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Abstract
Agent-based models have been employed to describe numerous processes in immunology.
Simulations based on these types of models have been used to enhance our understanding of
immunology and disease pathology. We review various agent-based models relevant to host–
pathogen systems and discuss their contributions to our understanding of biological processes. We
then point out some limitations and challenges of agent-based models and encourage efforts towards
reproducibility and model validation.
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1. Introduction
The ideas gleaned from studying immunology and host–pathogen systems may be relevant not
only to human health but also to a wide array of other systems. A pathogen is any infectious
agent that can lead to illness or disease of a host. Examples of pathogens include human
immunodeficiency virus (HIV), Mycobacterium tuberculosis, the etiological agent for
tuberculosis, the SARS coronavirus, and the influenza virus. In these cases, the host is usually
a human being or an animal. However, in general terms, a host could just as easily be a computer
network and the pathogen a computer virus. The immune system has memory and learns about
the pathogens it encounters. It also must discriminate between self and non-self. Consequently,
applications of the ideas intuited from immune system dynamics can be translated into
algorithms relevant to learning, pattern discrimination, artificial intelligence adaptive behavior,
and applied towards goals such as the development of new computer virus security applications
[39,40,48,49,55,62,86]. The interested readers should see [38].

Because of the difficulty in reasoning about large numbers of interacting components with non-
linear interactions, mathematical modeling and simulation are becoming important research
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tools. Depending on what aspect of the host–pathogen system is being investigated, different
mathematical modeling tools are employed. Below we discuss several modeling techniques
commonly used to describe such systems.

Ordinary differential equation (ODE) models are often used as a starting point to describe host–
pathogen systems. One of the advantages of using ODEs is that a lot is known about their
behavior. ODE models are simple and elegant and require fewer parameters than their spatial
counterparts (e.g., agent-based models or partial differential equations). This is an important
consideration when experimental data is obtained from a well-mixed compartment, such as
blood, or from a homogenate of a tissue, such as the spleen or lymph node, where spatial
information is lacking. For example, in a recent model of influenza infection in humans,
Baccam et al. [5] used an ODE model not because the body is well-mixed but due to the fact
that the data being analyzed was the amount of virus in nasal wash. When sufficiently simple,
ODEs have the added benefit of being analytically tractable, and techniques such as bifurcation
theory can be used to predict, for example, parameter values that switch a system from pathogen
clearance to a chronically infected state. There are, however, limitations to using ODE models.
These models assume that the populations (dependent variables) are homogeneous and
uniformly distributed over the simulation space for all time. This is an assumption that may
not be realistic, and that may significantly influence the resulting dynamics. To examine the
effects of the assumption of spatial homogeneity, there is a growing body of research probing
the effects of spatial distribution on systems in ecology [32,33,107], epidemiology [45,63],
and immunology [10,41,64,97]. One option to address this limitation is to use partial
differential equations (PDEs), which capture changes in both time and space, but, in general,
as these equations get more complicated, and consequently more computationally challenging,
the advantages to using PDE models wane. For both ODE and PDE models, one must also
consider that solutions to these equations only provide an average or mean field description of
the system behavior with little or no information about the possible deviations from this
aggregated behavior.

An alternative to differential equation models are agent-based models (ABMs). ABMs are
stochastic models used to describe populations of interacting agents, such as insects and people,
using simple rules that dictate their behaviors. These models were originally introduced by
John von Neumann and Stanislaw Ulam under the name of “cellular spaces” as a possible
idealization of biological systems. They sought to show that biological processes such as the
reproduction and evolution of organized forms could be modeled by simple cells following
local rules [46]. A well known feature of ABMs is their ability to generate surprisingly complex
and emergent behavior from very simple rules, including periodic behaviors or intricate spatial
and temporal patterns [106]. Agent actions are asynchronous, that is, they do not evolve at
constant time steps. Instead, agents respond dynamically and independently to changing
environmental or discrete event cues. Consequently, nonlinearities and time-delays are not
difficult to treat empirically since they can be incorporated into the agent's rules or they may
even emerge naturally as a consequence of the system's collective dynamics. Another
advantage to ABMs is that their computational structure is inherently parallel and therefore
can be implemented on parallel computers very efficiently.

In this article, we review a variety of agent-based modeling approaches and their contributions
to our understanding of host–pathogen interactions and disease dynamics.

2. Applications of agent-based models
Agent-based models are quickly gaining in popularity. As experimental assays are developed
that increase our understanding of host–pathogen interactions, the level of description desired
for realistic and relevant models is increasingly more complex. Computer processing is
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becoming faster and more efficient, expanding the computational ability of computers and
making possible the use of ABMs for complex systems. Moreover, because ABM
implementation is achieved at the agent level, the description of the agents and rules tends to
mimic the language used to describe the real system, that is, the description is more physical
in character than mathematical. For example, models using differential equations consider rates
of creation, rates of death, rates of binding, or rates of diffusion for whole populations of agents,
whereas an ABM considers the rules guiding the actions of the agent. The familiar and natural
modeling language used in agent-based models not only makes ABMs approachable and useful
to experimentalists and clinicians, but also engages them in the modeling process.

2.1. ABMs as immune system and disease simulators
A number of immune simulators have been constructed that provide a programming framework
that in principle could incorporate all current knowledge of immunology and could be used to
model any aspect of immune dynamics. Platforms like IMMSIM [7,16,17,22-24,57,58,89],
SIMMUNE [68,69], reactive animation [34-36], and SIS [26,60,67] are true immune
simulators and allow users to define the rules of interactions and simulate an immune reaction.
Most of the immune simulators are developed to make the interaction rules simple to define
and easy to change in order to facilitate the exploration and impact of different rules on the
development and outcome of an immune response. Some of these simulators are more flexible
than others. With IMMSIM, for example, one would typically tune interactions by changing
parameter values and one could, for example, completely turn off the humoral response by
setting to zero the right set of parameters [58]. With a system like reactive animation, users
can potentially go even further and choose between what the authors refer to as “running
theories” [34]. When the rules of interactions between, for example, an epithelial cell and a T
cell are not known there typically exist various hypotheses for the way in which such
interactions proceed. The reactive animation system would allow the user to choose between
different hypotheses and observe the impact of that choice on the simulation dynamics.

The usefulness and applicability of these simulators vary, but some have been applied to
important immunological problems and their findings published in experimental journals. For
example, IMMSIM was used to model affinity maturation and hypermutation in the humoral
immune system [23], to test approaches to vaccine design [58], and to investigate mechanisms
for tolerance to pathologic rheumatoid factors [96]. IMMSIM has also been used as a
pedagogical tool: Prof. Martin Weigert used IMMSIM in his seminar “Why Immune Systems
Fail: Autoimmunity, Influenza Pandemics and HIV” at Princeton to demonstrate rather than
just describe immune cell interactions [87]. SIMMUNE became the cornerstone of the Program
in Systems Immunology and Infectious Disease Modeling (PSIIM) at the National Institute of
Allergy and Infectious Diseases [8], a program dedicated to the use of computational
approaches to problems in immunology. Recently, immunologist Germain, in collaboration
with SIMMUNE's creator, Meier-Schellersheim, and others used the simulator to investigate
the mechanism of chemo-sensing [70].

Another type of simulator, which we refer to as a disease simulator, is a general programing
framework that can be tuned to model a specific disease including tumor growth, tuberculosis,
or influenza. By changing parameters, such as the rate of spread of the infection, the lifespan
of infected cells, or the binding rates of cytokines, users can calibrate these frameworks to
model a variety of diseases. Three such simulators are CyCells [102-105], PathSim [85,90]
and the MASyV modules ma_immune and ma_virions [10,11,13]. These simulators reproduce
a variety of host–pathogen interactions, and are typically easier to use and calibrate than the
immune simulators.

In contrast to general disease simulators, there is another class of ABMs that concentrates
instead on a single disease or on specific aspects of immune mechanisms. Among these are
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models of: HIV [97,109], M. tuberculosis [88,102], Epstein–Barr [31,90], influenza [13,14],
cancer vaccination [78,79], tumor growth and invasion [1,53,65,108], tumor-induced
angiogenesis [9], and acute inflammation [2,4]. Some of these simulators have greatly
contributed to improving our understanding of the dynamics of a disease and represent novel
and original approaches to modeling.

2.2. The use of agent-based models by experimentalists
The appeal of ABMs is such that their use goes beyond the realm of traditional modelers. While
the involvement of experimentalists in mathematical modeling remains somewhat limited,
ABMs in immunology/disease modeling have engaged experimentalists since their beginning.
Indeed, one of the first ABM of immune interactions, IMMSIM, was the result of a close
collaboration between Seiden, a computer scientist, and Celada, a well-respected
experimentalist. This is a testament to the appeal of ABMs, where the description and
representation of disease systems are close to that of the true biological system. This attraction
for experimentalists is helping to bridge the gap between theoretical models and experiments.

Jenkins of the University of Minnesota is one such experimentalist. New imaging methods
have, for the first time, permitted the visualization of individual T cells and their interactions
with antigen-presenting cells in vivo [6,42,71,74]. Jenkins and his team assembled the emerging
literature into a coherent picture of the first 50 h of a primary immune response to an antigen
in the form of an animation [21]. Their model, or rather their animation, was implemented as
a movie simulation using Macromedia Flash MX. It consists of a two-dimensional plane, which
corresponds to a 10 μm slice (approximately one cell diameter) through a hypothetical spherical
lymph node 2 mm in diameter, and includes T cells, B cells, and dendritic cells. Random motion
paths for each cell in the simulation are pre-scripted individually and scaled to their known
approximate speeds taken from the two-photon microscopy literature [73,76]. Restrictions are
put on the paths, such that B cells are confined to the follicles (except 5 h after exposure to
antigen when their movement is restricted to the outer edge of the follicles near the T cell area),
dendritic cells to the T cell area, and T cells to the T cell area and outer edges of the follicles
for 90% and 10% of their paths, respectively. When a collision occurs between two cells, the
cells’ motion along their respective path is halted for a defined amount of time to mimic real-
time interactions. The time allotted to each interaction depends on the circumstances. The
restrictions on the cell paths and the scripted interaction times were all taken from published
experimental results.

Jenkins’ approach is novel; rather than writing what they feel would be a good model at an
appropriate level of detail and then seeking empirical data to calibrate the model, their model
was built piece by piece from the experimental literature. The resulting simulation constitutes
a very complete and convincing visual summary of the available knowledge at the time and is
exemplary of the capability of ABMs to translate and synthesize a large body of
compartmentalized research on a complex biological system. Moreover, movies of Jenkins’
simulations make other important biological contributions. For example, these movies showed
that it is possible to have B–T cell interactions in the absence of directed cell chemotaxis.
Indeed, random mechanisms based on restriction of B cells to a specific spatial area rarely
patrolled by T cells can also result in T–B cell interactions if T cells proliferate first, thus
increasing the probability of a T–B cell encounter [21].

Another experimentalist seduced by the appeal of ABMs is An, an M.D. in Trauma and Critical
Care at Northwestern University Feinberg School of Medicine. Dr. An employed agent-based
modeling to describe systemic inflammatory response syndrome and multiple organ failure
[3,4], the first application of agent-based modeling to critical care. An important aspect of this
ongoing work is the utilization of agent-based modeling to simulate clinical trials, providing
a crucial link between theoretical modeling and the clinical setting [2]. This model assumes
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that the primary immune response is initiated by endothelial cell injury at the cell–blood
boundary and that the inflammatory response is translated from a local response to a systemic
one. Model agents are endothelial cells, neutrophils, monocytes, several populations of T helper
cells, and neutrophil/monocyte/T lymphocyte progenitor cells. The model also considers the
role of a number of cell receptors, including the ICAM, IL-1, and TNF-α receptors, and relevant
chemical mediators. Compared with results from other clinical trials and animal studies, this
model reproduced the general behavior of the innate inflammatory response as measured by
patient outcome and cause of death. In silico trials of anti-cytokine therapy were simulated and
compared qualitatively well with those in published phase III anti-cytokine clinical trials. Dr.
An then formulated a series of hypothetical treatment strategies and used his model to evaluate
the efficacy of the proposed interventions. Even this relatively simple ABM of the immune
response displays complex and counter-intuitive system dynamics. Conceptually, the use of
ABMs to simulate clinical trials holds a great deal of promise and sets the stage for other
theoreticians and experimentalists to use models to formulate and test treatment strategies
before commencing actual animal or human trials.

2.3. Studying localized spatial effects
ABMs are stochastic models; as such they can reveal unique dynamics resulting from very
specific spatial configurations or from rare localized events that would be missed using a mean
field approach. This is a particularly valuable feature of these types of models, especially since
similar features are responsible for variations seen in the development and outcome of infection
in different individuals or in a given individual at different times. Many papers have
investigated the effects of varying spatial configurations or the occurrence of rare localized
events on infections [10,41,64,97].

Louzoun et al. [64] investigated the effects of spatial heterogeneity of antigen concentration
on lymphocyte proliferation. First, the authors define a simple system with two species: antigen
and lymphocytes. The antigen population grows at a constant rate and decays at a rate
proportional to its concentration. Lymphocytes grow at a rate proportional to both their
concentration and to the concentration of antigen, and die at a rate proportional to their
concentration. For this model, the authors showed that if the concentration of antigen was above
some threshold, the lymphocytes would proliferate, otherwise they would not. The authors then
discretized the antigen and lymphocyte populations in both space and time, and incorporated
the discrete addition or removal of agents (lymphocytes or antigen) with a given probability
rather than at a given rate. This change resulted in the emergence of local hot spots of
lymphocyte proliferation. So while the average antigen concentration was not above the
threshold required for lymphocyte proliferation, regions where the local antigen concentration
was above the threshold quickly dominated the system average with a growth rate proportional
to the peaks of local concentration of antigen, and not to the average concentration throughout
the system [64].

Strain et al. [97] examined the specific case of an HIV infection and compared the behavior of
a commonly used ODE model [81,82] to an analogous cellular automaton model where each
lattice site represents a T cell. From the diffusion rate of virions and the rate of encounter and
fusion between virus and T cells, the authors derived an expression for the probability that a
T cell located a certain distance away from a bursting infected T cell will become infected.
The authors initiate their simulation with a single infected cell which in turn infects other cells
according to the probability they derived. Subsequent infections result in a radial wave of
infection moving outward. This wave leaves behind a pool of infected cells. If the replacement
rate of dead cells with new target cells is slow, the wave dissipates and uninfected cells replenish
the area. If the replacement rate is fast, the newly regenerated target cells cause the infection
wave to recede and a chaotic steady state pattern forms [97]. Most importantly, because
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infectivity depends on the concentration of T cells (neighbors can be infected more readily
when cells are tightly packed), the authors found that the ODE model overestimated viral
infectiousness by more than an order of magnitude when compared with the spatial model
[97].

Funk et al. [41] used an approach similar to that of Louzoun et al. [64], but proposed a more
complete and realistic model of three species: uninfected target cells, virus-infected cells, and
virus. The authors first present the dynamics of the non-spatial homogeneous model, and then
extend the model to a 2-D spatial model, and finally they randomly vary the parameters from
site to site according to a uniform distribution. Comparing results from the non-spatial
homogeneous model with the spatial model, the authors found that as the infection spreads
outwards from the initial infection site, the viral titer curves for both models are initially similar.
However, as the initially infected sites approach an equilibrium state and outer cells become
affected by the infection wave, the increase in virus slows. This phenomenon is not seen in the
non-spatial homogeneous model. As in the Strain et al. model, the Funk et al. spatial models
also resulted in lower average viral concentrations when compared to non-spatial homogeneous
models [41].

When the parameters of the Funk et al. model were varied from site to site, a new dynamic was
revealed. This new system formed a series of source and sink sites and the ability of the virus
to migrate from site to site (its diffusion rate) had a significant impact on the dynamics. Finally,
the authors added immune cells to their heterogeneous spatial model. For this case, they found
that a spatial model greatly improved the stability of the infection. Stability was enhanced
because the equivalent non-spatial homogeneous model gave rise to large oscillations,
analogous to what is observed in predator–prey models in ecology. In contrast, the spatial
coupling by local dispersal of virus and immune cells in the non-homogeneous spatial model
resulted in oscillations at different sites that were out of phase. These oscillations were damped
and had the effect of spatially averaging the dynamics. This is a very interesting finding as the
large long-lasting periods of oscillations commonly observed in non-spatial models are only
very rarely observed experimentally or clinically, while the equalized dynamics of spatial
models are more in line with experimental and clinical observations.

Finally, Beauchemin [10] investigated the effect of viral infection spread in tissue and the
particular effect on influenza dynamics. The model is a 2-D square lattice where each site
represents a target cell and the grid, which represents the tissue, is patrolled by generic immune
cells which can kill infected cells. While the models mentioned above all initiate infection with
a single infected cell, this work explored the effect of altering the initial distribution of infected
cells. The cases examined included a given number of initial cells distributed either randomly
on the grid, in small isolated groups of several cells, or as a single lump. Beauchemin found
that infection dynamics was sensitive to the initial spatial distribution. This is due to the fact
that when an infected cell is part of an infected patch, it already has infected neighbors and
therefore has fewer infectable neighbors than a single infected cell whose neighbors are all
infectable. This results in a smaller effective infection rate in simulations where initially
infected cells are distributed in larger lumps. The author then explored the effect of target cell
replenishment. In ODE models, target cells are typically replenished at a fixed rate or at a rate
proportional to the number of target cells as a function of cell division. Beauchemin explored
the effects of changing the replacement rule such that an empty site can only be replenished
by a new target cell if it is in contact with a dividing uninfected target cell. Screenshots resulting
from both regeneration rules are presented in Fig. 1.

As the infection wave spread outward, it left behind a pool of dead cells, which could only be
replenished if in contact with uninfected cells. This could only happen once immune cells had
detected the infection and began breaching the infection wave that segregates the dead cells
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from the uninfected cells (see Fig. 1). This modification to the model yielded a curve for the
fraction of dead cells over time which closely resembled experimentally observed curves
[19,10] and contrasted with the sharp and narrow curves obtained with a model where
replacement rate only depends on the number of uninfected cells but not on their location.

2.4. Infection of cell layers
Because emerging spatial patterns can have a significant effect on the development and
outcome of a simulated infection, it is important to define the model in a manner that is
consistent with the true spatial nature of the real system. For example, two existing ABMs of
HIV [97,109] are implemented on 2-D square lattices where each site represents a T cell and
the infection spreads from infected cells to their neighbors. The infection spreads as a wave
and, under certain conditions, intricate wave patterns can form. Unfortunately, while it is true
that T cells are tightly packed (as in a lattice) [6], they are quite motile with velocities of
approximately 11 μm/min [71,75]. It is likely that if the T cells in these HIV models were
motile, these intricate infection wave patterns would not form.

There are, however, models where a 2-D lattice of static cells is the best and most accurate
representation. An example of this would be a model of an in vitro experiment conducted on
a 2-D cell monolayer [30,51,59]. Howat et al. [51] used data from 2-D Madine–Darby bovine
kidney (MDBK) and Vero cell cultures infected with Herpes simplex virus 1 (HSV-1) to study
the antiviral effect of interferon β (IFN-β). Their ABM consists of a 2-D hexagonal lattice
where each site represents a target cell that can either be susceptible, infected, in an antiviral
state, or dead. Because IFN-β diffusion is very fast, it is taken to be instantaneous and IFN-β
is tracked as a single global variable. Because the experimental cellular monolayer is overlaid
with an agar that impedes viral diffusion, infection is assumed to spread locally: Virions are
released by an infected cell as a single burst upon cell death and distributed to the six immediate
neighbors and 12 next neighbors weighted according to distance. By comparing the fraction
of dead cells over time obtained experimentally to what their ABM produces, the authors were
able to calibrate their model and determine key parameters of HSV-1 infection and IFN-β
protection. For example, they found that it takes about 95 h for the MDBK monolayer to reach
an antiviral state [51]. Once calibrated, Howat et al. used their model to determine the dosage
of HSV-1 needed to obtain total monolayer destruction, maximum IFN-β production, or
minimum recovery time. Notably, the authors determined that the minimum recovery time is
obtained for the maximum boundary length, i.e., when the dead cell plaque geometry is such
that it maximizes the number of cells in contact with an empty area (a pool of dead cells).

Beyond in vitro experimental systems, there are also in vivo diseases which can be accurately
represented by a 2-D lattice of non-motile cells. An uncomplicated influenza infection, i.e.,
one which infects only the upper lung and does not degenerate to pneumonia, is a good example.
Beauchemin et al. [10,14] have taken advantage of this fact and developed MASyV's
ma_immune, a 2-D square lattice model of influenza A infection [11]. This representation is
a reasonable description of the true system because the target of influenza A is the tightly
packed monolayer of cells that line the airways. Additionally, since influenza virions only bud
apically (from the top of the infected cells) [77] the infection effectively occurs in a 2-D plane.
Interestingly, when this model was published in 2005, it was only the second model ever
proposed for influenza infection in humans; the other one being the 60 parameter ODE model
with delays proposed by Bocharov and Romanyukha 20 years earlier [19]. At the time, very
little experimental data on the dynamics of influenza was available and a spatial model was
especially difficult to justify. Nevertheless, Beauchemin et al. were able to fix 3 of their
parameters and set realistic biological bounds on 6 of the 8 other parameters from information
gathered in the literature. Then, picking parameter values within these bounds, the authors were
able to reproduce a number of features of influenza infection, for example, that the peak of
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infected cells occurs at 48 h and that infection resolves by day 5 ± 2. This work was originally
intended to show that the ABM is complex enough to reproduce the general shape of a response
to an uncomplicated viral infection, and that it yields quantitatively reasonable results when
parameterized for a particular viral infection. The ABM was later used to study the influence
of spatial heterogeneities on the dynamical evolution of a viral infection [10], as discussed in
Section 2.3.

This model also improved our understanding of flu kinetics. The model was used to derive
values for some parameters (e.g. replication rate of cytotoxic T lymphocytes per infected cell
encounter) that were subsequently employed in other influenza models [25]. The model's
agreement with the limited available data motivated its expansion into a more detailed and
accurate model of influenza infection in vitro. In collaboration with experimentalist Dr.
Frederick T. Koster, M.D., and University of New Mexico computer scientist Stephanie
Forrest, Beauchemin and others developed an improved version of the model, MASyV's
ma_virions, which accounts for viral release, dispersion, and clearance [11,13]. The ABM
consists of a 2-D hexagonal grid representing lung tissue and on which viral concentrations
evolve based on a discretized version of the diffusion equation. Calibration of the ABM was
accomplished by quantitatively comparing the ABM's results with experimental data for
fraction of infected cells, patchiness, and viral concentrations versus time produced by an in
vitro human lung cell monolayer [13]. The calibration to preliminary data provided an estimate
for the diffusion rate of virions that was 1000-fold lower than the natural diffusion expected
from the Stokes–Einstein equation. The calibrated virion diffusion rate is consistent with
virions getting trapped by cell receptors and mucus [13].

2.5. Agent-based models in shape space
The space in which ABMs evolve does not always need to correspond to 3-D Euclidean space.
Another variety of ABMs of host–pathogen/immune systems are called shape space models
[27,28,61,83,84,92,95,98]. In these ABMs, the spatial dimensions represent the generalized
shapes [83] of cell receptors and epitopes, the parts of antigens recognized by the immune
system. The affinity between a receptor and an epitope is a function of their distance in shape
space [83]. The evolution of the system in space and time then can be used to represent the
development of an immune response including receptor variability due to somatic
hypermutation, and the dynamics of clonal expansion and contraction. Typically, an epitope
corresponds to a given location in shape space and its presence stimulates the activation and
proliferation of lymphocytes located at and around that site, that is, those with a high receptor
affinity for that epitope. In modeling viral infections it is also possible to allow the virus to
mutate and evolve its epitopes so as to avoid immune elimination. Thus, the shape space
framework is very flexible and has obvious use in immunological modeling.

One shape space model that has had an impact on influenza research was proposed by Smith
et al. [93] in order to study the efficacy of repeated annual influenza vaccination. Although
annual influenza vaccination is recommended for high risk groups, such as infants and the
elderly, clinical studies of the efficacy of annual vaccination have lead to conflicting results.
One empirical study by Hoskins et al. [50] suggested that during some flu seasons patients
given repeated annual vaccinations had less protection that first-time vaccinees, while another
study suggested that repeated annual vaccination did in fact offer long-term continual
protection [54]. Smith et al. [93] showed that differences in the antigenic distance (i.e. the
distance in shape space) between the vaccine strain and the circulating influenza strain in both
studies, which were conducted in different years, could account for the observed discrepancies
in the results. In particular, they showed that a first vaccine will negatively interfere with the
protection potentially afforded by a second vaccine when the two vaccine strains are close in
shape space. This is because the first vaccination raises antibodies that by cross-reactivity can

Bauer et al. Page 8

Inf Sci (Ny). Author manuscript; available in PMC 2010 April 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



partially eliminate the second vaccine. Using an ABM that followed the dynamics of a broad
array of B cells and antibodies for the vaccine epitopes, Smith et al. [93] were able to show in
a quantitative manner how the model could explain the available experimental data on the
efficacy of repeated vaccination. Further, the idea of monitoring the antigenic distance in shape
space between flu strains has proved to be a valuable approach in studying influenza evolution
[94] and is now a factor in the World Health Organization's biannual decision making process
for selecting which vaccine strains to include in the seasonal influenza vaccine [91].

2.6. The role of agent-based models in multiscale systems
Biological systems naturally span multiple time and length scale hierarchies. Time and spatial
scales can range from 10−2 s and 10−9 m during gene transcription and protein production at
the molecular level to 106 s and up to several meters at the level of the whole organism [52,
88]. However, experimental investigations and the data generated focus on specific
mechanisms relegated to isolated time or length scales and must be translated between
biological scales. A multiscale approach to modeling biological systems is crucial to
developing realistic and relevant models capable of predicting complex biological phenomena.

Bridging multiple scales is a formidable modeling challenge. Because ABMs are constructed
by considering the behaviors of individual system components and can be developed for each
biological subsystem or hierarchy, they are also naturally well suited for linking these different
models together. For example, merging ABMs focusing on different biological scales has been
used to translate the results of and facilitate collaboration between experimental groups
working on various aspects of the acute inflammatory response [3]. In this work, a group of
agent-based models were developed to simulate intracellular signal transduction pathways that
were then incorporated into ABMs for different cell types. Subsequently, these cellular models
were integrated to simulate tissue and whole organ function during the acute inflammatory
response.

Another modeling technique that has emerged in response to the computational challenge
presented by multiple scales integrates differential equation models with ABMs to couple the
dynamics occurring on different time and length scales [1,9,53,56,80,108]. This technique has
been applied to the development of models describing tumor growth, a complex biological
system with important clinical applications [1,53,108]. In Jiang et al. [53], a three-dimensional
model of avascular tumor growth was developed that spans three distinct scales. A type of
ABM, called a lattice Monte Carlo model, is used to describe tumor cell growth, adhesion, and
viability. These cell dynamics are regulated at the intracellular level by a Boolean network for
protein expression that controls the cell cycle. At the extracellular level, nutrients, metabolic
waste, and growth factor and inhibitory chemical concentrations are described by a system of
partial differential equations. Growth curve measurements and measurements of the size of the
proliferating rim and necrotic core regions from simulated tumors agree with the quantitative
results obtained from tumor spheroid experiments. This model predicts what environmental
conditions tumor cells require for survival, and the molecular weight of potential growth
promoters and inhibitors regulating tumor cell viability. As demonstrated by these results,
validated models of biological systems provide new biological insights, can be used for
prediction, and guide future experimental pursuits. Looking forward, coupling tumor growth
models with agent-based and cell-based models of angiogenesis [9,80] and the immune system
response against the tumor will be a major step towards the development of an integrated
systems approach to modeling tumor growth and cancer invasion and towards the ultimate goal
of predicting the effects of novel cancer and anti-angiogenic therapies.
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2.7. Improved experimental data fueling advances in modeling
Models of any type can only be as good as the data used to develop, calibrate and confirm
them. Fortunately, new experimental techniques are allowing access to unprecedented amounts
of data, but also to novel types of data. Because ABMs are spatial models they require spatial
data: a rare commodity. High resolution spatial data is especially important given that localized
spatial effects can have an important impact on the resulting dynamics, as mentioned above.
The recent application of two-photon microscopy to in situ and in vivo imaging of mice lymph
nodes has determined trajectories of individual T cells as they move within lymph nodes [6,
42,74-76]. This new technique has revealed that T cell motion in lymph nodes occurs largely
as a result of the cells crawling along fibers of the fibroblastic reticular cell network [6].
Additionally, examination of these trajectories has shown that the end-to-end distance that T
cells travel increases approximately linearly with the square root of time, suggesting that the
movement of T cell over long distances can be described by a random walk rather than motility
guided by chemotaxis. These new data have facilitated the elaboration of models for the
movement of T cells within lymph nodes: some simple [12] and some more detailed [15,72].

The model by Beauchemin et al. [12] was a simple model where a T cell moves in a straight
line at constant speed vfree for a time tfree, then pauses for a time tpause as it reorganizes its
intracellular machinery allowing it to turn. It then picks a new direction, and undergoes another
free run. Comparing simulations against experimental data yielded a mean free path of
approximately 38 μm, which is about twice the distance between intersections in the
fibroblastic reticular cell network, which averages 17 ± 7 μm. From this, the authors concluded
that when coming to a fiber intersection, a T cell will turn roughly 50% of the time, and 50%
of the time it will continue along its original fiber.

The Meyer-Hermann and Maini model [72] offers a more detailed description of the active
crawling exhibited by both B and T cells. This model is a 2-D cellular Potts model [43,44]
where a B or T cell is represented by a group of neighboring lattice sites. The lattice sites that
make up the lymphocyte are moved individually but their movements are constrained to
maintain a constant cell volume and to respect the general direction chosen for active
movement. The model yielded a distribution for the velocities of B and T cells that agreed
impressively well with velocities obtained experimentally [72].

More recently, Beltman et al. [15] proposed a 3-D rather than a 2-D cellular Potts model, which
also represented lymphocytes as a collection of neighboring lattice sites. The authors
investigated the possibility that motility patterns observed for T cells and dendritic cells are a
result of the anatomical structure of lymph nodes, rather than an intrinsic characteristic of the
cells’ motility. Indeed, they found that by restraining T cell movement using the constraints
imposed by anatomical barriers in lymph nodes, the model can account for all characteristics
of the experimental observations. In particular, they showed that lymph node anatomy can
explain the large velocity fluctuations seen experimentally for T cells. Further, they found that
as a result of the obstacles, T cells tend to organize into small, highly dynamic streams and
provide experimental evidence to support these new findings. Finally, using their model, they
were able to predict that dendritic cells would be able to contact approximately 2,000 different
T cells per hour while T cells could contact roughly 100 dendritic cells per hour [15].

2.8. Sensitivity and uncertainty analysis in modeling and prediction
Because ABMs consist of several thousand lines of code, it can often be just as complicated
to understand the model as it is to understand the real system. In general, as the system grows
in complexity, the number of parameters that must be estimated also increases. Parameter
estimation introduces uncertainty into the system due to experimental error, differences in
experimental assays, or error from data fitting techniques. Moreover, when the number of
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agents is large and their interactions numerous and complicated, it can become difficult to
extract or isolate the key processes responsible for a given outcome. In their paper proposing
an ABM of M. tuberculosis infection, Segovia-Juarez et al. [88] use a simple and efficient way
of analyzing their results by performing a sensitivity and uncertainty analysis of the model's
parameters. The authors picked 12 of the 27 parameters of their model and investigated their
effect on the growth of tuberculosis granulomas. Using the number of extracellular bacterium
and the granuloma size as outcome variables, they mapped out the parameter space using the
Latin hypercube sampling method and quantified the sensitivity of their model to these
parameters using partial rank correlation coefficients on each parameter set. This type of
analysis quantifies the importance and impact of each parameter on the outcome variables.
Their analysis revealed that the intracellular growth rate of the bacteria is strongly and
positively correlated with the number of extracellular bacteria at early times of the infection
and at much later times post-infection, and negatively correlated at intermediate times. This
suggests that at low bacterial levels, a large intracellular bacteria growth rate is critical to
infection, while a small growth rate seems necessary to generate large, long-lasting
granulomas. This is one example of how simulation and analysis can be coupled to provide
insights into and enhance our understanding of the dynamics of disease (see [18,66] for a more
complete review of these analytic techniques).

3. Discussion
Agent-based models have inspired significant interest through their visual appeal and because
the languages used to describe the model and the natural system are very similar. Computational
advances are making possible the use of ABMs to describe whole systems arising not only in
the human immune system, which has been the focus of this article, but also in financial markets
[37,47,99,101], the spread of epidemics [29,100], cancer dynamics [1,53,65,108], and the
threat of bio-warfare [20] to name just a few. In addition, ABMs have engaged experimentalists
and have helped facilitate their increasing involvement in modeling. Here, we have presented
a limited survey of ABMs in the context of host–pathogen dynamics. This survey is in no way
exhaustive, but is meant to highlight the novel and original modeling approaches applied by
researchers and the contributions to our knowledge of specific diseases and immune
mechanisms.

ABMs are only one of a number of modeling techniques that could be applied to describe a
particular system. The choice of model to employ is guided by multiple factors including the
questions that one wishes to answer, the assumptions that can be made, parameter availability,
and computational expense. Choosing agent-based modeling is not without cost or
consequence. ABMs tend to require a larger number of parameters than both ODE models and
their spatially-continuous partial differential equation analogs. Until experimental assays
capable of measuring relevant experimental data catch up with the needs and complexity of
model calibration, ODEs are sometimes the only viable modeling option. An important
weakness of ABMs arises in the context of sharing and comparing results. At worst, a partial
differential equation model with delays will consist of a large and complicated set of equations,
but that can be written down in an unambiguous manner. In contrast, an ABM consists of many
lines of codes which could be in any variety of programming languages, and its translation into
words can overlook very important details of its implementation that are crucial to reproducing
its results. This is a problem that researchers utilizing ABMs need to pay more attention to.
Establishing a permanent home for any computer model developed and a static version
corresponding to the exact state of the program used for published results are important first
steps. Software repositories like SourceForge.net (http://sourceforge.net) and freshmeat
(http://freshmeat.net) provide such services free of cost.
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As with any modeling approach, ABMs need to adhere to the principles of scientific rigor. For
an ABM to be useful to understanding the mechanisms of the system, it needs to convincingly
relate to it. Models need to be calibrated and researchers should confirm that their parameter
values are within physically relevant ranges. Toward this end, it is helpful to provide a
sensitivity analysis of the parameters to identify key parameters and to fully grasp the
consequences of parameter uncertainty and variability on the observed outcomes. Modelers
should also make every effort possible to quantitatively validate the results of their simulations
with independent experiments or with reports in the literature, using data different from those
that were used for model calibration. Finally, and perhaps most importantly, models should
strive to make experimentally verifiable predictions. Once verified, such predictions will
establish that the model realistically captures some aspects of the system. Further, models
validated in this way may offer new perspectives, provide a framework for formulating and
testing hypotheses, and may suggest important new experiments.
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Fig. 1.
Effect of the regeneration rule on the infection dynamics. From left to right: (a) using a global
rule where dead cells are replaced at a rate proportional to the total number of uninfected cells;
(b) using a local rule where dead cells are only replaced when an immediate uninfected neighbor
is dividing; (c) when using the local rule, dead cells can only be regenerated once the infection
wave has been breached by the immune cells. Using the same infection and death rate, a local
regeneration rule results in a larger number of dead cells but a smaller number of infected cells
compared to a non-spatial global rule. The images are screenshots taken from MASyV's
ma_immune client [11,10] and represent a 2-D tissue patrolled by immune cells (blue) where
each lattice site corresponds to a tissue cell which can either be uninfected (white), dead (black),
or in various stages of infection (green, yellow, red). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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