to-event data are modeled by the proportional hazards model 

with true longitudinal process as time-varying covariates. The Cox regression coefficient 
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quantifies the association between the latent longitudinal process and the hazard rate at time 

t. The longitudinal process and the event time process are assumed to be independent given 

the latent random effects, and the joint likelihood can be derived. The model can be 

estimated either using a frequentist approach that attains maximum likelihood through EM 

algorithm [54, 56–58] or a Bayesian approach that uses Markov Chain Monte Carlo 

(MCMC) to obtain posterior means [59–61]. Assuming that the parameters are readily 

estimated from the observed data, then the conditional probability πi*(u|t) can be computed. 

A Monte Carlo estimate of πi*(u|t) can be obtained by sampling the random effects and the 

parameters from the corresponding distributions [62].

On the other hand, landmarking [63–66] consists of a series of related Cox regression 

models, each one is defined at a distinct landmark time t [63–66]. For each pair of {u, t}a 

separate model is fitted to the individuals who remain in the study and have not yet 

experienced the event of interest. The baseline hazard can be estimated using the Breslow’s 

estimator [67]. Then πi*(u|t) is computed as the survival probability treating the longitudinal 

observation at time t as a baseline covariate.

V. Comparison between Joint Modeling and Landmarking

Joint modeling and landmarking approaches differ in three aspects: model assumptions, 

information utilized, and computational complexity. Joint modeling models the dual 

distribution of the longitudinal process and the failure times, and hence satisfies the 

consistency conditions for dynamic prediction [68]. Moreover, it exploits the full 

information of collected data and takes into account of the measurement error of the 

longitudinal data. This latter point is critical as this implies that joint modelling is a more 

efficient than landmarking. However, joint modeling needs to specify a correct model for the 

longitudinal process, and requires stronger assumptions than landmarking. It also takes a 

considerable effort to estimate the parameters and the computational cost is high as it 

involves complicated joint distribution and numerical integration. In contrast, landmarking 

circumvents the aforementioned model assumptions and computational burden, but it is not a 

comprehensive probability model of the longitudinal process and the failure times, and as 

such does not satisfy the consistency conditions. Another major shortcoming is that 

landmarking only considers the patients at risk at the landmark time and does not fully 

explore the information.

Recent articles have focused on the comparison of joint modeling and landmarking. 

Rizopoulos et al. [69] compared the two prediction frameworks and proposed a compromise 

between joint modeling and landmarking. Suresh et al. [70] contrasted joint modeling and 

landmarking for dynamic risk prediction in the context of a binary longitudinal marker, and 

also applied these approaches to a prostate cancer study [70]. Ferrer et al. [71] compared the 

two approaches in case of model misspecification, and they aimed for predicting competing 

risks of prostate cancer from the PSA history.

Dynamic risk prediction (joint modelling) relies on model assumptions, and hence its 

performance suffers from model misspecification. Functional data analysis, which is a 

nonparametric framework, has received considerable attention recently in medical studies as 

it is a flexible tool for modeling nonlinear longitudinal process [72–74]. In particular, these 
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methods have been incorporated with joint modeling [75] and are exploited to construct 

dynamic prediction models [61, 76–78].

VI. Examples

There are a few examples in cancer where longitudinal data were modelled with clinical 

outcomes. We have previously explored whether PSA decline at different landmark times is 

prognostic for overall survival in patients with advanced prostate cancer [79]. Fontein et al. 
developed a dynamic model for predicting overall survival in patients with breast cancer 

[80]. The authors validated the overall survival model using dynamic cross-validated c-index 

and reported c-index of 0.72, 0.76 and 0.79 at 1-, 2- and 3- years, respectively. Suresh et al. 
[70] and Ferrer et al. [71] extended the landmarking approach and used prostate cancer 

studies as the testing bed. In addition, Proust-Lima and Taylor [81] developed a dynamic 

prognostic tool based on joint modeling using PSA as a biomarker for prostate cancer 

recurrence. There are other applications of dynamic models in prostate cancer [82–85] and 

colorectal cancer [86].

We demonstrate the application of dynamic risk prediction utilizing the DATATOP study 

[87], a clinical trial that was designed to examine the benefits of deprenyl and alpha-

tocopherol in slowing the progression of Parkinson’s disease (PD) [88]. Multiple 

longitudinal biomarkers were collected in the DATATOP study, including Unified PD Rating 

Scale (UPDRS) total score, modified Hoehn and Yahr (HY) scale, and Schwab and England 

activities of daily living (SEADL). The biomarkers measured at baseline, 1-month, and 

every 3-months show strong correlation between the PD symptoms and the terminal event. 

We applied a joint modeling framework to account for the informative event times. We 

developed a Bayesian approach for parameter estimation and predicted patients’ future 

outcome trajectories (Figure 3A) and risk of functional disability (Figure 3B). A more severe 

Patient 169 with earlier development of functional disability and a less severe Patient 718 

were selected to illustrate the patient-specific predictions at a clinically relevant future time 

points, conditional on their available longitudinal measurements. The predicted UPDRS 

trajectories were biased with wide uncertainty bands when only baseline measurements were 

used. Although dynamic prediction for longitudinal trajectories is an advantage of the joint 

modeling, our major interest was to predict the probability of functional disability after visits 

at time t given the patient’s longitudinal profiles and the event-free status up to time t. We 

found a similar pattern in that the risk predictions with higher accuracy were achieved based 

on more longitudinal observations. For example, based on the longitudinal profiles of the 

first 12 months, the predicted probabilities in the next 3, 6, 9, and 12 months were 0.21, 

0.46, 0.78, 0.97 and 0.02, 0.06, 0.13, 0.30 for Patient 169 (Figure 3B, last plot first row) and 

Patient 718 (Figure 3B, last plot second row), respectively. Therefore, Patient 169 with a 

higher risk of functional disability in the next few months might need attentive medical 

intervention to control disease progression. Meanwhile, the Brier’s scores were 0.216 and 

0.108, respectively, which implied a better prediction in terms of calibration given more 

follow-up data.
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VII. Validation and Assessment of Prognostic Models

The primary goal of a risk assessment is to provide accurate outcome prediction in new 

patients [16, 89]. Overfitting remains one of the main challenges in model building. 

Overfitting occurs when a high predictive accuracy is estimated from a model that has been 

applied to the training set, but has low accuracy when assessed in an independent dataset 

[90]. A good example of overfitting is provided in Halabi and Owzar [2]

Validating a prognostic model is considered as a critical step after a risk assessment model 

has been built. There are two types of validation: external and internal [16, 89, 90]. External 

validation where the frozen model from the training data is applied to an independent data 

set, is the most rigorous approach. However, often investigators may not have access to 

external data set. It is important to emphasize that other types of resampling methods, such 

as cross-validation, bootstrapping and bootstrapping using 0.632+ are considered 

appropriate approaches of model validations [32, 53, 91, 92].

Assessing the performance of the model is usually conducted by examining the calibration 

and the discriminative ability of the model. Calibration signifies the extent of the match 

between the predicted and observed outcome [16]. Often investigators plot the predicted 

versus the observed outcome. The model would be calibrated if the data fall on a 45-degree 

line. Using data from two phase III clinical trials, we evaluated the overall survival model 

for calibration at different landmarks [36, 93]. Figure 4A shows the predicted survival 

probabilities at 18-months were close to the proportion of patients surviving 18-months 

using the Enthuse 33 trial. On the other hand, Figure 4B demonstrates that the model was 

not well-gauged as the observed-predicted data points did not fall on the 45-degree line. The 

first two points (circles) show that the model over-predicted the proportion of patients 

surviving 12-months, whereas the third and fifth data points demonstrate that the model 

under-predicted the proportion of patients surviving 12-months.

Discrimination describes the ability of a prognostic model to distinguish between patients 

with and without the outcome of interest [16]. Several metrics are employed to report the 

performance of a model. A widely used measure is the concordance (c-index), which is the 

agreement between observed outcomes and prediction. Another widely used measure of 

predictive accuracy is the time-dependent area under the receiver operating characteristic 

curve (tAUROC) [94], which can be combined to form an integrated area under the receiver 

operating characteristic curve for the whole range of the study (iAUROC) [95].

Circling back to our prognostic model in prostate cancer, we evaluated the performance of 

the model by implementing Uno’s integrated measure for the time dependent area under the 

receiver operating characteristic curve [95], which were 0.73 (95% CI=0.70–0.73) and 0.76 

(95% CI=0.72–0.76) in the testing and validation sets, respectively [5].

It is important to emphasize that dynamic models need also to be assessed for their 

discriminative ability and calibration. These measures can evaluate the performance of the 

model at various time points of the prediction. The tAUROC and Brier’s score are widely 

used for dynamic prediction validation [69, 70, 82, 87]. In the DATATOP study [87], we 

applied 5-fold cross-validation to evaluate the predictive performance of our framework. 
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Conditional on the longitudinal history up to month 3 and month 12, our model yielded 

0.744 and 0.766 tAUROC, respectively, for correctly assigning higher risk of functional 

disability by month 15 to more severe patients.

Criteria for evaluating risk assessments have been published by the Precision Medicine Core 

of the American Joint Commission on Cancer [53]), the Transparent Reporting of a 

Multivariable Prediction Model for Individual Prognosis Or Diagnosis [92] and the Critical 

Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies [91]. 

Investigators are encouraged to follow these guidelines as more rigorous tools of clinical 

outcomes would be developed in oncology. It is anticipated that these models will be 

implemented in both the design and conduct of future trials.

While static models will continue to play an important role in oncology, developing and 

validating dynamic models of clinical outcomes need to take a higher priority. It is apparent 

that a framework for developing and validating dynamic tools in oncology is needed. One of 

the limitations is that modelers may be constrained by the lack of access to the longitudinal 

biomarker data. It is highly recommended that the next generation of risk assessments take 

into consideration the longitudinal biomarker data and outcomes so that prediction are 

updated.

In summary, risk assessment will remain an important research task in precision oncology. 

We advocate for good clinical practice in risk assessment studies and recommend that 

investigators design these studies prospectively, in order to obtain accurate individual 

outcome prediction and prognostic risk group classification. Prognostic studies should begin 

by asking fundamental questions that are pertinent to patient outcomes, define the primary 

endpoint a priori, justify the sample size, and describe the appropriate methods for variable 

selection and model assessment. Lastly, they should be validated using external datasets if 

available.

Understanding the longitudinal relationship between host and tumor related factors and their 

impact on clinical outcomes is critical. We expect to see an upsurge in dynamic risk 

assessments in oncology, and as such, the AJCC and the TRIPOD guidelines should be 

extended to dynamic predictive modelling. Regardless whether static or dynamic modelling 

is the primary objective, we envision that this review will serve as a catalyst to bridge gaps 

in knowledge and motivate investigators to take risk assessment as a discipline by itself. 

Funding opportunities with the primary goal of building and validating high quality 

prognostic models will be critical for personalized predictions.
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Context Summary

Key objective:

Building prognostic models will continue to play a role in 21st century medicine in 

patient management. We make a distinction between static and dynamic predictive 

models and provide a review of the state-of-the art methods for dynamic predictive 

models to promote them for future use.

Knowledge generated:

To date, most risk assessment models in oncology have been based on static prognostic 

models. Understanding the longitudinal relationship between host and tumor related 

factors and their impact on clinical outcomes is critical. Regardless whether static or 

dynamic modelling is the primary objective, we envision that this review will serve as a 

catalyst to encourage investigators to take risk assessment as a discipline by itself.

Relevance:

We expect to see an upsurge in dynamic risk assessments and as such it is highly 

recommended that the next generation of models consider the longitudinal data and 

outcomes so that prediction are updated.
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Figure 1A. 
Relationship between host and tumor related factors and clinical outcomes. Modified from 

Seminars in Oncology[2].
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Figure 1B. 
Dynamic risk prediction framework
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Figure 2. 
Solution Path for ALASSO. Printed with permission from Chapman & Hall/CRC [96].
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Figure 3A. 
Predicted UPDRS trajectories for Patient 169 (first row) and Patient 718 (second row). Solid 

lines are the means of 2000 MCMC samples. Dashed lines are the 2.5% and 97.5% 

percentiles of the 2000 MCMC samples. The dotted vertical lines represent the landmark 

time. Printed with permission from Annals of Applied Statistics [88].
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Figure 3B. 
Predicted conditional failure probabilities for Patient 169 (first row) and Patient 718 (second 

row). Solid lines are the means of 2000 MCMC samples. Dashed lines are the 2.5% and 

97.5% percentiles of the 2000 MCMC samples. Printed with permission from Annals of 

Applied Statistics [88].
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Figures 4A-4B. 
Calibration of the Overall Survival Model on Two Datasets.
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Table 1.

Identified Prognostic Factors by LASSO and ALASSO in the Training Set

Description of variable (variable name) β  Cox model β  LASSO β  ALASSO

Site of Metastases: Bone (DS 2) 0.234 - 0.058

Visceral (DS 3) 0.400 0.056 0.293

Liver (LIVER) 0.013 - -

Lung (LUNG) 0.199 - -

Opioid analgesic use (PAIN) 0.136 0.077 0.088

Age in years (AGE) −0.003 - -

Body Mass Index (BMI) −0.021 - -

Race (Caucasian) 0.034 - -

ECOG Performance Status (ECOG) 0.278 0.190 0.305

Comorbidity (Comorb) 0.070 - -

Gleason Score (GLEAST) 0.052 - -

Prior treatment with radiotherapy (Radio) 0.105 - -

LDH ≥ ULN (LDH.High) 0.325 0.203 0.335

Albumin (ALB) −0.133 −0.080 −0.122

Bilirubin (BILI) −0.017 - -

Hemoglobin (HGB) −0.094 −0.085 −0.065

Platelets (PLT) 0.000 - -

White blood cells (WBC) 0.055 - -

Alkaline Phosphatase (ALKPHOS) 0.145 0.138 0.145

Aspartate Aminotransferase (AST) 0.025 - -

Prostate Specific Antigen(PSA) 0.063 0.026 0.015

Testosterone (TESTO) −0.088 - -

Training C-index 0.662 0.660

Integrated Time AUC 0.742 0.740

JCO Precis Oncol. Author manuscript; available in PMC 2019 December 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Halabi et al. Page 23

Table 2.

Profiles of Patient-Specific Predicted Probabilities [5].

Patient 
Number

Disease 
Site

Opiate 
Use

PS 
ECOG LDH>ULN ALB 

(g/dL)
HGB 
(g/dL)

ALK 
(U/L)

PSA 
(ng/ml)

Predicted 
Probability at 24 

months (95% CI)*

1 Bone Yes 1 No 4 14 130 90 0.47 (0.42–0.52)

2 Visceral Yes 1 Yes 3 10 90 75 0.28 (0.19–0.38)

*
Computed by https://www.cancer.duke.edu/Nomogram/firstlinechemotherapy.html [97]
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