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Abstract
Early in development, the cat primary visual cortex (V1) is dominated by inputs driven by the
contralateral eye. The pattern then reorganizes into ocular dominance columns that are roughly
equally distributed between inputs serving the two eyes. This reorganization does not occur if the
eyes are kept closed. The mechanism of this equalization is unknown. It has been argued that it is
unlikely to involve Hebbian activity-dependent learning rules, on the assumption that these would
favor an initially dominant eye. The reorganization occurs at the onset of the critical period (CP)
for monocular deprivation (MD), the period when MD can cause a shift of cortical innervation in
favor of the non-deprived eye. In mice, the CP is opened by the maturation of cortical inhibition,
which does not occur if the eyes are kept closed. Here we show how these observations can be
united: under Hebbian rules of activity-dependent synaptic modification, strengthening of
intracortical inhibition can lead to equalization of the two eyes’ inputs. Furthermore, when the
effects of homeostatic synaptic plasticity or certain other mechanisms are incorporated, activity-
dependent learning can also explain how MD causes a shift toward the open eye during the CP
despite the drive by inhibition toward equalization of the two eyes’ inputs. Thus, assuming similar
mechanisms underlie the onset of the CP in cats as in mice, this and activity-dependent learning
rules can explain the interocular equalization observed in cat V1 and its failure to occur without
visual experience.
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Introduction
The question of the relative roles of genetic specification vs. activity-dependent self-
organization in the development of cerebral cortex remains an important and controversial
one. A key system for studying these roles is the development of ocular dominance columns
in primary visual cortex (V1) (e.g., Crair et al., 2001; Crowley and Katz, 2002; Huberman,
2007).

In cat V1, responses early in development are dominated by the contralateral eye (Crair et
al., 1998). Both physiologically and anatomically (Crair et al., 1998, 2001), inputs from the
ipsilateral eye are restricted to patches within a continuous sea of contralateral-eye inputs.
Then, beginning at the end of the third postnatal week, coincident with the onset of the
critical period for plasticity in response to monocular deprivation, the inputs from the two
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eyes become roughly equalized and segregate into alternating ocular dominance columns
(Crair et al., 1998). This equalization and segregation does not occur if the animal is
deprived of normal visual experience by binocular lid suture (Crair et al., 1998).
Nonetheless, it was repeatedly argued (Crair et al., 1998; Crowley and Katz, 1999; Katz and
Crowley, 2002) that this equalization was unlikely to arise simply from Hebbian rules of
synaptic plasticity, which are typically thought to play a major role in activity-dependent
self-organization (Katz and Crowley, 2002; Katz and Shatz, 1996; Miller, 1996; Mrsic-
Flogel et al., 2007; Swindale, 1996). This was presumably based on the intuition that, in a
Hebbian competition between two inputs with similar activities, the initially dominant input
could not lose innervation to the initially weak input. To our knowledge, no model has been
shown to explain this activity-dependent equalization of OD columns.

In mouse V1, the onset of the critical period for monocular deprivation plasticity coincides
with, and depends upon, a sufficient maturation of intracortical inhibition (Fagiolini and
Hensch, 2000; Hensch et al., 1998; Morales et al., 2002). The maturation of inhibition and
the associated onset of the critical period does not occur if the eyes are not opened.

Here we show how these observations can be united: sufficiently strong inhibition can force
equalization of the two eyes under a Hebbian rule. If recurrent intracortical connections are
inhibition-dominated, then activation of some cortical cells by one eyes’ inputs evokes net
inhibition that suppresses the simultaneous activation of other cortical cells. This suppresses
patterns in which a majority of cortex is driven by a single eye, leaving only those in which
the two eyes equally share cortex. If cortical activation tends to occur in periodic patterns, as
has been shown in developing V1 (Chiu and Weliky, 2002) and as will occur in models
using a “Mexican hat” pattern of excitation and inhibition, then a periodically alternating
ocular dominance pattern results. For this solution to be viable biologically, it must also be
the case that imbalances of the two eyes induced by monocular deprivation can lead to
inequalities of the territories of the two eyes, despite the drive of inhibition to equalize these
territories. We show that, in the simplest purely Hebbian models of plasticity, this solution
can work but is fragile, working only in fairly restricted parameter regimes because synapses
that do not drive postsynaptic neurons stay weak under Hebbian plasticity. The problem is
that the simplest rules do not have robust means for synapses that have approached zero
strength to regain strength after maturation of inhibition or MD. More complex plasticity
rules that deal with this problem can allow both inhibition-mediated equalization of equally
active eyes and monocular deprivation effects to robustly occur. To illustrate this, we study
a simple modification of the model that incorporates homeostatic plasticity, which forces the
average activity level of the postsynaptic cell to remain roughly constant, (e.g., Kaneko et
al., 2008; Maffei et al., 2004; Mrsic-Flogel et al., 2007; Turrigiano et al., 1998; Turrigiano
and Nelson, 2004) as well as correlation-based plasticity, and show that under it the entire
developmental sequence is more robustly replicated. If we start from an initial condition of
synaptic weights, where ipsilateral-eye-dominated patches are in a continuous sea of
contralateral-eye input, this pattern is stable when inhibition is weak. After maturation of
inhibition, an equalized, periodically alternating ocular dominance pattern emerges, but
monocular deprivation still causes an ocular dominance shift. In summary, assuming that the
onset of the critical period in cats coincides with a maturation of inhibition that depends on
the eyes being open, as in mice, this and activity-dependent learning rules can suffice to
explain the interocular equalization observed at the onset of the critical period in cats and its
failure to occur under binocular deprivation (Crair et al., 1998).

Toyoizumi and Miller Page 2

J Neurosci. Author manuscript; available in PMC 2010 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Materials and Methods
Model

We model N = 100 pyramidal neurons in primary visual cortex receiving input from LGN
(see Fig. 1). These neurons are uniformly distributed on a one dimensional axis x (−1 < x
≤1). The ends of this one-dimensional axis are connected, i.e. we use periodic boundary
conditions. The model has only two inputs, one representing the contralateral eye (C) and
one the ipsilateral eye (I). Each V1 neuron receives a connection from each of these two
inputs.

We use this very simplified model because it contains the key ingredients needed to
understand the problems of ocular dominance map formation, and in particular of ocular
equalization and the role of inhibition in this process, while simplifying analysis and
simulation-based parameter exploration. Our analysis of the 1-D system in terms of
eigenmodes and constraints (Supplemental Materials) generalizes directly to the two-
dimensional case (e.g., Erwin and Miller, 1998; Miller, 1996; Miller et al., 1989; Miller and
MacKay, 1994). Periodic boundary conditions simply remove boundary effects as an issue;
since most of V1 is far from a boundary as measured in units of the ocular dominance spatial
period, boundary conditions are unlikely to play a critical role in the processes we are
studying. We consider only two input lines, whereas in reality there are many types of cells
projecting to cortex (e.g. ON and OFF cells, and cells representing many retinotopic
positions). These multiple inputs are important for studies of the organization of structured
receptive fields and multi-feature maps in visual cortex. However, when correlations among
these inputs are such that individual receptive fields show ocular dominance segregation,
then the arrangement of ocular dominance across the cortex is determined by intracortical
interactions and the internal structure of receptive fields beyond the eye of dominance is
irrelevant to this process (Erwin and Miller, 1998; Miller, 1996; Miller et al., 1989). Thus, a
model in which inputs simply represent the two eyes is sufficient to understand the
arrangement of ocular dominance across the cortex, which we are studying here.

At each time step, unrectified input firing rates ĥ and ĥI are drawn from a two di-mensional

Gaussian distribution with mean  and covariance matrix  with νC=νI=
10 Hz and τ = 0.5 s, where the variable c = 5 Hz parametrizes the strength of the covariance.
The variances, of the form ν/τ, are the variances of the average rate over a time τ of a
Poisson process with mean rate ν. Thus, this form of covariance arises from imagining that
the input firing rates averaged over a time comparable to τ are the relevant variables for the
plasticity process (e.g., see Butts et al., 2007; Stryker, 1986 for evidence of long timescales
in early visual system plasticity), although similar covariance structure might arise in other
ways. The LGN input firing rates from the contra and ipsilateral eyes in that timestep are
then given by hC = [ĥC]+ and hI = [ĥI]+. Here, [·]+ is the half rectification function [x]+ = x, x
≥ 0; = 0, otherwise.

The firing rate, r, of a V1 neuron at position xi and at time step t is determined by self-
consistently solving (see below)

(1)
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Here, wC and wI are the synaptic weights of the contralateral and ipsilateral input, and
M(xi−xj) represents the strength and sign of intracortical input between the cells at positions
xi and xj (described in more detail below). The noise variance is σ2 and ξ is a Gaussian
random variable with mean 0 and variance 1. As we explain in the Results, noise is required
to induce an OD shift after MD given lateral interactions with strong enough inhibition to
cause equalization. The noise level, σ, is varied in Results and its effects discussed. The
factor 2/N represents the interval between adjacent neurons (N neurons over a cortex of
length 2), and is chosen so that the total strength of intracortical input stays roughly fixed as
N changes. T = 1 Hz is a fixed threshold.

Equation 1 is solved by iteration, as follows. Let r(t) represent the solution for the vector of
firing rates across all spatial positions at time t, and let r(t, n) represent the nth iteration
toward the solution r(t). For t = 1, the first iteration, r(t, 1), is set to 0; for t > 1, it is set to
the solution of the previous time step, r(t − 1). Then, for each n = 2, 3, …, r(t, n− 1) is used
for the right side of Eq. 1, and the resulting left side is r(t, n). Iterations continue until the

criterion  is met for all i at n≡nc. At this point
the solution is taken to be r(t) = r(t, nc). We used two parameter sets in the main text,
described below: for parameter set 1, convergence typically requires 20–50 iterations and
never more than 70; for parameter set 2, convergence typically requires 10–20 iterations and
never more than 30. Our iteration criterion is very conservative: simply running 20 iterations
without an explicit convergence criterion gave indistinguishable results with both parameter
sets. The random variables – the input from the two eyes and the noise ξ – are fixed
throughout the iterations for a given timestep, but vary from timestep to timestep.

The strength of the intracortical connection is only a function of the difference of two
neurons’ cortical positions and is set to a difference of Gaussians (DOG):

(2)

with σ+ = 0.05 and σ−= 0.20. Here, MA parametrizes the strength of recurrent vs. feed-
forward contributions to r, while R is the ratio of the integral of the inhibitory part of the
DOG to the integral of the excitatory part of the DOG. Thus, for R = 1, each cell receives
equal strengths of total inhibitory and total excitatory input. The specific choices of σ+ and
σ− are not important to the results; all that is important is that, when inhibition is strong
enough to yield equalization (see Results), the DOG select a nonzero spatial frequency
whose cycle length spans a reasonable number of cells (so that effects of the discrete grid of
cells do not become crucial) but spans only a fraction of the total grid (so that there can be at
multiple cycles of each eye’s dominance within the grid). The ranges of MA and R that give
appropriate outcomes are described in Results. For the Hebbian model of synaptic plasticity
with subtractive constraints, described below, for which only a narrow range of MA gives
appropriate outcomes, the range of MA that works varies as the ratio of σ+/σ− varies.

The DOG function is not meant to be a realistic model of cortical connectivity, which is
three-dimensional and cell-specific and develops along with the geniculocortical weights.
However, it should be noted that a DOG can be achieved with short-range inhibitory
connections and longer-range excitatory connections, as is observed in cortex, if feedback
inhibition (the product of E → I and I → E weights) is sufficiently strong, and either E → E
connections fall off more quickly with distance than E → I connections, or the two have the
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same distance dependence but inhibition is fast relative to excitation (the latter scenario is
discussed in Kang et al., 2003; Pinto and Ermentrout, 2001).

More generally, the model requires only that the patterns of cortical activity have
appropriate relative strengths of periodic activity and of spatially uniform (or low-spatial-
frequency) activity, with the latter being suppressed relative to the former by inhibition. The
DOG is a simple way to achieve this, but any circuitry that achieves this will yield the same
model behavior. Given that ocular dominance segregation occurs and that low-spatial-
frequency activity is relatively suppressed, ocular dominance will then tend to develop with
a spatial period across cortex matching the spatial period of the cortical activity. Consistent
with these more general ideas, periodic patterns of activity exist in V1 relatively early in
development; these patterns are found in monocular as well as binocular cortex, so that they
are not simply a consequence of ocular dominance segregation; and the early and weak
physiological segregation of ocular dominance occurs with a spatial period that appears to
match the spatial period of this activity (Chiu and Weliky, 2002).

We model the onset of the critical period (CP) as an increase in R. For simplicity, this
increase occurs abruptly in the model, but this is not necessary for the results. During the
CP, we model monocular deprivation (MD) to the contralateral eye as reductions in νC and
in c by a common factor fMD = 1/10 unless otherwise stated. The between-eye correlation, c,
is set to a nonzero value even during MD here, but setting this to zero did not change the
results (data not shown). Nonzero interocular correlations during MD could arise due to
residual visual signals thorough an eyelid and/or due to correlations induced by cortical
feedback to LGN, as has been observed in pre-CP ferret LGN (Weliky and Katz, 1998).

We focused on two sets of parameters in this paper. The values of those parameters at
different developmental phases (each phase, before CP, during CP, and during MD, has 1.0
* 105 time steps) are summarized in Table 1. The reasons for these values are established in
the Results.

Learning rule
The initial condition for synaptic weights is “islands” of ipsilateral inputs in a “sea” of con-
tralateral inputs, illustrated in Fig. 2b. The synaptic strengths between the V1 neurons and
LGN inputs are updated at each time step by one of two activity dependent synaptic update
rules. The first learning rule is a simple Hebbian learning rule with a subtractive
normalization constraint, which forces the total synaptic strength received by a postsynaptic
cell to remain constant (Erwin and Miller, 1998;Miller et al., 1989;Miller and MacKay,
1994). In the unconstrained Hebbian learning rule, the change dwa(xi) in the synaptic
strength wa(xi) in one timestep (where a = C, I is the index describing either the contralateral
or the ipsilateral eye) is described by

(3)

where ρ is a constant coefficient for the LTP/LTD threshold (see below for explanation), r ̄ is
the running average of the output firing rate, updated at each time step by

(4)

with β = 0.02. This means that the average is a discrete version of an exponential average
across previous time steps with time constant 50 timesteps. This is a long enough averaging
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time to obtain a reasonable (not too noisy) estimate of the average firing rates under the
input ensemble for fixed weights, and short enough that it can track changes in average
firing rates due to changes in weights. The learning rate is set to α = 2.0 * 10−5/(Hz)2. This
number is fairly arbitrary. This rate should be small enough that learning is shaped by the
average input statistics (that is, a reasonable sample of the input ensemble is seen over a
time in which weight change is negligible), rather than having large changes in weights
induced by individual input instantiations (“one-shot learning”). It should also be small
enough that the discrete-time dynamics we use well approximates continuous-time
dynamics. Both will be true if the time constant is small enough that making it smaller,
while making the number of timesteps proportionately larger, does not appreciably change
the results. The value used is far below this threshold. Otherwise the number is simply
chosen to make the outcome for a given condition (pre-CP, post-CP, post-CP-with-MD)
equilibrate in the 105 timesteps we used for each condition.

One interpretation of the plasticity rule of Eq. 6 is that the amount of postsynaptic activity
needed to cause potentiation varies depending on the mean postsynaptic rate r ̄. However, it
can also be interpreted as a statistical model of the relative rate of individual potentiation
and depression events that themselves have fixed requirements for pre- and postsynaptic
activities. Under simple models of spike-timing-dependent-plasticity (STDP) (Gerstner and
Kistler, 2002;Song et al., 2000, but e.g. see critique in Lisman and Spruston, 2005),
potentiation occurs when postsynaptic spike follows presynaptic spike within a fixed
window, the rate of which depends on pre-post correlation (the product of the mean pre- and
post-synaptic spike rates plus the covariance between them), while depression occurs when
postsynaptic spike occurs within a fixed window before the presynaptic spike, the rate of
which only depends on the product of mean pre- and post-synaptic spike rates. (Input
temporal correlations may lead the depression rate also to have some dependence on pre-
post covariance, but we neglect that here). After averaging over the input ensemble for a
given value of weights, Eq. 3 says that the weight change depends on the difference between
the pre-post correlation, represented in our rate model by the term har, and the product of the
pre- and post-synaptic mean rates, represented here by the term har ̄. The parameter ρ in Eq.
6, which determines the relative size of the two terms, corresponds to the ratio of the
absolute value of the integral of the negative or depressing part of the temporal function
describing STDP (this function tells the weight change for a given time interval between
pre- and post-synaptic spikes) to the integral of the positive or potentiating part (e.g., see
Song et al., 2000, where the depressing part is assumed to have the larger integral).

We use ρ = 0.3 for the simulations in the main text. This corresponds to the assumption that,
when inputs and outputs are uncorrelated, potentiation strongly dominates over depression.
This assumption appears to be true for plasticity based on spike bursts in early development
in the LGN (Butts et al., 2007), and more generally the potentiating part of the STDP
temporal function may have larger integral than the depressing part in some cortical systems
(e.g., Abbott and Nelson, 2000, Figure 2a). As we will show, this assumption is important
for monocular deprivation effects to arise along with equalization under the Hebbian
learning rule with subtractive normalization. The second learning rule we will study gives a
more robust solution to this problem with a more firmly established biological basis.

The normalization constraint is imposed by setting the total change Δwa(xi) in the synaptic
strength per timestep to

(5)
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This ensures that ΔwC(xi)+ ΔwI(xi) = 0, and thus that the sum of ipsilateral and contralateral-
synaptic strengths at each location xi, wC(xi) + wI(xi), is constant. Equation 5 can be
rewritten

(6)

where b is the opposite eye to a. For this learning rule, synapses change their values within
limits that keep synapses excitatory and bounded: the minimum and the maximum values
are wmin = 0 and wmax = 2, respectively. If a change in a synaptic weight under the above
rules would exceed these limits, the weight is instead set to the limit. This can cause the
subtractive weight normalization constraint to be violated. The lower weight limit is to
enforce the biological fact that geniculocortical synapses are excitatory. Without an upper
weight limit, the weights can grow arbitrarily large (because weights hitting the lower limit
violate the normalization constraint), so the upper limit is imposed to prevent this, but the
precise value of this limit does not affect results.

Another learning rule is described by a Hebbian learning rule with a homeostatic constraint,
which forces the average activity level of the postsynaptic cell to remain roughly constant
(e.g., Kaneko et al., 2008; Maffei et al., 2004; Mrsic-Flogel et al., 2007; Turrigiano et al.,
1998; Turrigiano and Nelson, 2004). In this case, the changes in synaptic strength are given
by

(7)

with a sliding threshold . The learning rate is set to α = 5.0*10− 6/(Hz)2 (a quarter the
size used for the previous rule to keep the rates of monocular deprivation effects about equal
in the two rules), the reference firing rate is r0 = 10 Hz, and the synaptic decay coefficient is
γ = 10(Hz)2 for ha > 1 Hz and γ = 0 otherwise. The dependency of γ on presynaptic activity
makes the learning rule consistent with observations that LTD does not occur when there is
no presynaptic activity (Frenkel and Bear, 2004; Heynen et al., 2003; Rittenhouse et al.,
1999). Setting γ to a constant does not change the results of this paper except for the fMD ≈ 0
behavior in Fig. 7. The nonzero value of γ sets the speed of effects of MD on the deprived
eye and also determines the maximum synaptic weight. Other factors are as in the previous
rule.

The learning rule of Eq. 7 is a combination of Hebbian plasticity and homeostatic regulation
because the postsynaptic threshold separating LTP from LTD changes faster than linearly
with the recent mean postsynaptic firing rate (whereas in Eq. 3, this dependence is linear).
The activity-dependent threshold θ with a faster-than-linear dependence on r ̄ is a key feature
of the BCM learning rule (Bienenstock et al., 1982;Cooper et al., 2004). It has the effect of
causing a nonspecific increase in synaptic weights if r ̄≪ r0 and a nonspecific decrease in
synaptic weights if r ̄≫ r0, thus forcing the average activity to approach r ̄≈ r0. Thus, it
provides a simple mathematical implementation of a homeostatic constraint. This particular,
sliding-threshold form of the homeostatic rule is not critical to the results; we have obtained
similar results with a rule in which the homeostatic constraint was enforced by a term
separate from the LTP/LTD term (see Discussion). The decay term − γ (wa(xi))2 ensures that
synapses with small but nonzero (ha > 1 Hz) presynaptic activity decay back to zero in the
absence of sufficiently strong pre/post correlations. This is important to ensure that, under
monocular deprivation, the deprived-eye synapses weaken before the open-eye synapses
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strengthen. Again, this can alternatively be addressed by using separate homeostatic and
LTP/LTD terms (see Discussion). For this learning rule we only enforced a minimum value
of synaptic strength, wmin = 0. Again, if a change in a synaptic weight under the above rule
would exceed this limit, the weight is instead set to wmin. We set no explicit maximum value
because the weight decay term keeps synaptic weights from growing too large.

Results
We begin by describing the basic intuition and mathematics behind our results, then
demonstrate the results in simulations.

To understand how sufficiently strong inhibition can force equalization, we rely on the
following basic intuition about Hebbian rules (Miller, 1990, 1996). If activation of cortical
location A tends to cause excitation of cortical location B, then inputs to A tend to promote
development of coactive inputs to B. This is because the inputs to A tend to activate the A
cells, hence to cause excitation at B, and hence to assist coactive inputs at B in becoming
strengthened by a Hebbian mechanism. Conversely, if activation of cortical location A tends
to cause inhibition of cortical location B, then inputs to A tend to suppress development of
coactive inputs to B. Now suppose recurrently-driven inhibition becomes strong enough that
the integrated effect on any one cortical location of activating all of cortex is inhibition.
Assuming interactions are sufficiently localized, this means that a large enough region
dominated by one eye will tend to suppress development of that eye’s inputs at the center of
the region, which in most competitive scenarios will lead to development of the other eye’s
inputs there. Thus, any large region dominated by one eye must break up and allow
emergence of the other eye’s inputs.

Mathematically, this can be seen from the analysis of simple models of ocular dominance
development involving a Hebbian learning rule and conservation of total postsynaptic
strength (Erwin and Miller, 1998; Miller, 1990; Miller et al., 1989; see also Appendix of
Swindale, 1980 and Supplementary Material). It was shown that, if input correlations are
such as to lead to the development of ocular dominance segregation, the overall period of
this segregation is determined by an intracortical interaction function K(x) describing the
influence of activity at one cortical location on activity at another location a distance x away.
In particular, the growth of a periodic pattern of ocular dominance with period 2π/k occurs at
a rate K̃ (k) = (1 − M ̃ (k))−1, where M(x) describes the strength and sign of connection
between two neurons separated by distance |x| and M ̃(k) is the Fourier transform of M(x) at
frequency k. In this picture, all patterns with nonzero k involve a periodic oscillation
between the eyes (the “AC” patterns) and thus involve overall equality of the two eyes.
Inequality can arise only if the pattern with k = 0 (the “DC” pattern – the pattern in which
one eye dominates everywhere) can grow. The growth rate of the DC pattern is K̃ (0) =
(1−M ̃ (0))−1 where M ̃ (0) is proportional to the integral over space of the intracortical
connectivity: M ̃ (0) ∝ ∫ dxM(x). Thus, for dominant inhibition, M ̃ (0) < 0, and as the
dominance of inhibition increases, M ̃ (0) becomes increasingly negative and the
corresponding growth rate K̃ (0) becomes increasingly small. If the growth rate of the DC
pattern K̃ (0) is sufficiently small relative to those of the fastest-growing AC patterns K̃ (k)
with k ≠ 0, then, given reasonable nonlinearities (for example, limiting the synaptic
strengths to remain positive and smaller than some maximum), the pattern with k = 0 will be
suppressed in favor of patterns with nonzero k. This causes any inequality between the eyes
to be eliminated (see Supplementary Material for further analysis). The basic intuition
behind this analysis – that if a given location receives strong enough net inhibition from all
other locations, this prevents overall domination by a single eye – is likely to be robust
across a variety of proposed ocular dominance models.
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An additional requirement for a realistic model is that, although the strong inhibition
enforces overall equality of the two eyes when they have equal activities, it still allows the
development of inequality in response to monocular deprivation (MD). Let us refer to the
two eyes as the open and the closed eye, even before MD is initiated. Once inhibition
matures and the two eyes equalize, activation of the open eye elicits net inhibition in
columns dominated by the closed eye. This is due both to inhibition from columns
dominated by the open eye and to the fact that open-eye inputs to the closed-eye columns
have become very weak. After MD is initiated, it remains true that activation of the open eye
leads to inhibition of cells that were dominated by the closed eye, even if MD leads to loss
of strength of the closed-eye inputs. Thus, for an OD shift to occur under MD, something
must strengthen open-eye inputs to closed-eye columns even when they cannot drive the
postsynaptic cell, as has been observed in experiments (Mioche and Singer, 1989). These
inputs must be strengthened to the point that they can drive the cell when the open eye is
activated despite the inhibition from open-eye-dominated columns. We show that noise in
postsynaptic firing can contribute to this, and more generally, homeostatic plasticity can
accomplish this. Since this work was largely completed, it has indeed been shown that
homeostatic plasticity is the mechanism causing strengthing of the open eye after MD
(Kaneko et al., 2008). (Homeostatic weakening of inhibition onto these cells could be part of
this process, but for simplicity we do not model inhibitory plasticity here.)

We demonstrate the effectiveness of these ideas in simulations of a one-dimensional grid of
cortical cells each receiving two inputs, one representing each eye, where the weights of the
input synapses develop under simple learning rules (see Fig. 1). We model N = 100
excitatory layer 4 neurons in primary visual cortex, which are uniformly distributed on a one
dimensional axis x (−1 < x ≤ 1), where each neuron is labeled by its cortical position x. Each
V1 neuron receives input from both the contralateral (C) and the ipsilateral (I) eye, from
other V1 neurons through intracortical connections, and additional noisy input modeled as
Gaussian random noise with mean 0 and variance σ2. For simplicity we consider the
feedforward connections from a given eye to a cortical cell to be described by one effective
input, which has been shown to be adequate to understand the development of patterning
across cortex of ocular dominance when input correlations are appropriate to yield ocular
dominance segregation (Miller, 1990,1996;Miller et al., 1989). These feedforward synaptic
strengths from the contralateral and ipsilateral eyes to a neuron at position x are described by
wC(x) and wI(x), respectively, and they are subject to activity dependent plasticity (see
Methods). The strength of the intracortical connection between two neurons is modeled as a
function of the difference of their positions and is set to a difference of Gaussians (DOG).
As discussed in Methods, the key requirement is not that cortical circuitry be described by a
DOG, but that the cortical circuitry produce periodic patterns of activity, as has been
observed (Chiu and Weliky, 2002), with the balance between periodic and spatially uniform
patterns of activity varying appropriately with inhibition. The DOG is a simple circuitry that
achieves this. Two important parameters characterize this DOG: MA represents the strength
of recurrent vs. feedforward contributions to r, while R is the ratio of the integral of the
inhibitory part of the DOG to the integral of the excitatory part of the DOG. We model the
onset of the critical period (CP) as a three- to four-fold increase of cortical inhibition
(Morales et al., 2002). Hence, R changes from an excitatation-dominated profile (R < 1) to a
balanced or inhibition-dominated one (R ≥ 1).

Hebbian learning rule with a subtractive normalization constraint
We first simulate development under a Hebbian learning rule with subtractive normalization
of the total postsynaptic weight on a cell (Fig. 2), using the parameter set 1 (see Methods).
The modification of synapses at each time step depends on the covariance between the
postsynaptic and presynaptic firing rates, subject to a constraint that the total synaptic
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strength to each cell is held constant, which forces a competition between the eyes (Erwin
and Miller, 1998;Miller, 1990;Miller et al., 1989) (see Methods). Each synapse is
potentiated or depressed until it saturates to the upper or lower bound of synaptic strength
(wmax = 2 and wmin = 0, respectively). We take as our initial condition the strong bias
observed in pre-critical-period cats (Crair et al., 1998): ipsi “islands” in a “sea” of
contralateral inputs (Fig. 2B). Development before the critical period, modeled as a period in
which intracortical inhibition is relatively weak (the integral of intracortical inhibition is
3/10 of that of intracortical excitation, that is, R = 0.3), leads synapses to go to the maximum
or minimum allowed values with no change in the overall, contra-dominated pattern (Fig.
2C). Initiation of the critical period, modeled as an increase of the strength of intracortical
inhibition (the integral of intracortical inhibition becomes 1.2 times that of intracortical
excitation, R = 1.2), slowly leads to an equalization of the two eyes (Fig. 2D). Although
inhibition drives the two eyes to have equal innervation, monocular deprivation (MD) of the
contralateral eye causes a shift in favor of the open, ipsilateral eye (Fig. 2E). Here, MD of
the contralateral eye is modeled as a reduction in its activity (mean, variance, and covariance
with the open eye) by a factor fMD = 1/10 (see Methods).

The outcomes under this rule are sensitive to parameter choices in at least two ways. First,
they are very sensitive to the parameters describing intracortical interactions. If MA, the
strength of recurrent connections relative to feedforward, is too weak after the CP (such as
MA = 1.0; we used MA = 1.1 in Fig. 2), then equalization of the eyes does not occur after the
onset of the CP (Fig. 3A). Much stronger inhibition during the CP is required in this case for
the equalization of OD columns (R = 1.8 equalizes but R = 1.6 does not: data not shown).
On the other hand, if MA is too strong (such as MA = 1.2), then given weak initial inhibition
(R = 0.3), the system becomes unstable. Strong MA together with stronger inhibition at the
beginning to prevent instability (e.g. MA = 1.2 and R = 0.5 during pre-CP) tends to equalize
the OD columns from the beginning of the simulation even before further maturation of
inhibition (data not shown). Only a narrow band of MA yields ocular dominance equalization
only upon the maturation of inhibition. Moreover, with this model and these parameters, the
inhibitory strength does not merely need to equal excitation in the intracortical connections,
but actually needs to exceed it (we use R = 1.2); R = 1.0, which represents equality of total
excitatory and total inhibitory strength, does not lead to equalization (see Fig. 3B).

Note that equalization can occur even with relatively weak inhibition when recurrence is
strong enough that the system is close to instability, for the following reason. With weak
inhibition, the fastest-growing pattern is an “AC” pattern with period 2π/kmax for kmax ≠ 0,
but the Fourier transform of the intracortical connection function at this frequency, M ̃ (kmax),
is only slightly larger than that of the “DC” pattern, M ̃ (0). With weaker recurrence, this
difference is not sufficient to cause equalization. However, moving the system close to
instability means that M ̃ (kmax) becomes close to 1 so that the largest growth rate (1 − M ̃
(kmax))−1 becomes both arbitrarily large and arbitrarily larger than the growth rate (1 − M ̃
(0))−1 of the DC mode, leading to equalization.

Second, for MD to lead to an OD shift despite inhibition strong enough to cause
equalization, active synapses need to have a strong advantage over less active synapses. To
achieve this (Fig. 2E), we needed to use a learning rule in which LTP strongly dominates
over LTD (ρ= 0.3: see Methods) along with noise in postsynaptic neuronal response.
Without these two elements, equality of the two eyes is maintained even after one eye’s
activity is strongly reduced (see Fig. 3). This is because, during MD, neurons in the patches
dominated by the closed eye receive more lateral inhibition than excitation as a result of
open eye input. Therefore, the activity levels of these neurons during open-eye input are
lower than their threshold level, leading to depression of the open-eye synapses onto them.
This prevents any MD shift toward the open eye. Larger noise along with a nonlinear input-

Toyoizumi and Miller Page 10

J Neurosci. Author manuscript; available in PMC 2010 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



output relation enables those neurons to be sometimes active in the presence of lateral
inhibition. If LTP dominates over LTD, even random pre- and postsynaptic activity leads
more active inputs to show relatively greater potentiation than less active inputs. When this
is combined with a constraint preserving total synaptic strength, the result is that relatively
more active synapses are potentiated while less active synapses are depressed. This allows
MD shifts to occur (Fig. 2E).

These considerations explain why we used parameter set 1 (Methods) for this model, which
included high noise and a large critical period R and MA. Using parameter set 2 (see
Methods) with this model does not yield equalization of the two eyes (see Supplemental
Material).

The biological relevance of the dominance of LTP over LTD assumed here is certainly
questionable, but some systems have temporal windows for spike-timing-dependent
plasticity (STDP) in which integrated potentiation appears larger than integrated depression
(e.g., Figure 2a of Abbott and Nelson, 2000; Butts et al., 2007). More generally, there must
be some additional mechanism that leads open-eye synapses to strengthen during MD even
when they cannot drive the postsynaptic cell, as observed in experiments (Mioche and
Singer, 1989). A more plausible mechanism, and one that in fact seems to drive potentiation
of the open-eye during MD (Kaneko et al., 2008), is homeostatic plasticity, to which we now
turn.

Hebbian learning with a homeostatic constraint and weight decay
We reasoned that the fragility of the result presented in the last section is likely to be
induced by the simplicity of the learning rule studied, and that more complex biological
learning rules may be more robust. One simple mechanism, though probably not the only
one, that can be added to a Hebbian rule to support such robustness is activity homeostasis
(e.g., Kaneko et al., 2008; Maffei et al., 2004; Mrsic-Flogel et al., 2007; Turrigiano et al.,
1998; Turrigiano and Nelson, 2004): the requirement that cortical cells adjust their weights
to maintain roughly constant overall levels of average activity. Both maturation of inhibition
and MD will induce a reduction in the activity level of either all cells or closed-eye columns,
respectively, and the homeostasis will oppose this by potentiating unsaturated synapses. This
strengthens the initially weak ipsilateral-eye synapses and the weak open-eye synapses in
closed-eye columns, allowing them to more robustly recover from their weakness and
compete. Thus, given homeostasis, even relatively weak cortical connections that are
sufficiently inhibition-dominated can equalize the two eyes’ innervations in cortex, and a
pattern in which the innervations of the two eyes are equal can be destabilized by monocular
deprivation even with low noise, as we now show.

In Fig. 4 we show the same set of simulations as in Fig. 2 but now using a learning rule (Eq.
7) with a homeostatic constraint rather than a weight-conservation constraint. The
homeostatic constraint keeps the mean activity level of each postsynaptic cell roughly
constant. For fixed input activities, this behaves similarly to the weight-conservation
constraint, but if input activities are decreased by maturation of inhibition or by MD, the
homeostatic constraint increases the total weight received by the cell to bring the
postsynaptic activity back to the setpoint. As an implementation of a homeostatic rule, we
used an LTP/LTD threshold that slides faster than linearly with the mean postsynaptic
activity, as in the BCM learning rule (see Methods), but this particular implementation is not
critical to the results (see Discussion). We also add a weight-decay term to the learning rule
for inputs with nonzero activity, which causes synaptic weights of these inputs to decay in
the absence of Hebbian or homeostatic strengthening. This term causes closed-eye synapses
to shrink after MD before open-eye synapses grow, as observed experimentally (Frenkel and
Bear, 2004;Kaneko et al., 2008;Mioche and Singer, 1989;Mrsic-Flogel et al., 2007). This
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rule is far more robust than the previous, so we now use parameter set 2 (see Methods), in
which noise levels are low, total excitatory and inhibitory strength are equal (R = 1) during
the critical period, and the parameter controlling the overall strength of recurrent
connections, MA, is slightly smaller than before, for reasons described below. This learning
rule also works with parameter set 1 (see Supplemental Material).

The simulation proceeds much as in the previous case (Fig. 4). Prior to the critical period,
the initial condition of ipsilateral islands in a contralateral sea (Fig. 4B) is stable (Fig. 4C).
Initiation of the CP, modeled as a strengthening of inhibition, leads to the equalization of
contra- and ipsilateral-eye columns (Fig. 4D). Application of MD leads to the expansion of
the open-eye territory and the gradual shrinking of the closed-eye territory (Fig. 4E).

With this learning rule, the equalization of ocular dominance columns occurs more robustly.
Fine tuning of the strength of the intracortical connections, MA, is not required (Fig. 5A),
and inhibition that is balanced with excitation (R = 1.0, used in Fig. 4) or even somewhat
weaker than excitation (Fig. 5B) is now sufficient to drive equalization. It has been
suggested that cortex shows a rough balance of excitation and inhibition (Haider et al.,
2006;Higley and Contreras, 2006;Shu et al., 2003;van Vreeswijk and Sompolinsky,
1998;Wehr and Zador, 2003). We use an approximately three fold increase of inhibitory
strength at the onset of the critical period, consistent with the literature (Morales et al.,
2002).

The difference in robustness is due to the different constraints imposed on the two learning
rules. The subtractive constraint always forces the sum of contra- and ipsi-synapses to be
constant at each neuron (except when synapses take the maximum or minimum value), so
where the ipsilateral eye is initially weak, it can be difficult for it to recover under Hebbian
plasticity. In contrast, the homeostatic constraint lets the summed synaptic strength increase
to compensate for the reduction in cortical activity caused by the sudden maturation of
inhibition, so that the ipsilateral eye can gain a foothold everywhere. The correlation-based
competition can then more robustly select the pattern of innervation in which contralateral
and ipsilateral synaptic strengths alternate across cortex.

With this learning rule, even a small amount of noise is enough to see the MD effect (the
simulations of Fig. 4 use 1/10 the noise of those of Fig. 2). In the absence of strong input
from LGN, the closed-eye synapses shrink after MD because the first term of Eq. 7 becomes
small for these less active synapses relative to the second, decay term. The open-eye
synapses also shrink by a small amount due to the loss of between-eye correlation after MD
but are mostly unchanged because of the intact input from the open-eye. On a slower time
scale, the homeostatic learning rule along with a small amount of noise leads the open-eye
synapses to grow. The homeostatic rule drives the mean postsynaptic activity, r ̄, estimated
as an exponentially weighted average of past rates with a time constant of 50 iterations, to be
comparable to some setpoint activity level r0. After the closure of the contralateral eye, a
patch of cortex that was previously driven by the closed-eye mainly receives lateral
inhibition from the surrounding cortical area and therefore its LTP/LTD threshold, θ ~ r ̄2, is
close to zero. In the presence of small noise, those neurons near the border between the two
eyes’ columns will be active occasionally because they receive relatively weaker inhibition
than at the center of the closed-eye dominated column. Hence, open-eye synapses at the
border are slowly potentiated at a rate proportional to the activation of those neurons with
coincident open-eye input until the output firing rate again approaches r0 (Fig. 4E). On the
other hand, around the center of the closed-eye dominated column, open-eye synapses
cannot grow because lateral inhibition from the surrounding columns is much stronger than
the noise level. The growth rate of open-eye synapses depends on the noise level, the
threshold of the input-output nonlinearity and the strength of inhibition during the CP.
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Smaller noise, larger threshold or stronger lateral inhibition reduces the firing rates of
neurons in previously closed-eye-dominated patches and hence slows the growth of open-
eye synapses there (c.f. Fig. 4A and Fig. 5B).

In the simulations presented thus far, the equalization of the two eyes is achieved by adding
columns for the ipsilateral eye, so that the overall spatial wavelength of the OD columns is
reduced. This issue has not been studied quantitatively, and maps were not followed across
time in single animals in Crair et al. (1998, 2001). However, the data in those papers are
suggestive that the wavelength does not greatly change. This can be achieved in the model
for appropriate parameters. To show this, we first start the simulation from a contralaterally-
dominated initial condition with a smaller wavelength than previously. When inhibition
matures, the two eyes are equalized, as in previous simulations, but the wavelength of OD
columns is not altered (Fig. 6A). Starting from an even smaller wavelength without altering
the intracortical connections, the equalized OD columns still preserve the wavelength of the
initial condition (Fig. 6B). In general, the final spatial wavelength of the OD columns is
determined both by the amplitude of each wavelength in the initial condition and the growth
rates of the different wavelengths (as noted previously, the growth rates are proportional to
(1 − M ̃ (k))−1 where the wavelength is 2π/k and M ̃ (k) is the Fourier transform at that
wavelength of the function describing intracortical connections). The wavelength with the
fastest growth rate will tend to dominate, but if other wavelengths have a strong advantage
in the initial condition and are not too disadvantaged in terms of growth rate, they may
dominate instead (Fig. 6C). Weakening the intracortical connections, as we have done in
parameter set 2 by decreasing MA from 1.1 to 0.8, lessens the differences between growth
rates, and so allows bias in the initial condition toward a given wavelength to control the
final outcome over a wider range of wavelengths. Thus, for different parameters, the final
wavelength may be determined either by the intracortical connections or by the initial
condition (or both). Regardless of the choice of parameters controlling this feature, however,
it seems to be a robust phenomenon that maturation of inhibition equalizes the two eyes’
innervations in cortex.

The MD effect in this scenario depends on the degree of weakening of the closed-eye
activity. To investigate this effect, we systematically varied the strength of the closed-eye
activity (mean, variance, and covariance with the open-eye) by a factor fMD that was varied
from zero to one. Figure 7 shows the mean strength of both the closed-eye and open-eye
synapses after MD. If fMD is smaller than 0.6, we see a decrease of closed-eye synaptic
strengths and an increase of open-eye synapses as discussed above (Figs. 7A–B) (as fMD
approaches zero, the MD effect almost disappears, because the rate of firing of the closed-
eye inputs falls below the threshold for the LTD induced by weight decay, see Methods).
However, if fMD is larger than 0.7, we observe an increase of closed-eye synaptic strengths
(see Fig. 7C). In this case, the homeostatic rule leads to an increase in closed-eye synapses
rather than in open-eye synapses to compensate for the decreased postsynaptic activity.
Although, the precise fMD value for this switching behavior depends on parameters such as
the weight decay coefficient γ (making γ smaller makes the closed-eye-potentiating domain
larger, see Supplementary Material), the qualitative feature seem to be robust. That is, if it
were possible experimentally to induce a weak decrease in one eye’s firing, one should see a
homeostatic increase in that eye’s synaptic strength, rather than the deprivation effect that
occurs with a strong decrease in the eye’s firing. This kind of partial decrease of the LGN
activity corresponding to one eye might be achievable with a weakly blurring contact lens
that reduces the effective contrast of stimuli seen through one eye. Finally, if fMD = 1, as a
control case, we see no significant changes in synaptic weights (see Fig. 7D).
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Discussion
We have shown that the equalization of the input serving the two eyes that occurs at the
onset of the critical period (CP) in cat V1, its failure to occur in the absence of visual
experience (Crair et al., 1998), and the ability of monocular deprivation to drive ocular
dominance shifts despite the tendency of cortex to equalize the two eyes’ innervations, can
all be understood from activity-dependent rules of synaptic plasticity along with an
experience-dependent maturation of inhibition at the onset of the CP like that observed in
mice (Fagiolini and Hensch, 2000; Hensch et al., 1998). While the models used to
demonstrate this are simple and imperfect, the underlying principles they expose are general
and robust:

1. Inhibition that is sufficiently strong will drive the innervations of the two eyes to
equalize if they have comparable activities;

2. To nonetheless obtain ocular dominance shifts in response to monocular
deprivation, some mechanism must enable excitatory synapses driven by the open
eye to grow under MD in closed-eye-dominated regions, even when they cannot
activate the postsynaptic cell, as is known to occur in vivo (Mioche and Singer,
1989). These synapses cannot activate the postsynaptic cell both because they are
weak and because inhibition from open-eye-dominated regions is strong. Some
combination of weakening of open-eye-driven inhibition and strengthening of
open-eye-driven excitation must occur that brings the open eye to the point that it
can successfully activate the postsynaptic cell.

We have shown that homeostatic plasticity of excitatory synapses, which in fact is
implicated in the strengthening of open-eye synapses after MD (Kaneko et al.,
2008), along with a minimal amount of noise, is sufficient to achieve this.
Alternatively, an LTP/LTD rule that favors LTP, along with strong noise and a rule
such as weight normalization to force some synapses to shrink when others grow,
can also achieve this.

Our model makes two clear predictions. First, just as in mice, a maturation of inhibition
should occur in cat V1 to initiate the CP, and visual deprivation (which prevents the
equalization of the two eyes) should prevent this maturation. Second, just as early
strengthening of inhibition, induced by infusion of benzodiazapine agonists (Fagiolini et al.,
2004; Fagiolini and Hensch, 2000; Iwai et al., 2003) or excess brain-driven neurotropic
factor expression (Hanover et al., 1999; Huang et al., 1999), can cause an early initiation of
the CP in mice, such treatment should cause early equalization of ocular dominance in cat
V1. Given the slow onset of the effects of these treatments, this might most easily be
observed by showing that the treatment rescues the delayed equalization of ocular
dominance caused by visual deprivation.

The simplest rules of correlation-based plasticity with subtractive weight normalization can
show equalization of ocular dominance in visual cortex, but the results are somewhat fragile:
some parameter tuning is needed, and after inhibition leads to equalization, sufficient noise
and a learning rule that is biased toward potentiation are needed for monocular deprivation
to induce a loss of equalization. The fundamental problem with these simple rules is that
they tend to push synaptic weights either to zero or to their maximal allowed values (Miller
and MacKay, 1994), and they have no robust means by which weights that have been
pushed to zero can recover after a change in input activity or in intracortical inhibition,
although such recovery may occur for particular parameter choices. In reality, biology seems
to have robust mechanisms by which even weights that have been driven to or near zero can
bounce back under appropriate conditions (e.g., Mioche and Singer, 1989). The simplest
learning rules do a reasonable job of modeling the emergence of a pattern from an initially
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unpatterned set of synapses, but do not have any robust mechanism for “unlearning” a
pattern in which many synapses have zero or near-zero weights.

We have shown that one simple fix for these problems is found by adding a homeostatic
learning mechanism (e.g., Kaneko et al., 2008; Maffei et al., 2004; Mrsic-Flogel et al., 2007;
Turrigiano et al., 1998; Turrigiano and Nelson, 2004). While under stationary and
homogeneous input, this homeostatic constraint is similar to the weight normalization of the
total synaptic weight on a cell, it enables weights that are pushed to zero to recover strength
if the postsynaptic cell is not well driven. We used a BCM-like rule (Bienenstock et al.,
1982; Cooper et al., 2004) as a simple mechanism to instantiate this homeostasis, but this
mechanism is not critical. In this rule, homeostasis arises because the threshold separating
LTP from LTD changes faster than linearly with the mean postynaptic activity. We have
obtained similar results (not shown) using a rule in which one term describes correlation-
based LTP and LTD, without such a faster-than-linear change in threshold, and a separate
term causes synapses to be multiplicatively scaled in proportion to the deviation of average
postsynaptic activity from a desired set point, as suggested by results on homeostatic
synaptic scaling (e.g., Kaneko et al., 2008; Maffei et al., 2004; Mrsic-Flogel et al., 2007;
Turrigiano et al., 1998; Turrigiano and Nelson, 2004). Indeed, an empirical problem with the
BCM-like mechanism is that it enforces homeostasis through a subtractive rather than
multiplicative change in synaptic strengths (note, however, homeostatic plasticity in
developing visual cortex can also cause an additive change in neuronal responses by
additively modifying the curve of firing rate vs. input current (Maffei and Turrigiano,
2008)). Multiplicative scaling shows all the same behaviors as the subtractive rule studied
here (not shown), so long as the minimal weight is above zero (so that synapses do not reach
zero, from which they cannot recover under multiplicative scaling) and the LTP/LTD rule
produces LTD of closed-eye synapses under MD.

We modified the BCM-like rule by adding a weight decay term (Eq. 7). This was necessary
to explain the observation that, after MD, deprived-eye synapses weaken before open-eye
synapses strengthen (Frenkel and Bear, 2004;Kaneko et al., 2008;Mioche and Singer,
1989;Mrsic-Flogel et al., 2007). This cannot be captured by the BCM-like rule alone,
because the homeostatic weight regulation and the correlation-based LTP/LTD are in the
same term. The LTP induced by the homeostatic response to the loss of postsynaptic activity
thus prevents LTD due to deprivation-induced reduction of presynaptic activity (this
problem might be fixed by making the LTP/LTD threshold change slowly, but then the
BCM rule loses stability, leading to weight oscillations). This problem can also alternatively
be solved (not shown) using a model with separate LTP/LTD and homeostasis terms, as
described above, a model we will more systematically study elsewhere.

Mice do not show equalization of the two eyes’ innervations: the binocular segment of
mouse V1 remains dominated by the contralateral eye after the opening of the CP (Gordon
and Stryker, 1996). Why does the maturation of inhibition not cause equalization in the
mouse? Mice, like other rodents (Van Hooser et al., 2005), do not have OD columns. We
suspect the explanation for the lack of equalization is closely tied to the explanation for the
lack of OD columns. In mathematical and computational models, OD columns arise through
a combination of two factors: cooperative interactions between nearby V1 cells that lead
them to tend to receive correlated inputs, and more widespread competitive interactions that
ensure that not all cells become dominated by the same inputs (e.g., Miller, 1990, 1996). In
Hebbian models, the cooperative interactions typically involve excitatory connections
between nearby cells. In this framework, the most likely explanation for the lack of
columnar organization in rodents is that the effective connectivity between nearby neurons
during development is either too weak to organize columns, or is of the wrong sign – net
inhibitory rather than excitatory. As we have seen, strong net inhibition between cells can
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act as a competitive factor leading to equalization of inputs, so the lack of equalization may
indicate that overall interactions are relatively weak during development. Note that
inhibition onto each cell can be strong, as presumably occurs after the maturation of
inhibition that initiates the CP, without necessarily involving strong inhibitory effective
interactions between excitatory cells, for example if inhibition is predominantly driven by
feed-forward rather than recurrent projections.

Mitchell et al. (1977) pointed out a similar problem of equalization: if a transition from MD
to normal binocular experience was made sufficiently early, the originally deprived eye
showed a significant, though not full, recovery both physiologically and behaviorally. That
is, the weaker eye gained while both eyes had equal activity. They suggested that this might
involve an advantage of the deprived eye in competing to reinnervate territory it lost during
MD. This recovery process is now know to require BDNF (brain-derived neurotrophic
factor) signaling, whereas the processes of MD do not (Kaneko et al., 2008). The
equalization we are studying may involve a different mechanism, one test of which would be
to determine whether it also requires BDNF.

Swindale (1980) modeled the data of Mitchell et al. (1977) as dynamic equalization under
linear dynamics. He assumed a phenomological interaction between synapses that depended
on their eyes of origin and was a DOG function of their separation in cortex. The integral of
the DOG determined the growth rate of the “DC” pattern, in which one eye dominates
everywhere. He assumed the integral was negative, so that the DC pattern decayed to zero,
yielding ocular equalization. MD added a “source” term to the dynamics of the DC pattern,
causing the more active eye to dominate.

Our explanations of equalization and the ability to achieve MD effects despite equalization
differ from Swindale’s in four respects, as discussed in more detail in Supplemental
Materials: (1) The spatial dependence of Swindale’s phenomological interaction has been
identified, in the limit of spatially broad correlations, with the intracortical interaction
function (Miller et al., 1989); (2) With this identification, the growth rate of the DC pattern
is always positive (the growth rate is K̃ (0) = (1 − M ̃ (0))−1, where M ̃ (0) < 1 and is
proportional to the integral of the DOG describing intracortical connectivity); (3) Nonlinear
effects, whereby the faster growth of periodic patterns leads to suppression of the DC
pattern, therefore are essential to equalization; (4) To attain MD along with equalization
becomes problematic in this scenario, and so requires specific solutions such as homeostatic
plasticity to allow weak synapses to recover and compete, as we address here.

The idea that intracortical connectivity can create a periodic organization of receptive field
properties and determine its period is an old one (e.g. Amari, 1977; Castellani et al., 1999;
Ernst et al., 2001; Kohonen, 1982; Koulakov and Chklovskii, 2001; Miller et al., 1989;
Swindale, 1980; von der Malsburg, 1973) Consistent with this idea, genetic factors, which
might act by influencing the structure of intracortical connectivity, contribute to the spacing
of cortical orientation and ocular dominance maps (Kaschube et al., 2002, 2003). A recent
experiment on cats also demonstrated that a chronic increase in the strength of intracortical
inhibition from large basket cells, which project horizontal axons at longer distances than
other inhibitory cell types, widens the spacing of ocular dominance columns (Hensch and
Stryker, 2004). As those authors noted, this is the expected result from simple models like
those studied here if homeostatic mechanisms preserved the overall strength of inhibition
after its maturation at the onset of the CP, so that the overall effect of the chronic change
was to relatively increase the strength of longer-range inhibition vs. shorter-range inhibition.
In contrast, the overall increase in the strength of inhibition that occurs at the onset of the
CP would not be expected to widen column width.
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The question of whether ocular dominance columns are genetically specified or arise
through activity-dependent self-organization has been a controversial one in recent years
(e.g., Crair et al., 2001; Crowley and Katz, 2002; Huberman, 2007; Kaschube et al., 2002,
2003; see also Miller et al., 1999 on the same question with respect to orientation columns).
In cats, activity-independent genetic factors alone could at most account for the condition of
ipsi “islands” in a “sea” of contralateral inputs observed both physiologically and
anatomically in the third postnatal week (Crair et al., 1998, 2001), because the subsequent
equalization of inputs serving the two eyes and their organization into ocular dominance
columns does not occur without visual experience (Crair et al., 1998). There has been no
proposal as to how this experience-dependent equalization and reorganization could occur,
and it has been repeatedly been argued that it could not be explained by activity-dependent
self-organization (Crair et al., 1998; Crowley and Katz, 1999; Katz and Crowley, 2002).
Here, we have shown that activity-dependent learning rules, together with a pattern of
intracortical interactions that yields ocular dominance columns, provide a simple, robust,
and testable explanation.

In summary, we argue that the observation in cat V1 that ocular dominance equalizes at the
onset of the critical period may simply be a different window on the observation, made in
mouse V1, that the critical period is initiated by the maturation of intracortical inhibition.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A schematic figure of the model. N cortical neurons are lined up on a one dimensional axis
x. Each neuron receives feedforward input from both ipsilateral and contralateral eyes and
those synapses are modified according to activity dependent plasticity rules. The
intracortical connectivity, M, is a function of the distance between two cortical positions and
changes its profile at the onset of the critical period when cortical inhibition matures.
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Figure 2.
The evolution of synaptic weights with the learning rule of Eq. 6. (A) The evolution of
synapses carrying information from the contralateral (Top) and ipsilateral (Bottom) eye.
Synaptic strengths are shown as color, ranging from zero (blue) to maximal (dark red).
Vertical axis is position along the one-dimensional cortical grid. Horizontal axis is time: the
CP starts at time 1 (105 iterations), and MD of the contralateral eye is initiated at time 2 (2 ×
105 iterations). (B)–(E): Snapshots of the synaptic strengths from the contralateral eye (red)
and from the ipsilateral eye (blue) at different times: (B) initial state, time 0; (C) before CP,
time 1; (D) during CP but before MD, time 2; (E) after MD, time 3. Vertical axis: synaptic
strength; horizontal axis, position along the cortical grid.
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Figure 3.
Parameter dependence of the development of OD columns under the learning rule of Eq. 6.
Panels plot synaptic strengths in color as a function of cortical position, x, and simulated
steps as in Fig. 2A. Some explicitly mentioned parameters are changed while the other
parameters are based on the parameter set 1. The learning rule of Eq. 6 is sensitive to
parameter choices: (A) with intracortical connections that are too weak, MA = 1.0, the two
eyes do not equalize even after the maturation of inhibition; (B) also, with inhibition during
the CP that is too weak, R = 1.0, the two eyes do not equalize; (C) with too little noise, σ2 =
3Hz/τ, almost no OD shift is observed during the simulated MD. (D) For balanced LTP and
LTD, ρ= 1.0, no OD shift is observed after MD.
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Figure 4.
The evolution of synaptic weights with the learning rule of Eq. 7; conventions as in Figure
2. (A) The evolution of synapses carrying information from the contralateral (Top) and
ipsilateral (Bottom) eye, shown as color, vs. time (horizontal) and position (vertical). (B)–
(E): Snapshots of synaptic strengths from the contralateral eye (red) and from the ipsilateral
eye (blue) at the initial state (B), before the CP (C), during the CP but before MD (D), and
after MD (E).
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Figure 5.
Development of OD columns under the homeostatic plasticity rule. Panels plot synaptic
strengths in color as a function of cortical position, x, and simulated steps as in Fig. 2A or
Fig. 4A. Parameters are from parameter set 2 except where other values are explicitly noted.
The homeostatic plasticity rule is more robust to parameter choices: the two eyes equalize
after the maturation of inhibition with weak intracortical interactions (A) MA = 0.5, or with
relatively weak inhibition (B) R = 0.8.
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Figure 6.
The spacing of ocular dominance columns is determined also by the initial condition: The
evolution of synaptic weights with the learning rule of Eq. 7 started from intermediate (4
cycles; A) or high spatial frequency (6 cycles; B) initial synaptic strengths. The evolution of
synapses carrying information from the contralateral (Top) and ipsilateral (Bottom) eye,
shown as color, vs. time (horizontal) and position (vertical). (C) The final spatial frequency
(in cycles) of the ocular dominance columns as a function of the spatial frequency of the
initial condition and the strength of the intracortical connections, MA. The peak of the power
spectrum of the function M, which describes intracortical connections, peaked at about 4
cycles. The spatial frequency of the final OD column was close to the spatial frequency of
the initial weight pattern when MA was not too large and when the spatial frequency of the
initial weight pattern was close to the spectrum peak of M; otherwise the frequency of the
final OD columns was set by the spectrum peak of M. (For better spatial resolution, N = 400
neurons were simulated instead of N = 100 in this panel.) The cortex did not equalize (the
mean synaptic strength from one eye exceeded 50 ± 10% range of the total) within the
simulation time when MA was too small (shown in white color). The cortex equalized before
the maturation of inhibition when MA was too big (shown in black).
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Figure 7.
The synaptic strengths from the contralateral eye (red) and the ipsilateral eye (blue) after
MD. Figure show the results for different values of fMD: (A) 0, (B) 0.2, (C) 0.8, and (D) 1.
(E) The mean strength of the open-eye (ipsi) and closed-eye (contra) synapses after MD for
differing values of fMD during MD.
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Table 1

The values of parameters before the critical period (CP), during the CP, and during monocular deprivation
(MD).

Parameter set 1 Parameter set 2

Before CP CP/MD Before CP CP/MD

MA 1.1 1.1 0.8 0.8

R 0.3 1.2 0.3 1.0

σ 10 Hz/τ 10 Hz/τ 1 Hz/τ 1 Hz/τ
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