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Abstract

BACKGROUND: To characterize acoustic features of an infant’s cry and use machine learning to 

provide an objective measurement of behavioral state in a cry-translator. To apply the cry-

translation algorithm to colic hypothesizing that these cries sound painful.

METHODS: Assessment of 1000 cries in a mobile app (ChatterBaby™). Training a cry-

translation algorithm by evaluating >6000 acoustic features to predict whether infant cry was due 

to a pain (vaccinations, ear-piercings), fussy, or hunger states. Using the algorithm to predict the 

behavioral state of infants with reported colic.

RESULTS: The cry-translation algorithm was 90.7% accurate for identifying pain cries, and 

achieved 71.5% accuracy in discriminating cries from fussiness, hunger, or pain. The ChatterBaby 

cry-translation algorithm overwhelmingly predicted that colic cries were most likely from pain, 
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compared to fussy and hungry states. Colic cries had average pain ratings of 73%, significantly 

greater than the pain measurements found in fussiness and hunger (p < 0.001, 2-sample t test). 

Colic cries outranked pain cries by measures of acoustic intensity, including energy, length of 

voiced periods, and fundamental frequency/pitch, while fussy and hungry cries showed reduced 

intensity measures compared to pain and colic.

CONCLUSIONS: Acoustic features of cries are consistent across a diverse infant population and 

can be utilized as objective markers of pain, hunger, and fussiness. The ChatterBaby algorithm 

detected significant acoustic similarities between colic and painful cries, suggesting that they may 

share a neuronal pathway.

INTRODUCTION

All infants cry to motivate their caregivers to respond to their needs.1 As a result, caregivers 

tend to interpret a baby crying as a signal of distress or need. Infants follow a predictable cry 

curve with a peak in intensity at around 6–8 weeks, and persistence after 3 months may be 

considered pathologic.2 The ability to distinguish pathological cries in infants using acoustic 

feature extraction and classification algorithms is validated in the literature; 27 prior studies 

were able to discriminate pathological infant cries (Down’s syndrome, brain damage, Cri du 

Chat) with an average accuracy rate of 96.9%.3

Acoustic analyses of an infant’s cry could be instrumental in the home setting. Despite 

caregivers’ best intentions, interpretation of infant cries can be difficult. The perceptions of 

the listener can be influenced by their sleep habits, mental state, their own physiologic 

response to the cry, and other sociodemographic factors.4,5 Machine learning could offer an 

objective assessment of the acoustic features of infant cries to translate their behavioral 

states.6 This would contribute significantly to infant care by distinguishing if an infant was 

experiencing pain or if they were responding to another behavioral state (i.e., hunger or 

being fussy).

It is not only in the home environment that machine learning could aid in infant care. 

Clinical care and especially hospital settings focus on mitigation of infant pain. Historically, 

it was believed that infants were incapable of feeling pain.7 However, recent research into 

the developmental physiology of nociception indicates that the opposite is true. Untreated 

pain in neonates can leave a lasting neurophysiological footprint associated with decreased 

brain8,9 and body growth,10 altered neural connections and organization,11,12 poorer 

cognitive and motor function,13 impaired visual–motor integration, and poorer executive 

functioning skills.14,15 To assess pain, providers rely upon rating scales such as the Neonatal 

Infant Pain Scale,16 premature infant pain profile,17 Face, Legs, Activity, Cry, and 

Consolability scale,18 and Crying, Oxygenation, vital signs, facial Expression, and 

Sleeplessness scale,19 among others. Most estimates of inter-rater reliability of infant scales 

are high16,20,21 with some studies showing poor agreement across these scales in 

measurements,22,23 suggesting that both clinical factors and the choice of scale may strongly 

influence the magnitude and the reliability of these pain measurements. In addition to 

measurement of pain using subjective infant pain scales, smaller-sample studies have found 

that infants in pain cry differently from infants who are not experiencing pain—with 

Parga et al. Page 2

Pediatr Res. Author manuscript; available in PMC 2020 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



algorithms showing between 74% and 90% accuracy, as discussed further in the 

Supplementary Material.

These small-sample algorithms were not portable by nature; this leaves room for a 

universally applicable machine learning program to help home caregivers and medical 

providers accurately assess infant cry and determine when the infant is experiencing pain vs. 

another behavioral state. On the basis of finding a quantitative measure of infant cries, we 

created a free phone app, ChatterBaby™, as an accessible and portable algorithm 

deployment to predict whether a baby’s cry was due to one of the three behavioral states: 

pain, hunger, or fussiness. The algorithms were then applied to infant cries where parents 

reported their infants as having colic. This process simulates an initial clinical visit where 

the parent has complaints of colic and a workup for conditions like reflux esophagitis or 

infantile migraine may be initiated and diagnosed. We hypothesized that colic cries would be 

acoustically similar to pain cries, a finding that would explain and validate caregiver distress 

regarding caring for an infant with colic.

METHODS

This ChatterBaby study was conducted according to and approved by the UCLA 

Institutional Review Board (IRB#15–000931). Painful stimuli were defined by needles: 

routine vaccinations (without analgesia) and elective ear-piercings. Because audio was 

recorded in the natural environment, infants were in a variety of settings while being 

recorded, with ambient occurring background noise (adult voices, etc.) using different 

recording devices (e.g., cell-phones). Full details on data acquisition and statistical 

methodology are provided in Supplementary Material. In Supplementary Material, we also 

present a secondary cry detection algorithm that screens out cries from baby neutral/baby 

laughing/nuisance sounds.

Data

After quality control, the study population for the primary cry states (Fussy, Hungry, Pain) 

included 691 infants (36% female) who were between the ages of 0 and 24 months (average 

age 3 months) for the primary training dataset of pain/hungry/fussy. Approximately 55% of 

infants’ ages were missing due to the voluntary submission of this variable. In all, 75% of 

the infants assessed were <6 months of age. All primary cries were from unique episodes 

and users. The colic population included 64 infants between the ages of 2 days and 4 

months, with a median age of 2 months.

Pain cries (n = 353) were captured during two acutely painful stimuli (vaccinations, ear-

piercings). Caretakers characterized other cries as “fussy” and “hungry,” followed by two 

independent characterization of each cry sound by two multiparous raters (authors A.E.A. 

and & B.S.). No cries in the ChatterBaby training database were from any of the authors’ 

children. Cries without unanimous agreement among the three-member rating panel (11.8%) 

were excluded from further analyses and were not reclassified. This process resulted in 171 

fussy cries, 167 hungry cries, and 353 pain cries in the final training cohort. Colic cries were 

nominated by the parent/caretaker. Multiple colic cry samples (n = 380, 64 babies) were 

acquired across each cry episode, including ending periods where whimpering/fussing may 
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have been present, to avoid selection bias in sample collection and assessment. This method 

of data acquisition yielded roughly 30 s (6 samples) of cry time from each child, a process 

that provided a wider range of time than is typically seen in most studies. Spectrograms for a 

single cry from each type are presented in Fig. 1.

Modeling

Infant cries were summarized using the acoustic feature set previously used to identify 

pathological vocal patterns in neurological disorders such as Parkinson’s Disease24 and 

Amyotrophic Lateral Sclerosis,25 extracting >6000 acoustic features from each cry. Supra-

segmental (utterance-level) acoustic features were extracted from 5-s cry clips26–28 using 

IS13_ComParE.conf in OpenSmile.29

To create the cry translation algorithm, a probabilistic random forests classifier was used to 

predict the category of a cry (fussy, hungry, pain) given its acoustic features using default 

parameter settings in R (500 trees, 1/3 of features sampled with replacement as possible 

predictors to construct individual trees).30 The random forests out-of-sample classification 

accuracy, analogous to the cross-validation error, was computed to estimate the testing 

accuracy of the algorithm on new data (Table 1). Further technical details are presented in 

Supplementary Material.

Using only the 200 most predictive features, the algorithm was retrained on the primary cries 

and tested on the colic cries, with roughly 6 colic cries obtained from the same cry episode 

per child (~30 s). Testing longer cry segments from the colic infants reduces the probability 

of selection bias; acoustic sample included segments of milder fussiness and whimpering 

following extreme bouts of crying, when available. The average pain probability from colic 

cries was compared with the out-of-sample pain-level predictions from the primary cries 

(fussy, hungry, pain) to test the hypothesis that colic cries were more closely associated with 

pain than the hungry or fussy states. We additionally assessed for longitudinal/age effects by 

testing for temporal drift within a single child who was not used for algorithm training, 

using cry recordings collected six separate times during routine vaccinations between 87 and 

618 days of age, without the usage of analgesic.

RESULTS

The primary cry algorithm achieved overall accuracy in classifying among the three states as 

71.5%, with the confusion matrix shown in Supplementary Material. The primary cry 

algorithm, trained as a multivariate classifier, was then treated as a binary classifier for 

obtaining Pain accuracy rates by pooling the Fussy and Hungry predictions as a “No Pain” 

category. The predictive accuracies for painful cries are shown in Table 1: sensitivity/recall 

of 0.91 (95% confidence interval (CI) = 0.876, 0.937), specificity = 0.68 (95% CI = 0.628, 

0.727), positive predictive value = 0.75, negative predictive value = 0.87. The prevalence of 

Pain was 0.51, with the algorithm performing significantly above chance (p < 0.001). The 

area under the curve (AUC) = 0.88 as shown in the receiver operating characteristic curve in 

Supplementary Material. The AUC measures how effective the algorithm is at separating 

true positives and false positives over a range of decision thresholds.
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Although the random forests algorithm had access to >6000 features, many of these features 

had low importance values and were not useful to discriminate among the different cry 

states, as shown in Supplementary Material. When testing the algorithm on colic cries, the 

probability of pain was significantly different across the three predictive states (p < 0.0001, 

analysis of variance), with the typical colic cry being predicted as 73% chance of painful. 

When comparing colic cries to fussy/hungry cries, the pain levels in colic were significantly 

greater than the pain levels seen in fussy and hungry cries (p < 0.001, 2-sample t test, 

Bonferroni corrected). As shown in Fig. 2, the average pain rating in colic was 0.73 (sd = 

0.21), while the average out-of-sample predicted pain rating for fussy was 0.30 (sd = 0.18), 

hungry = 0.38 (sd = 0.19), and pain = 0.67 (sd = 0.20).

Previous literature demonstrated an increased pitch (fundamental frequency) in both pain 

and colic31 cries compared to fussy and hungry states, which we confirmed here (p < 0.05; 

2-sample t test with Bonferroni correction, see Supplementary Material). The pitch did not 

significantly differ between colic and pain (p > 0.05, 2-sample t test with Bonferroni 

correction; see Supplementary Material). For many acoustic features such as loudness, 

energy, and pitch, the ordinal values fell in a spectrum ranging from fussy, hungry, pain, to 

colic. This spectrum suggests that colic cries are more intense acoustically than vaccination 

cries, although the clinical interpretation of this acoustic relationship is unknown. Fussy 

cries were the mildest acoustically across many acoustic metrics.

DISCUSSION

It is possible to use mobile recording methods to provide accurate and usable clinical 

information on an infant’s cry and behavioral state. With 70–90% accuracy, an easily 

accessible mobile app was built off of prior knowledge of the acoustical features of 

pathological cries in infancy. It was used to further explore a common diagnosis of infancy 

affecting one in five neonates and defined entirely by excessive crying: colic.

The acoustic markers of pain were multiple and complex, extending far beyond changes in 

pitch as was reported previously in the literature.31 The colic cries were not different from 

pain cries in their fundamental frequency (2-sample t test, p > 0.05), but the colic 

fundamental frequency was significantly elevated compared to hungry and fussy 

vocalizations (p < 0.05, Bonferroni corrected). This confirms the earlier findings of Lester et 

al. and St. James-Robert,32,33 which relied on significantly smaller-sample sizes than those 

assessed here.

Our work demonstrated that colic cries are more similar to pain cries than to either fussy or 

hungry cries, suggesting that colic could be a painful condition for infants or share similar 

source processes.34 Often colic occurs in the evening and clinicians do not observe it and 

have to rely on caregivers’ reports of the crying. Positive reinforcement and support for 

caregivers is considered the standard of clinical care in colic2 and focuses on helping 

caregivers through a stressful period. In 95% of cases of colic, a thorough workup for 

underlying medical disorders fails to uncover a definitive explanation for the infant’s 

presentation, and these infants will develop normally once they “outgrow” their colic.
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Despite treatment through reassurance from providers, infantile colic is associated with 

increased rates of maternal anxiety and depression.35–39 Our results suggest that parents may 

be distressed by the cries of infants with colic because they may hear acoustic signatures 

indicative of pain as demonstrated in the algorithm. As such, clinicians might consider pain 

control (i.e., appropriate Tylenol dosing or behavioral pain control methods) as part of the 

management of colic.

There are several limitations to this study. Not all infants may respond to pain with a cry, 

thus a subset of infants experiencing pain may not have been reviewed. Our pain cries were 

in response to acutely painful stimuli; chronic pain may not show the same acoustic features. 

This could be elucidated with more pain samples from infants experiencing chronic pain 

(i.e., hospitalization with need for multiple procedures, such as intravenous access and 

lumbar punctures). Pain is also a subjective feeling, and degree of pain experienced by 

infants in the study could not be assessed. In addition, colic cries were labeled using parental 

assessment. It is not known whether these infants carried a clinical diagnosis of colic or 

whether they ever underwent any treatment for underlying medical conditions. Future 

studies will focus on clinically determined colic, rather than relying solely upon parental 

assessment. Of note, the diagnosis of colic is often based on history; so despite this being a 

limitation, it is likely a technique used diagnostically in the pediatrician’s office. The 

environment of the data collection was varied because it was performed by the caretakers: 

infants were in a variety of positions while vocalizing with naturalistic background noises 

present including adult voices and small children and were collected using a variety of 

recording devices such as cell-phones. However, the absence of a controlled environment 

simulates the variability of the testing environment in which these algorithms ultimately will 

be used, providing a more realistic estimate than previously published work on how these 

algorithms will fare when applied to new infants in new environments. Finally, we did not 

optimize the machine learning parameters within this algorithm intentionally, in order to 

avoid biasing the testing accuracy estimate. Our results are likely a lower bound for 

predictive accuracy, which we will refine with new data using deep learning algorithms.

Cry profiles may differ by age, which was unlikely to affect our results in secondary testing. 

Within the longitudinal vaccination recordings from a single child who was not used to 

create the algorithm, the Fussy/Hungry/Pain algorithm predicted similarly and consistently 

that the baby was experiencing pain for all six trials (average pain probability = 0.63, sd = 

0.04). This suggests that the algorithm was not sensitive to aging effects within the age range 

evaluated (Fig. 3, also see Supplementary Material for Spectrograms of vaccine cry across 

age). Five-s audio clips from this child’s vaccinations over an 18-month period are available 

online at https://www.youtube.com/watch?v=eu332YZFTkA. Infant age and demographics 

were voluntarily provided, resulting in missing data. Because of this, we could not determine 

whether the predictive accuracy of our algorithm depends upon an infant’s age or whether 

our algorithm performs differently on preterm infants or those with developmental disorders. 

However, for a single infant not contained in the algorithm training dataset, six vaccination 

cry recordings were examined for age-related variation in pain ratings. These cry recordings 

were taken between 87 days and 618 days. Overall, the cry patterns were consistent across 

age (Fig. 3), but because this was for a single child, we cannot rule out different growth 

patterns in other children.
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CONCLUSION

Although infant pain has both short- and long-term consequences, previously there was no 

automated quantitative device for pain or behavioral assessment in the home environment 

where most crying occurs. We developed a solution as a free smartphone app, ChatterBaby, 

available at https://chatterbaby.org. The measurements derived from the ChatterBaby 

algorithm may have in-hospital functions as well- a direction for future research. Passive 

acoustic pain assessment could serve as a complement to infant pain scales or a baseline 

metric for comparison of existing infant pain scales. With machine learning, we explored the 

acoustical features of excessive crying or colic. Future work will explore further evidence of 

whether colic is painful or whether colic merely shares similar neuronal connections as pain 

sensations. Such distinction would identify whether pain control merits as a part of colic 

treatment. The benefits and utility of a cry-translation algorithm have yet to be executed in 

clinical practice but are promising and wide-reaching, meriting further investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Spectrograms from 5-s audio samples of each cry type showing the distribution of 

frequencies across time for four different infants. Acoustic features were used to train a 

machine learning algorithm to predict across three primary cry states: hungry, fussy, pain. 

This algorithm was tested on infant cries from colic to assess whether acoustic features of 

pain were present in cries from infants with parental-assessed colic
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Fig. 2. 
The ChatterBaby algorithms were trained initially using three cry states: Fussy, Hungry, and 

Pain. The algorithms were validated both internally using the out-of-bag testing accuracy as 

well as externally; the algorithms were tested on a separate subset of baby cries from Colic 

(as defined by the parent). Colic cries had significantly higher acoustic measures of Acute 

Pain compared to Fussy and Hungry (p < 0.001)
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Fig. 3. 
For a single infant, we compared cry recordings during vaccinations for six different events 

ranging between 87 and 618 days of age. Each vaccination cry was analyzed using the 

ChatterBaby cry-translation algorithm. For all events, pain had the largest predicted 

probability and varied little across time in probability. This may suggest that, within a single 

infant, the vocal features of pain may be highly consistent, which enables parents to learn 

their child’s cry
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Table 1.

Predictive accuracy of the random forests classifier for identifying pain cries vs. hungry vs. fussy cries, 

assessed using the out-of-sample accuracy

Calculated diagnostic accuracy parameters

Sample size 691

Prevalence 0.51

Sensitivity 0.91

Specificity 0.68

PPV 0.75

NPV 0.87

LR + result 2.81

LR − result 0.14

The primary algorithm was trained on these three cry states that were not developmentally dependent, to assess whether pain ratings differed in 
babies with colic and without colic. Roughly 51% of cries were painful, but the ChatterBaby algorithm performed significantly above chance and 
correctly flagged 91% of pain cries
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