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Abstract
We have discovered quantitative optical biomarkers unique to cancer by developing a double-
differential spectroscopic analysis method for near-infrared (NIR, 650-1000nm) spectra acquired
non-invasively from breast tumors. These biomarkers are characterized by specific NIR absorption
bands. The double-differential method removes patient specific variations in molecular composition
which are not related to cancer, and reveals these specific cancer biomarkers. Based on the spectral
regions of absorption, we identify these biomarkers with lipids that are present in tumors either in
different abundance than in the normal breast or new lipid components that are generated by tumor
metabolism. Furthermore, the O-H overtone regions (980-1000 nm) show distinct variations in the
tumor as compared to the normal breast. To quantify spectral variation in the absorption bands, we
constructed the Specific Tumor Component (STC) index. In a pilot study of 12 cancer patients we
found 100% sensitivity and 100% specificity for lesion identification. The STC index, combined
with other previously described tissue optical indices, further improves the diagnostic power of NIR
for breast cancer detection.
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1. Introduction
Do intrinsic quantitative optical biomarkers exist for malignant tumors that can be measured
non-invasively? If this will be found, then optical biopsy using non-invasive methods could
be performed with great advantages in terms of cost, number of procedures, speed and
availability upon existing methods. Optical spectroscopy is not invasive and offers a unique
view of tissue because it is sensitive to compositional and functional characteristics.
Spectroscopic methods have employed absorption, scattering, and fluorescent contrast
(endogenous and exogenous) to detect tumors in breast, cervix, skin, and esophagus over
wavelengths ranging from the ultraviolet through the infrared. Depending upon the optical
wavelengths, light can interrogate superficial to cm-thick tissues.[1] Although the penetration
of light in tissues is strongly wavelength dependent, light may be delivered to most tissues
either non-invasively (topical application) or by the use of intra-operative or minimally
invasive probes (i.e., endoscopy). Our contribution will deal exclusively with breast tissues
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exposed to NIR light, but the general principles of our method could be applied to any cancer
type.

Within the NIR spectral region (650-1000 nm), light penetrates deeply enough to
transilluminate cm-thick tissues such as the breast. NIR is sensitive to the four major absorbing
components in breast tissues: oxyhemoglobin, deoxyhemoglobin, water, and bulk lipids.[2,3]

The main hypothesis of NIR cancer detection has been that malignant transformation changes
the balance of hemoglobin (oxygenation state), water, and bulk lipids in tissue. Differences in
optical signatures between tissues are manifestations of multiple physiological changes
associated with factors such as vascularization, cellularity, oxygen consumption, edema,
fibrosis, and remodeling. [8] Several groups have employed NIR optical methods to measure
subtle physiological alterations in healthy breast tissue,[7,9-12] cancerous breast tissues,[8,
13-20] and malignant tumors treated with neoadjuvant chemotherapy.[21-23]

The transport of NIR light in tissues is dominated by multiple-scattering, which complicates
the quantitative recovery of the amounts of these four components from the absorption spectra
from tissues. Light transport can be modeled as a diffusive process where photons behave as
stochastic particles much like the bulk movement of molecules or heat. The most accurate
tissue optical absorption spectra can only be obtained by separating light absorption from
scattering, which can be performed using a model-based approach alongside time- or
frequency-domain measurements.[4-6] These absorption spectra are then translated into
hemoglobin, water, and bulk lipids, using the Beer-Lambert law along with known component
extinction coefficients (Figure 1) (for a detailed description see [7]).

After many years of research it is realized that although changes in NIR measured components
are altered significantly by tumors, they are not specific for cancer; the same components are
found in both normal and malignant tissues. Thus the detection of cancer is based upon crossing
a threshold in hemoglobin, and sometimes water, and bulk lipids. Complications can arise in
separating malignant from benign lesions, since benign lesions are also known to change water,
hemoglobin, and bulk lipids in a similar fashion to malignant lesions.[7,19] Exogenous contrast
agents have been developed for both absorption and fluorescence contrast, in order to increase
sensitivity and specificity.[24]

However, it is known that tumors alter the composition of tissues in other ways that are not
accounted for in traditional NIR spectroscopic models. Alterations in protein expression, lipid
and water states, and the presence of hemoglobin breakdown products can occur in malignant
transformation.[25-28] These biochemical state alterations, or additional biochemical
components, are likely to be small contributions to the overall tumor absorption spectrum. Even
if smaller, these contributions should be unique to tumor tissues, and provide an endogenous
spectroscopic signature that is specific of the lesion. To summarize: our hypothesis is that the
optical absorption spectra of malignant tissues differ from normal spectra not only due to bulk
absorber concentration differences, but also due to small changes of as yet unknown
components.

In order to discern these subtle alterations in tumor absorption spectra that are not accounted
for in traditional NIR component models of breast tissues, we have developed a double-
differential method. The method nulls the effect of the four basis components to reveal the
small spectral changes unique to cancer. Note that this method only works because we have
two independent controls as will be discussed later. The results of our analysis will show only
intrinsic, unique quantitative biomarkers of cancers which are not included in the basis spectra
of the four components (hemoglobin, water and bulk lipids). We hypothesize the biochemical/
physical origin of these spectral bands to reside in tumor specific changes in types and
abundance of lipid components and changes in the O-H overtone region. Future work will
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determine the chemical origin of these spectral changes and improve breast cancer diagnostics
by using these specific endogenous molecular markers to improve understanding of molecular
changes in cancerous tissue.

2. Materials and Methods
A. Instrumentation

The detection and quantitation of subtle spectral shifts to fingerprint disease requires accurate
reconstruction of tissue absorption spectra uncontaminated by the effects of scattering. For this
purpose we have employed a technique known as Diffuse Optical Spectroscopy (DOS), more
specifically we use the well established method of Steady State Frequency Domain Photon
Migration (SSFDPM) which can quantitatively measure scattering and absorption
independently from each other. [29-31] The particular instrument used was the Laser Breast
Scanner (LBS), which is a bedside-capable instrument that has been used in several clinical
trials for breast cancer detection [32,33] and monitoring response to neoadjuvant
chemotherapy.[21,22] The LBS employs a handpiece similar to an ultrasound probe which was
placed on the surface of the breast to recover tissue optical spectra from 650 to 1000 nm.
Typically DOS samples a low number of spatial locations with a large spectral bandwidth.

B. Data Processing
Data were analyzed in three stages: (1) calculation of absorption and scattering spectra, (2)
calculation of absorber concentrations, and (3) calculation of unique tumor spectra by the
double differential method. Stages 1 & 2 have been detailed in the literature and are only
summarized here.[32] A diffusive model constructed within the semi-infinite geometry is used
to translate measured optical signals into absorption and scattering coefficients for each
measured wavelength. Using independently measured molar extinction coefficients, the
concentrations of the dominant absorbers found in breast tissue can be obtained: oxygenated
[O2Hb] and deoxygenated hemoglobin [HHb], water [H2O], and bulk lipids. (Figure 1). The
concentrations of these chromophores are then used to diagnose the presence of disease; this
approach was outlined in a previous review article in this journal.[34] All data processing was
performed using custom software designed in the MATLAB platform.

The unique spectral components were calculated using a double-differential technique applied
to the measured absorption spectra, which is described in the Results and Discussion section.
The absorbance data were analyzed by the Elantest program (available at
ftp://ftp.lfd.uci.edu/lfd/egratton/elantest/elantest.exe

C. Measurement Procedure
We employed a measurement procedure which has been detailed in the literature.[32] Briefly,
optical linescans were generated by moving the handheld probe to a set of discrete positions
on the breast surface in 10 mm steps (Figure 2a). Tumor locations were known a priori from
mammography, ultrasound, and palpation. Absorption and reduced scattering spectra were
measured at each grid location (Figure 2b). A complete measurement of tissue absorption and
reduced scattering spectra required approximately 25 seconds at each linescan location.
Linescans were repeated twice at each grid location to evaluate placement variations. The
fraction of tumor to normal tissue sampled by the light depended upon the tissue optical
properties and the lesion depth.

D. Patient Characteristics
All subjects were informed and provided written informed consent to participate in the studies
under a protocol approved by the Internal Review Board of the University of California at
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Irvine (#95-563 and #02-2306). Ultrasound and surgical pathology reports were utilized to
determine type, localization, and tumor lesion extent. In this pilot study patients ranged in age
from 32-57 years, 6 pre- and 6 post-menopausal, with pathologically confirmed diagnosis of
invasive ductal carcinoma with one patient diagnosed with adenocarcinoma with lobular
features.

3. Results and Discussion
A. Breast tissue spectra

Typical NIR diffuse optical spectra of normal and tumor-containing tissues are provided for a
Patient 30, a 45-year old pre-menopausal patient with a 29 mm invasive ductal carcinoma in
the right breast.

In Figure 3 we show representative spectra for the measured wavelength dependence of
scattering and absorption from 650 to 990 nm. These spectra correspond to a single spatial
location over the tumor, and the equivalent tissue region on the contra lateral breast which is
considered normal, having no known lesion. Repeat measurements over the years of data
acquisition have shown that the spectral shape of tumor and normal tissue is well conserved.
Variation in the magnitude of the absorption values due to probe handling is on the order of
3-5%. [32] The wavelength dependence of the tissue scattering (i.e., the scatter power, SP)
differs substantially between tumor and normal tissue suggesting differences in the density and
size of scattering centers between tumor and normal tissue regions (Figure 2a).[32,35,36]

The measured NIR spectra demonstrate distinctive differences between tumor and normal
tissues. Briefly, the spectra over tumor-containing tissue exhibits higher overall absorption
along with notable spectral differences in the region above 900 nm. The distinctive peak in the
normal absorption spectrum at 930 nm is representative of the vibrational overtones of lipid
C-H bonds. Higher lipid absorption is typically seen in normal and postmenopausal breast
tissue as compared to tumor-containing breast tissue and pre-menopausal breast tissue,
respectively. This prominent lipid peak results from the higher concentration of bulk lipid in
normal adipose tissues relative to tumor tissues.[32]

By applying the results of the four component basis spectra fit we determined concentrations
for these components, and we calculated the Tissue Optical Index (TOI), which has been
discussed in a previous manuscript in this journal[34]. Table 1.

Equation 1

Briefly the TOI is a contrast function empirically designed using the traditional components
(recovered concentrations of deoxyhemoglobin, water, and bulk lipids) to accentuate the
differences between tumor and normal tissue. While the TOI has been shown to identify some
types of tumors, the TOI index is not highly specific. In fact for our set of 12 patients the TOI
Index showed a sensitivity of 75% and specificity of 75% based on a threshold of 3.5 that gives
three false positives and three false negatives. This makes differential diagnosis solely based
on the four traditional components problematic. Thus, using this approach, we had no unique
“marker” or “signature” of cancer.

B. Double differential method
In the double-differential method we want to determine if there are other spectral differences
that cannot be accounted for by the different amounts of the four basis components. We first
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calculate the average spectrum of the normal breast. Then we calculate the differences between
this average spectrum and the spectrum at each location (including the normal breast). If the
only components present are the ones included in the four basis spectra, then the difference
spectrum (at each location) could be completely fitted by the using these four components. The
coefficient of the fit will provide us with the different amounts of the four components at each
location (the same as for the TOI described in the previous paragraph). However, if the fit is
not perfect, the residual of the fit (if highly correlated) will provide the additional spectra which
are not included in the four basis components. This residual is the Specific Tumor Component
(STC).

The double-differential method has two major advantages over the conventional spectroscopic
modeling approach. Firstly, the method uses each patient as their own control, so that variations
in the “known” extinction spectra are effectively cancelled out. Thus the double-differential
method is insensitive to intra-subject variations that arise due to the four component
spectroscopic model. Secondly, the method accounts for concentration changes within subjects
between normal and tumor tissue if the only differences are in the abundance of the four
components. The residual spectrum for different locations of the unaffected breast should
essentially be a flat line with values close to zero. If the tumor differs from normal tissues only
in concentration changes of the four components, again the residual spectrum should be
essentially zero. However, if spectral components are not accounted for in the four component
fit, they should appear only in the tumor regions.

C. Double differential method applied to breast spectra
Here we outline the double-differential method applied to Patient 30, the same patient presented
in Figure 3. In Figure 4a we show residual spectra for all of the positions on the normal breast.
In Figure 4b we show residual spectra over a tumor containing position and positions over
normal tissue surrounding the lesion in the tumor-containing breast.

As stated earlier, we have two internal controls, contra lateral normal breast tissue and the
normal breast tissue surrounding the lesion on the tumor containing breast. Note that all of the
residual spectra over normal breast tissue are essentially featureless and provide random values
around zero. This control is important in that it proves that variations in normal breast tissue
are due only to the natural compositional differences from oxyhemoglobin, deoxyhemoglobin,
water and bulk lipids.

D. STC spectra in 12 cancer patients
In Figure 5, we show the STC spectra for 12 cancer patients of this pilot study at the location
displaying the largest variation. These residual spectra have small amplitudes (about 1% of
original spectra). Clearly, the STC spectra are highly reproducible across all patients in this
pilot study. There are patient dependent variations in several wavelength regions (Figure 5),
however all tumor STC spectra display a similar spectral shape. Figure 6 displays a comparison
of the average of the 12 tumor spectra presented in Figure 5, along with average of normal
spectra obtained from the equivalent position on the unaffected breast for each patient. From
Figure 6 it is clear that these residual spectra are not random, unlike the residuals for the normal
breast tissue which are featureless.

From inspection of the average STC spectra, we find there are roughly 5 spectral regions where
systematic differences are observed. We have labeled these to be Region 1: 650-665nm; Region
2: 730-800nm; Region 3: 875-930nm; Region 4: 930-960nm; and Region 5: 980-990nm.
(Figure 6). To quantify the amount of STC spectra, which should indicate the amount of
biomarker, we calculate the local residual variance for each spectral region, defined by:
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Equation 2

The local variance, Lk is a function of position on the breast given by x and y coordinates. The
index k indicates a given spectral region and Nk indicates the total number of wavelengths in
a particular region. STCi(λi,x,y) is the value of the STC spectra at a given wavelength. The STC
index is the sum of all local variance Lk. Across the 12 patients in this pilot study, the STC
index displays the maximum value over the tumor regions. This STC index value can be
significantly greater than the value over the surrounding normal tissue as well as the normal
contra lateral breast tissue (Table 1).

For this pilot study of 12 patients we were able to obtain 100% sensitivity and 100% specificity
using the STC index. We set the threshold above 51.5 which separates the two groups. We
emphasize that these sensitivity and specificity values are only provided for general reference.
Data on a larger subject pool will be reported in another manuscript, thereby providing more
significant values. We note that the double-differential method assumes that normal and
diseased tissues coexist in the same patient. Furthermore, this method it is not required that a
priori knowledge of the lesion location be available.

E. Origins of STC
We are investigating the biochemical/physical origin of the STC spectral signature, which will
be the subject of a future manuscript. We believe Region 1 (650-665nm) is mainly affected by
the changes in hemoglobin absorption. Perhaps there may be other types of hemoglobins or
breakdown products in tumors. With regards to Region 2 (730-800nm), we see a distinct
negative peak in the STC spectra. According to the definition of STC, a negative peak indicates
absence of a component or a broadening of the NIR band. Changes in this region may be
indicative of lipid metabolism changes, as lipids absorb in this region (Figure 1). In Region 3
(875-930nm) and Region 4 (930-960nm), we observe a negative peak immediately followed
by a positive peak. This may be indicative of a spectral shift toward longer wavelengths. This
is also the spectral region in which lipids have characteristic absorption spectra (Figure 1).
Thus if there are differences in lipid composition in the tumor with respect to the normal tissue,
this spectral region is likely to be affected. In Region 5 (980-1000nm) we only have a few
points available. However we do observe changes which may be due to differences in the O-
H overtones. In this region there are two possible candidates: the O-H of water and lipid
oxidation products.

4. Conclusion
We have developed a double-differential method to analyze the near infrared absorption spectra
of breast tumors. In this method we consider only the spectral differences between normal and
diseased tissue by fitting the difference spectra using the basis components spectra and then
analyzing the residuals of this fit. This differential approach can be performed by comparison
of regions of normal and tumor breast tissue. With this method we show intrinsic spectroscopic
markers of breast tumors in the NIR. These are unique signatures related to the biochemical/
physical properties of each type of lesion, as the changes in natural tissue components
(oxyhemoglobin, deoxyhemoglobin, water and bulk lipid) as well as the individual
physiological variation have already been accounted for. Furthermore, these spectral signatures
are biomarkers revealing characteristic absorption bands in the lipid region of 760 and 930nm
region that were unnoticed before. The O-H overtone band in the 980nm region also shows
distinct variations in the tumor region compared to the normal breast. By quantifying this

Kukreti et al. Page 6

Dis Markers. Author manuscript; available in PMC 2009 August 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



information, we constructed the STC index which gives 100% sensitivity and 100% specificity
for lesion identification for the 12 patients investigated and has the potential to distinguish
tumors on the basis of the lipid composition and /or bound water or lipid oxidation products.

In this paper our focus was to describe the discovery of an intrinsic NIR spectroscopic marker
of breast cancer. While here we only provide a description of the double-differential method,
in a future manuscript we will describe the mathematical operations for obtaining the STC
residual spectra beginning with scatter corrected absorption spectra of breast tissue obtained
non-invasively using the SSFDPM method. In the future we will also discuss the difference
between the residual spectra for benign and malignant lesions, opening up a new approach for
differential diagnosis using optical methods. While this discovery was based on a pilot study
of 12 cancer patients, we are analyzing STC residual spectra for a larger population, and
comparing subjects who either have lesions which are malignant or benign to normal, having
no known lesion.
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Figure 1.
Basis spectra set used to describe the major tissue components in the breast. Each component
is identified in the figure legend.
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Figure 2.
(a) Handheld probe from Laser Breast Scanner placed in contact with the breast during data
acquisition. (b) Measurement setup. Points across linescan indicate positions measured.
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Figure 3.
Representative tumor spectra from Patient 30 at one position on tumor-containing breast;
normal spectra from equivalent position on contra lateral breast. (a) Wavelength dependence
of scattering for tumor and normal tissues (b) Absorption spectrum for tumor and normal
tissues.
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Figure 4.
(a) STC spectra of all positions on normal contra lateral breast tissue for Patient 30. (b) STC
spectra over tumor region and surrounding normal tissue on both sides along the linescan for
Patient 30.
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Figure 5.
STC spectra for 12 patients at the position exhibiting the largest variation in comparison to
surrounding normal tissue on tumor-containing breast.
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Figure 6.
Average STC spectra for 12 patients for tumor at the location exhibiting the largest variation
in comparison to surrounding normal tissue on tumor-containing breast, and for normal tissue
at the equivalent position on normal contra lateral breast. Standard error of mean bars placed
every 20 nm indicate STC spectral variation in the population. Regions where systematic
differences have been observed are labeled as Region 1 (650-665nm), Region 2 (730-800nm),
Region 3 (875-930nm), Region 4 (930-960nm), and Region 5 (980-1000nm).

Kukreti et al. Page 17

Dis Markers. Author manuscript; available in PMC 2009 August 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Kukreti et al. Page 18
Ta

bl
e 

1
Pa

tie
nt

 In
fo

rm
at

io
n.

 T
ab

le
 o

ut
lin

in
g 

pa
tie

nt
 h

is
to

ry
 a

nd
 le

si
on

 in
fo

rm
at

io
n 

as
 fo

un
d 

in
 c

lin
ic

al
 re

po
rts

. D
C

 fo
r D

uc
ta

l C
ar

ci
no

m
a,

 A
C

fo
r A

de
no

ca
ci

no
m

a,
 L

.F
 fo

r L
ob

ul
ar

 F
ea

tu
re

s, 
an

d 
L.

N
.M

 fo
r L

ym
ph

 N
od

e 
M

et
as

ta
si

s. 
Si

ze
 g

iv
en

 fo
r l

on
ge

st
 d

im
en

si
on

 o
f l

es
io

n.
 P

re
-

an
d 

Po
st

- i
nd

ic
at

e 
m

en
op

au
sa

l s
ta

tu
s. 

ST
C

 a
nd

 T
O

I g
iv

en
 fo

r m
ax

im
um

 v
al

ue
 fo

r o
n 

tu
m

or
 si

de
 a

nd
 c

on
tra

 la
te

ra
l n

or
m

al
 b

re
as

t s
id

e.

A
ge

 (y
ea

rs
)

M
en

op
au

sa
l S

ta
tu

s
T

um
or

 c
la

ss
ifi

ca
tio

n
Si

ze
 (m

m
)

ST
C

 T
um

or
ST

C
 N

or
m

al
T

O
I T

um
or

T
O

I N
or

m
al

47
PR

E
D

C
24

12
0.

1
15

.0
3.

2
1.

2

38
PR

E
D

C
24

10
0.

2
9.

7
4.

9
1.

4

50
PO

ST
A

C
 w

ith
 L

.F
54

21
6.

9
4.

4
6.

2
0.

6

32
PR

E
D

C
29

42
2.

9
51

.5
9.

1
3.

9

57
PO

ST
D

C
 w

/ L
.N

.M
32

11
5.

5
20

.0
1.

2
0.

5

47
PO

ST
D

C
17

60
9.

3
8.

4
20

.0
1.

1

45
PR

E
D

C
29

16
2.

5
7.

8
20

.5
1.

0

44
PR

E
D

C
16

62
.7

12
.9

12
.0

4.
0

49
PO

ST
D

C
70

14
8.

3
9.

3
3.

4
0.

8

41
PR

E
D

C
40

86
.1

4.
2

14
.4

1.
8

53
PO

ST
D

C
24

13
2.

3
6.

3
10

.2
4.

5

57
PO

ST
D

C
31

13
5.

2
4.

1
4.

5
0.

6

Dis Markers. Author manuscript; available in PMC 2009 August 26.


