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Abstract
Correctly selecting appropriate actions in an uncertain environment requires gathering experience
about the available actions by sampling them over several trials. Recent findings suggest that the
human rostral cingulate zone (RCZ) is important for the integration of extended action-outcome-
associations across multiple trials and in coding the subjective value of each action. During functional
magnetic resonance imaging (fMRI), healthy volunteers performed two versions of a probabilistic
reversal learning task with high (HP) or low (LP) reward probabilities that required them to integrate
action-outcome relations over lower or higher numbers of trials, respectively. In the HP session,
subjects needed fewer trials to adjust their behavior in response to a reversal of response-reward
contingencies. Similarly, the learning rate derived from a reinforcement learning model was higher
in the HP condition. This was accompanied by a stronger response of the RCZ to negative feedback
upon reversals in the HP condition. Furthermore, RCZ activity related to negative reward prediction
errors varied as a function of the learning rate, which determines to what extent the prediction error
is used to update action values. These data show that RCZ responses vary as a function of the
information content provided by the environment. The more likely a negative event is to indicate the
need for behavioral adaptations, the more prominent is the response of the RCZ. Taken together,
both the window of trials over which reinforcement information is integrated and adjustment of action
values in the RCZ covary with the stochastics of the environment.
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Introduction
Surviving in a changing environment requires constant evaluation of action outcomes. If an
action leads to an unfavorable outcome, behavior needs to be adjusted. The dorsal anterior
cingulate cortex (dACC) has been implicated in using feedback information to guide behavior
(Shima and Tanji, 1998; Swick and Turken, 2002; Matsumoto et al., 2003; Ridderinkhof et al.,
2004; Walton et al., 2004; Williams et al., 2004; Amiez et al., 2006; Matsumoto et al., 2007).
In humans, the rostral cingulate zone (RCZ), the putative homologue of the monkey rostral
cingulate motor area (rCMA), is particularly responsive to performance errors and negative
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feedback in a variety of tasks (Ullsperger and von Cramon, 2001; Gehring and Willoughby,
2002; Ullsperger and von Cramon, 2003; Kerns et al., 2004; Ullsperger and von Cramon,
2004). Neurons in the monkey rCMA respond to reward reduction, and muscimol deactivation
of the rCMA impaired the animals’ performance in a reversal learning task (Shima and Tanji,
1998). More recently, Kennerley et al. (2006) showed that monkeys with lesions to the rostral
cingulate sulcus were not impaired in adapting their behavior after negative feedback in a
response reversal learning task. However, lesioned animals used only the outcome of the most
recent trials to guide behavior and frequently reverted back to the previously successful action.
From this behavioral pattern, the idea evolved that the dACC/RCZ, rather than detecting the
occurrence of single negative events, is involved in generating a history of action-outcomes
across multiple trials. In agreement with this, we recently observed that the response of the
RCZ to negative feedback varied as a function of the number of preceding negative feedback
trials (Jocham et al., in press). Behrens and colleagues (2007) showed that activity in the RCZ
covaried with subjects’ estimate of the ‘volatility’ of the environment. They argue that RCZ
activity reflects the salience of each outcome for future actions.

For real-life decisions, such integration over several trials is necessary, because reinforcement
is usually available in a probabilistic, rather than deterministic fashion. For example, when
preferring route A over route B on your way to work, you may know that choice of neither
route will avoid a traffic jam in all occasions. However, from experience you estimate that the
chances of not getting into a jam are 80% for A and only 30% for B. Therefore, the information
carried by single events is insufficient to guide decisions. We hypothesized that, if this
integrative function is supported by the dACC/RCZ, then the response of this region to negative
feedback should covary with the information content of the feedback. When low information
content requires accumulation of negative outcomes over several trials before adjusting
behavior, single negative feedback should evoke only a weak response. In contrast, if the
informativity of feedback is high and thus a negative event is likely to indicate the need for a
behavioral adjustment, a strong dACC/RCZ response and pronounced adjustment of action
values should be evoked.

We tested this hypothesis by scanning human volunteers using functional magnetic resonance
imaging (fMRI) while they performed a probabilistic reversal learning task on two different
sessions. The information content carried by the feedback was manipulated by the stochastics
of the reinforcement schedule: The correct stimulus was reinforced in either 90% (high
probability, HP) or 75% (low probability, LP) of the trials.

Methods
Participants

Twenty-two Caucasian subjects (12 females) participated in the study. One female subject had
to be excluded due to excessive head motion on one of the two sessions. Thus, the final sample
consisted of 11 female and 10 male subjects, aged 21 to 35 years (24.6 mean ± 0.76 SEM). All
subjects gave written informed consent before fMRI measurements. The study was performed
according to the Declaration of Helsinki.

Experimental design
We employed a probabilistic response reversal task (Cools et al., 2002). On each trial, subjects
were required to choose between two identical stimuli which consisted of two symbolic square
buttons of the same color to the left and right of a central fixation cross. Subjects had to indicate
their response with the index finger of the left or right hand. Subjects performed the task twice
on two separate sessions separated by a minimum of one day (17.1 mean ± 5.39 SEM). In the
HP session, one of the two responses (left or right) was rewarded in 90% of the trials, while in
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the remaining 10% of trials, the other response was rewarded. Reward allocation to one of the
two responses was thus mutually exclusive. In the LP session, the reward ratio was 75% to
25%. The order of sessions was counterbalanced across subjects. After a randomly jittered
block length of 18 to 24 trials, the reward contingencies reversed and the other response was
now rewarded with the respective probability. Note that this reversal learning task is entirely
response-based, implementing a reversal in response-reward mapping. This is in contrast to
the task employed by Cools and colleagues (2002) which implements a reversal in the stimulus-
reward mapping. Participants were instructed to switch to the other response only when they
were sure that the rule had changed. In both sessions, subjects underwent 19 blocks (and thus
18 contingency reversals), totaling 382 trials. Mean trial duration was 5 s. Additionally, 46
nullevents of the same duration were randomly interspersed with the experimental trials.
During nullevents, only the fixation cross was presented. Each session lasted about 36 minutes.
On each trial (see Fig. 1A), a central fixation cross was presented, followed by presentation of
the two stimuli after a variable interval (randomly jittered between 300, 700, 1200, 1800 and
2500 ms). The two stimuli remained on the screen until the subject made a response or after
1000 ms had elapsed. After a response was made, the corresponding symbolic button on the
screen was depressed to mark subjects’ choice. Feedback consisted of a smiling face for correct
responses and a frowning face for incorrect responses. If no response was made within a 1000
ms response window, a face with a question mark was presented. Feedback was presented
centrally between the two stimuli with a delay of 100 ms after the response and remained on
screen for 800 ms. After feedback offset, only the fixation cross remained on the screen until
the end of the trial. For each positive feedback, participants received 0.01 Euros. The
cumulative reward was paid at the end of the experiment. As expected from the different reward
schedule, subjects earned more money in the HP (mean 2.96 EUR ± 0.03 SEM) than in the LP
(mean 2.13 EUR ± 0.02 SEM) session. Prior to scanning on the first session, subjects underwent
a 30 trial training session to get familiarized with the concept of probabilistic errors (Cools et
al., 2002).

Reinforcement learning model
There are many different variants of reinforcement learning models (Sutton and Barto, 1998).
We used a simple Q-learning model (Watkins and Dayan, 1992) to obtain trial-by-trial
measures of reward prediction error and decision certainty, parameters that are not directly
observable in subjects’ behavior. In this model, the two possible actions, i.e. choosing the left
or right response, are assigned an action value QL(t) and QR(t), respectively. Q values are then
updated on each trial by the deviation of the actual from the expected outcome:

[1]

α is the learning rate that scales the impact of the prediction error. δ is the prediction error that
is computed as follows:

[2]

where r is the reward, which is either one (reward available for choosing the left option) or
zero (reward available for choosing the alternative option). Values for QR(t) are calculated in
analogy. Since in our task, reward allocation to the two responses is mutually exclusive, we
designed our reinforcement learning model to update on each trial both the Q-values for the
chosen and the non-chosen option. This reflects the situation that upon every feedback subjects
gain information about both possible responses. Q-values for the left and right response were
initialized with 0.5.
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Subjects’ choices were then modeled using softmax action selection (Sutton and Barto,
1998). On each trial, the probability of the model for choosing response L is:

[3]

and analogously for R. The parameter β is the so-called temperature which reflects the subject’s
bias towards either exploratory (i.e. random choice of one response) or exploitatory behavior
(i.e. choice of the response with the highest Q-value).

Decision certainty was determined as the absolute difference between the probabilities of the
model for choosing the left or right response (Klein et al., 2007):

[4]

The model was fitted to subjects’ behavior by searching the values for the parameters α and
β that resulted in the best model fit. Iterations were run across both parameters from 0.01 to 1
with a step size of 0.01 (i.e. both α and β can take values from 0.01 to 1). The best fitting
parameters are those that yield the highest log likelihood estimate (LLE, Frank et al., 2007)
and therefore are most predictive of subjects’ actual behavior:

[5]

where PC,t is the probability of the model to make the choice C that was actually made by the
subject on trial t. The prediction error for the chosen response was derived on a trial by trial
basis and subsequently used as a regressor in the fMRI analyses as described below.
Additionally, the learning rates obtained for each subject in each of the two conditions were
used as a covariate in the second-level analyses of prediction error related activity.

Stochastics of the reward environment
To obtain a formal measure that shows that the information content is lower in the LP as
compared to the HP condition, we calculated the entropy (Mitchell, 1997) of the two reward
schedules. Specifically, for a number of C consecutive trials, the Entropy E is:

[6]

where A and B are the number of trials in which the left and right response was rewarded,
respectively. We calculated and subsequently averaged E for a sliding window of C=6 trials
moving along all trials of the experiment. Note that E can take on values between 0 and 1.
Entropy is maximal when informativity is lowest, which in our context means that the left and
right response are each rewarded in 50% of the trials within the sliding window. Furthermore,
we also analyzed if subjects’ behavior was more random in the LP compared to the HP
condition. Therefore we calculated the behavioral entropy according to equation [6], using for
A and B the number of left and right choices of the subject, respectively.

Image acquisition
Data acquisition was performed at 3 T on a Siemens Magnetom Trio (Erlangen, Germany)
equipped with an eight-channel phased array head coil. Thirty slices (3 mm thickness, 3×3×3
mm voxel size, 0.3 mm interslice gap) were obtained in an interleaved fashion parallel to the
anterior commissure — posterior commissure (AC-PC) line using a single-shot gradient echo-

Jocham et al. Page 4

J Neurosci. Author manuscript; available in PMC 2009 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



planar imaging (EPI) sequence (repetition time: 2000 ms; echo time: 30 ms; bandwidth: 116
kHz; flip angle: 90°; 64 × 64 pixel matrix; field of view: 192 mm) sensitive to blood-oxygen
level-dependent (BOLD) contrast. To improve the localization of activations, a high resolution
brain image (3D reference data set) was recorded from each participant in a separate session
using a modified driven equilibrium Fourier transform (MDEFT) sequence.

Image processing and analysis
Analysis of fMRI data was carried out using FSL (FMRIB’s Software Library, Smith et al.,
2004). Functional data were motion-corrected using rigid-body registration to the central
volume (Jenkinson et al., 2002). Low frequency signals were removed using a Gaussian-
weighted lines 1/100 Hz highpass filter. Spatial smoothing was applied using a Gaussian filter
with 7 mm full width at half maximum (FWHM). Slicetime acquisition differences were
corrected using Hanning-windowed sinc-interpolation. Registration of the EPI images with the
high resolution brain images and normalization into standard (MNI) space was carried out
using affine registration (Jenkinson and Smith, 2001). A general linear model was fitted into
pre-whitened data space to account for local autocorrelations (Woolrich et al., 2001). Analysis
I aimed at investigating effects of negative and positive feedback in general. Analysis II
considered negative feedback in relation to reversals in task contingencies and behavioral
changes. For Analyses I, negative and positive feedback were modeled at feedback onset and
the contrast between negative and positive feedback (ALLNEG — ALLPOS) was assessed.
For Analyses II, a different trial classification was used, similar to the one employed by Cools
et al. (2002): Negative feedback that was delivered following a correct response due to the
probabilistic task schedule was termed a probabilistic error (PROBERR). When task
contingencies reversed and subjects received negative feedback because they still responded
to the previously correct stimulus, this was called a reversal error (REVERR), however only,
if those errors were not followed by a change of behavior on the subsequent trial. In contrast,
reversal errors that were followed by a switch to the then correct response on the next trial were
considered to be final reversal errors (FINREVERR, Fig. 1B). All positive feedback trials
were grouped together. To analyze prediction error related signals, separate regressors were
set up that contained the onsets (modeled to feedback onset) and the trial-by-trial amplitude of
the prediction error (obtained from the computational model). For all analyses, the regressors
were convolved with a synthetic hemodynamic response function (double gamma function)
and its first derivative. For group analyses, individual contrast images derived from contrast
between parameter estimates for the different events and those derived from the computational
parameters, were entered into a second-level mixed effects analysis (Woolrich et al., 2004),
for which a general linear model was fit to estimate the group mean effect of the regressors.
Analyses were first performed separately for the HP and LP sessions to detect patterns of
activation. Subsequently, paired t-tests were performed to assess differences in brain activity
between the two conditions.

The following contrasts were calculated and assessed within and between the two groups: For
the effects of negative feedback in general, the contrast ALLNEG — ALLPOS was analyzed.
To investigate activity on error trials that was specific to reversals, we compared final reversal
errors with positive feedback trials (FINREVERR — ALLPOS). To analyze the effects of
negative feedback due to task rule reversal without a subsequent change in behavior, we
contrasted reversal errors with positive feedback (REVERR — ALLPOS). Based on our own
previous findings (Jocham et al., in press) and those from Kennerley and colleagues (2006),
we furthermore predicted that activity to negative feedback would be higher when this was
preceded by another negative feedback trial (NEG+1) than when it was the first negative
feedback (NEG+0) after positive feedback trials. The contrast NEG+1 — NEG+0 was
calculated and compared between conditions. Timecourses of the hemodynamic response
function to NEG+0 and NEG+1 trials were extracted from a region of interest in the RCZ
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(derived from the between-condition comparison of the contrast NEG+1 vs. NEG+0, MNI
x=-6, y=39 z=29) using PEATE (Perl Event-Related Average Timecourse extraction), a
companion tool to FSL (http://www.jonaskaplan.com/peate/peate-cocoa.html). Unlike in a
previous study (Jocham et al., in press), BOLD responses for NEG+2 trials could only be
calculated for the LP condition because three successive negative feedback trials rarely
occurred in the HP condition. Results are reported on the whole brain level with a significance
level of p < 0.001 uncorrected and a minimum cluster size of five contiguous voxels, unless
stated differently.

Persistence of behavioral adaptation
To investigate post-reversal behavior in more detail, we analyzed to what extent subjects
sustained their new response after a reversal due to a change in task contingency. Specifically,
we analyzed the eight trials following a final reversal error and analyzed, for all 18 blocks, the
proportion of trials after reversal in which subjects maintained the newly correct response
before they switched back to the (now) incorrect response.

Statistical analyses
The number of reversal errors was defined by the number of trials it took subjects to switch to
the alternative response after a change in reward contingencies, summed over all 18 reversals.
The total number of switches between the two response options was also counted over the
entire experimental session. Given our clear a priori predictions, behavioral and computational
data were tested for differences between conditions using one-tailed paired t-tests. The trial-
by-trial parameter certainty derived from the model was plotted beginning from the third trial
before a contingency reversal up to the 10th trial after a reversal (averaged across the 18
reversals) and analyzed using a two-factorial ANOVA with TRIAL (14 time points) and
CONDITION (two conditions) as factors. When appropriate, post hoc paired t-tests were used
to identify significant differences between conditions at individual time points. A p-value <0.05
was considered statistically significant.

Results
Behavioral and computational data

As expected, subjects committed more reversal errors in the LP than in the HP condition
(p<0.001). Across all 18 reversals the total number of reversal errors was (mean ± SEM) 41.10
± 1.69 in the HP condition and 61.19 ± 4.18 in the LP condition. The average number of reversal
errors committed per reversal was 2.31 ± 0.088 and 3.53 ± 0.227 for the HP and LP condition,
respectively (Fig. S1A). Furthermore, subjects switched between the two response alternatives
significantly more often in the LP condition (total number of switches: 39.81 ± 3.96) than in
the HP condition (total number of switches: 27.05 ± 3.31, p<0.001, Fig. S1B). This increased
switching was due to an increased occurrence of switching after receiving negative feedback
(lose-shift behavior) in the LP (35.95 ± 3.71) compared to the HP condition (22.24 ± 1.68,
p<0.001). In contrast, the incidence of switching after receiving positive feedback (win-shift
behavior) did not differ between conditions (HP: 4.81 ± 1.78; LP: 3.86 ± 1.04; p>0.29). We
also analyzed whether the order in which subjects underwent the HP and LP session affected
their behavior. None of the behavioral measures differed as a function of the order of testing
(all ps>0.150).

Figure 2 shows that, in the LP condition, with increasing number of trials after the final reversal
error the likelihood decreased that subjects maintain the newly correct response. In the HP
condition, in contrast, subjects’ performance was still close to 100% even on the eighth trial
after the final reversal error. Two-way ANOVA with TRIAL (eight trials) and CONDITION
(two conditions) as factors revealed an effect of TRIAL (F7,140 = 21.704, p<0.001) and
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CONDITION (F1,20 = 14.775, p=0.001), and a TRIAL × CONDITION interaction (F7,140 =
17.193, p<0.001). Post-hoc t-test showed that subjects’ likelihood to maintain the newly correct
response was higher in the HP condition at all time points (ps< 0.015) following the first trial
after the final reversal error (here, by definition, each subject has a score of 100%). This reduced
propensity of subjects in the LP condition to maintain the new response was most likely due
to the increased number of negative feedback trials that subjects encountered in this condition
(Two-way ANOVA: effect of CONDITION: F1,21 = 14.531, p=0.001, post hoc t-test: ps<0.002
at all timepoints).

The learning rate α derived from the computational model was higher in the HP condition
(0.2967 ± 0.0107) than in the LP condition (0.1662 ± 0.0121, p<0.001, Fig. S2A). In contrast,
the temperature β, although numerically lower in the LP condition, did not differ significantly
between the two conditions (p=0.145, Fig. S2B). Decision certainty was markedly lower in the
LP (0.1387 ± 0.0058) than in the HP condition (0.3032 ± 0.003, p<0.001, Fig. S2C). Analysis
of the course of decision certainty around the reversals shows that in the HP condition, subjects
rapidly regained the level of certainty they had before the reversal while subjects in the LP
condition required more trials to reach the pre-reversal level again (which overall was lower
in the LP condition, Fig. 3). Two-way ANOVA revealed an effect of TRIAL (F13,260 = 195.21,
p< 0.001), an effect of CONDITION (F1,20 = 613.9, p<0.001) and a TRIAL × CONDITION
interaction (F13,260 = 67.78, p < 0.001) on decision certainty. Post-hoc tests revealed that
decision certainty was lower in the LP compared to the HP condition in all of the analyzed
trials (ps<0.002).

The mean magnitude of the positive prediction error was significantly higher in the LP
(0.376454 ± 0.006287) than in the HP condition (0.1830596 ± 0.002823, p<0.001). The mean
magnitude of the negative prediction error in contrast was significantly higher in the HP
(-0.787217 ± 0.009232) than in the LP condition (-0.636685 ± 0.006745, p<0.001).

Analysis of the entropy of the reward environment, i.e. the reinforcement schedules of the HP
and the LP condition, revealed a higher level of entropy in the LP condition (Table 1). This
formal measure thus shows that the variation in reward allocation to the two response options
is higher in the LP condition, rendering the overall information context in this condition less
stable. Furthermore, not only the reward schedule, but also subjects’ behavior was
characterized by a significantly higher level of entropy (p<0.001) in the LP condition (Table
1).

Imaging data
Negative feedback (ALLNEG — ALLPOS) induced significant signal change in the RCZ and
in the lateral PFC in both conditions. In the LP condition, lateral PFC activation was restricted
to the right hemisphere, while it was observed bilaterally in the HP condition (Fig. S3).
Furthermore, in the HP condition, there was increased BOLD signal in response to negative
feedback in the posterior cingulate cortex. Importantly, the response of the RCZ to negative
feedback in general did not differ between conditions.

Reversal-related activity (FINREVERR — ALLPOS) was found in the RCZ and the bilateral
middle frontal gyrus in both conditions. In the HP condition, there was additional activation
in the pregenual BA 32 and bilaterally in the inferior parietal lobule (the latter was observed
only on the right side in the LP condition). See table S1 for a complete list of activated brain
regions in this contrast. Reversal-related activity in the RCZ did not differ between conditions.
Only in the right dorsal postcentral sulcus, activity was higher in the HP than in the LP
condition. Activity induced by reversal errors not followed by a switch (REVERR — ALLPOS)
was found in similar regions as in the contrast FINREVERR — ALLPOS (refer to table S2 for
a complete list of activated brain regions). These included the RCZ, the middle frontal gyrus
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and the bilateral inferior parietal lobule in both conditions (Fig. 4). In agreement with our
hypothesis, paired t-test revealed that reversal errors elicited a stronger effect in the RCZ (MNI
x=6, y=34, z=31, 1764 mm3) and bilaterally in the lateral prefrontal cortex (MNI x=45, y=31,
z=31, 1266 mm3 and x=-44, y=27, z=22, 1214 mm3) in the HP as compared to the LP condition
(Fig. 4).

Signals that correlated with positive reward prediction errors were found in the medial
orbitofrontal cortex and in the posterior cingulate cortex in both conditions. Negative prediction
error signals were found in the HP condition in the RCZ (Fig. 5A), the posterior cingulate
cortex and in a large part of the bilateral middle frontal gyrus. Similarly, in the LP condition,
negative prediction error signals were also observed in the RCZ (Fig. 5B) and in the middle
frontal gyrus, the latter however was only found in the right hemisphere. Comparisons between
the two conditions showed that the correlation of the negative prediction error with RCZ
activity was more pronounced in the HP as compared to the LP condition (MNI x=5, y=22
z=27, 137 mm3, Fig. 5C). The degree to which the prediction error is used to update the action
value (the Q-value of the reinforcement learning model) is determined by the learning rate α.
We assumed that RCZ activity represents the degree to which action values are updated.
Therefore, we hypothesized that the increased correlation of RCZ activity with negative
prediction errors is driven by the learning rate (which scales the impact of the prediction error).
To show this, we conducted the second-level comparison between the HP and LP condition
again, this time using each subjects’ learning rate as a covariate. This abolished the difference
between the two conditions, thus showing that the different correlation is mediated by the
learning rate. Furthermore, to show more directly that RCZ activity is related to updating of
action values, prediction error regressors from each subject were multiplied with the individual
subject’s learning rate. This again yielded a strong correlation with RCZ activity. Additionally,
just like for the second-level parametric analysis which takes the learning rate into account,
the correlation here did not differ between the HP and LP condition either.

Analysis of the contrast NEG+1 (negative feedback preceded by a trial with negative feedback)
vs. NEG+0 (negative feedback preceded by a trial with positive feedback) revealed increased
BOLD response in the RCZ for NEG+1 compared to NEG+0 trials in both conditions.
However, in the LP condition, the extent of activation was below the required cluster threshold,
therefore results are shown at p< 0.005 in Fig. 6 (HP: MNI x=-7, y=35 z=29, 402 mm3, Fig.
6A; LP: MNI x=4, y=39 z=24, 37 mm3, Fig. 6B). Consistent with our hypothesis, this effect
was more pronounced in the HP condition (MNI x=-4, y=39 z=29, 305 mm3, p<0.005, Fig.
6C). We extracted timecourses of hemodynamic activity from a sphere with 3 mm radius
centered at the peak coordinate of the between conditions difference and calculated the base-
to-peak amplitudes of the BOLD response for NEG+0 and NEG+1 trials. Paired t-test showed
that in NEG+1, but also already in NEG+0, the amplitudes were markedly higher in the HP
than in the LP condition (p<0.04 and p<0.01, for NEG+0 and NEG+1, respectively, Fig. 6D).

Discussion
The purpose of the present experiment was to create two experimental environments that
require subjects to integrate action outcomes over different numbers of trials. Our results
indicate that subjects indeed had to integrate over a higher number of trials in the LP compared
to the HP condition, as is evident by the increased number of reversal errors. In accordance
with this, the learning rate derived from a Q-learning algorithm was higher for the HP than for
the LP condition, consistent with a more rapid adaptation to the environment in the HP
condition. These results demonstrate that subjects in the LP condition rely less on the individual
feedback they receive in one trial, but integrate outcome information over more trials. This
reduced impact of single action outcomes was mirrored by the diminished impact of reversal-
related negative feedback on RCZ activity: When subjects received negative feedback due to
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a change of task contingencies, this evoked a stronger RCZ response in the HP compared to
the LP condition. Furthermore, as was previously shown (Jocham et al., in press), the response
of the RCZ to negative feedback increased from the first to the second successive negative
feedback. Again, this increase was steeper in the HP condition. Importantly, the response of
the RCZ to the final reversal error, i.e. the time at which subjects have collected enough
information to be certain that the task contingencies have reversed, did not differ between
conditions. Furthermore, the response of the RCZ to negative feedback in general was not
different between conditions either. The overall network of brain regions we found to be
activated upon reversals included the RCZ, lateral prefrontal cortex and lateral parietal cortex.
This is consistent with previous studies (Cools et al., 2002; Kringelbach and Rolls, 2003;
Budhani et al., 2007; Cohen et al., 2007; Mitchell et al., 2008; Jocham et al., in press).

The increased number of reversal errors and the lower learning rate in the LP condition reflect
the fact that subjects have to widen the window of trials across which they integrate action
outcomes. Still, even though subjects took more trials in the LP condition to reverse to the
newly correct choice, they did not attain the same level of certainty. Furthermore subjects
showed an increased amount of overall switching between the response alternatives in the LP
condition. Information content of feedback can formally be described by the outcome entropy
of the reinforcement schedule (Equation [6]), which is higher in the LP condition. Since entropy
is inversely related to information content, this indicates lower information content in the LP
condition. As can be expected from the increased overall occurrence of switching behavior in
the LP condition, not only the entropy of the reinforcement schedule, but also behavioral
entropy was higher in this condition.

Our findings show similarities to those by Behrens et al. (2007), who showed that subjects’
estimate of the environment’s ‘volatility’ correlated with fMRI signal in the RCZ. In their
study, subjects performed two sessions, one in which no reversal of contingencies occurred,
and one in which contingencies reversed every 30 to 40 trials (stable reward rate in both
environments). This is different to our experiment, where the frequency of rule reversals is the
same for both conditions but the reward rates differ (HP vs. LP). Thus, rather than ‘volatility’
caused by rule reversals, it is the ‘reliability’ of the feedback that drives the differences in our
study. Our data show that negative feedback is encoded in the RCZ in adaptation to the reward
environment, i.e. the reliability of the feedback. When individual events contain less
behaviorally relevant information, RCZ responses to negative feedback are diminished, and
prominent responses are only evoked when evidence in favor of a change in the environment
accumulates. Responses of the RCZ to negative feedback are thus dependent on the outcome
of previous trials, as it has already been demonstrated (Jocham et al., in press). Therefore, using
a different approach than Behrens et al. (2007), we provide additional support for the concept
that RCZ activity reflects the degree to which subjects use the information they obtain to guide
future decisions. Both approaches therefore seem to converge to the same conclusion on RCZ
function: Its activity is related to updating of action values.

How does the RCZ accomplish the widening or narrowing of the window of trials across which
reinforcement information has to be integrated — or in other words, how are different
environmental statistics transformed into more or less pronounced responses of the RCZ to
negative feedback? The RCZ is anatomically well positioned to integrate actions and outcomes.
On the one hand, this area is closely interconnected with the motor system. The monkey CMA
projects to and receives afferents from primary and secondary motor cortices (Morecraft and
Van Hoesen, 1992; Bates and Goldman-Rakic, 1993; Picard and Strick, 1996; Hatanaka et al.,
2003). The CMA also projects to the striatum (Takada et al., 2001) and there are direct
projections to motor neurons of the spinal cord (He et al., 1995). On the other hand, information
regarding the valence of outcomes is conveyed to the CMA from the amygdala and orbitofrontal
cortex (Barbas and De Olmos, 1990; Öngür and Price, 2000). Through the constant integration
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of actions with their outcomes, the RCZ might be trained to enhance or decrease the response
to negative feedback, depending on whether behavioral adaptations had been successful or not.
In case of the LP condition, the environment is rather “noisy”, as is evident by the increased
entropy of the reinforcement schedule, and negative feedback on rule reversals (i.e., the signal
needed to guide behavior) is not as salient as in the HP condition and thus is less likely to evoke
a significant RCZ response.

Another aspect of the present study is that we found pronounced responses of the RCZ to a
computational model-derived negative prediction error signal. While a large body of literature
exists on signals relating to positive reward prediction errors, in particular in the striatum
(McClure et al., 2003; O’Doherty et al., 2004; O’Doherty, 2004; Ramnani et al., 2004; Abler
et al., 2006; Menon et al., 2007), signals related to negative reward prediction errors have been
largely neglected. It is noteworthy that, in our present study, negative prediction errors engaged
the RCZ to a higher degree in the HP as compared to the LP condition, thus paralleling our
findings from reversal-related activity to negative feedback. This difference in the strength of
correlations between conditions demonstrates that the negative prediction error is not the sole
factor that drives RCZ activity. In fact, adding the learning rate as a covariate, the difference
between the conditions disappeared. This suggests that it is not the prediction error alone, but
rather the prediction error scaled by the learning rate that is encoded in the RCZ. The product
of learning rate and prediction error represents the value on the right side of Equation [1] that
is added to the current Q-value, i.e. the term which determines the extent to which the action
value is updated. This finding is consistent with a recent study by Behrens and colleagues
(2007) showing a correlation between the individual learning rate and RCZ activity.

It is puzzling that, on the one hand, RCZ activity to negative feedback increased with the
number of preceding negative feedback trials, while, on the other hand, RCZ activity also
covaried with negative reward prediction errors. Since negative prediction errors become
smaller upon every successive negative feedback, this appears contradictory. However, our
data suggest that RCZ activity is not driven by negative prediction errors alone, but instead is
correlated with the updating of action values, i.e. the product of prediction error and learning
rate. A disadvantage of the current model might be that one single learning rate was fitted for
each subject, which remains constant throughout the course of the experiment. Addressing the
issue of a dynamic learning rate remains a challenge for future modeling studies.

While reinforcement learning models assume an implicit process, it is well conceivable that
subjects also made use of declarative/explicit strategies. Implicit and explicit strategies may
well work in parallel to allow optimal decision making. On the basis of the present data, it
cannot be determined to which extent subjects made use of either of the two. However, in our
opinion, this does not object the interpretation that the learning rate and the response of the
RCZ depend both on the outcome of previous trials and on the stochastics of the reward
environment.

It is also conceivable that subjects based their estimate of whether or not a reversal had occurred
on calculations of point probability. However, point probabilities would converge to a similar
result as feedback integration over trials: a single negative feedback is more likely to indicate
a reversal in the HP than in the LP condition and therefore can be seen as more informative.
Thus, calculation of point probabilities might be one possible cognitive process that dictates
the differential search window and updating of action values. The increased entropy in the LP
condition, of both reward environment and behavior, supports this interpretation.

Taken together, the results of the present study show that the response of the RCZ to negative
feedback varies as a function of the environmental context. The more stochastic, and therefore,
the less reliable the environment becomes, the less pronounced are the responses of the RCZ

Jocham et al. Page 10

J Neurosci. Author manuscript; available in PMC 2009 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to single negative events. Behaviorally, this is paralleled by a longer period of trials across
which action-outcome-associations are integrated and an increase in the number of errors
committed before reversing. Furthermore, signals related to negative reward prediction errors
also diminish with lower learning rates, i.e. decreasing reliability of the feedback. The
responsivity of the RCZ is thus related to changing environmental stochastics, and action values
are adjusted to allow optimal adaptation to reversing reward contingencies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
A) Sequence of stimulus events within a trial of the probabilistic reversal learning task.
Following selection of one of the two stimuli, the choice was visualized to the subject by
depression and darkening of the respective button on the screen. This was followed after 100
ms by positive or negative feedback, according to the task schedule. B) Example of a sequence
of trials and the categorization of the trials according to the subject’s response and the feedback
obtained.
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Fig. 2.
Persistence of behavioral adaptations for the two conditions. Shown on the x-axis is the number
of trials after a successful reversal of behavior, i.e. trial n+1 is the trial immediately following
the final reversal error. The values on the y-axis are the percentage of the 18 reversals, in which
the subjects maintain this newly correct response on trials n + 1 to n + 8. * p<0.02.

Jocham et al. Page 15

J Neurosci. Author manuscript; available in PMC 2009 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Timecourse of the trial-by-trial decision certainty, plotted relative to rule reversals (averaged
across all 18 reversals). Trial 0 is the trial at which the alternative response is selected for the
first time following a rule reversal. Subjects in the HP condition rapidly regain pre-reversal
levels of certainty while this takes longer in the LP condition. In the LP condition, certainty
generally remains at a lower level than in the HP condition (p<0.05 at all timepoints).
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Fig. 4.
Signal change in response to reversal errors (REVERR — ALLPOS) superimposed on the
MNI template brain. In both conditions (HP: top row; LP: middle row), there was increased
activity in the RCZ (left) and in the lateral prefrontal cortex (right). Both the response of the
RCZ and the lateral prefrontal cortex were more pronounced in the HP than in the LP condition.
The color bars indicate z-scores. See Table S2 for a comprehensive list of all activations.
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Fig. 5.
Signal change related to negative prediction errors derived from a reinforcement learning
model. There was marked signal increase in response to negative prediction errors in the RCZ
in both the HP (A) and LP (B) condition. This effect was more pronounced in the HP compared
to the LP condition. For illustration of the extent of the HP-LP difference, the image in (C) is
threholded at p<0.005. The color bar indicates z-scores.
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Fig. 6.
Signal change in the RCZ in response to negative feedback depended on whether a trial with
negative feedback was preceded by another trial with negative feedback (NEG+1) or not (NEG
+0). The contrast NEG+1 vs. NEG+0 showed increased activity in the RCZ in both the HP (A)
and LP (B) condition at p<0.005. This effect was more pronounced in the HP compared to the
LP condition (C) at p<0.005. Timecourses of hemodynamic activity were extracted from a 3
mm sphere centered on the peak coordinate of the contrast shown in (A) at MNI x= -6, y=39,
z=29. Base-to-peak amplitudes (D) were calculated as the difference from baseline (mean from
- 4 seconds to event onset) to peak (mean from the timepoints four to eight seconds after event
onset), * p<0.05, one-tailed. The amplitudes for NEG+2 trials could only be calculated for the
LP condition, because many subjects in the HP condition hardly ever encountered three
consecutive negative feedback trials. The color bar indicates z-scores.
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Tab. 1
Mean entropy of the reinforcement schedule (environmental entropy) and of subjects’ choices (behavioral entropy) for
the HP and LP condition. Both environmental and behavioral entropy are higher in the LP condition.

Environmental Entropy Behavioral Entropy

HP 0.509 (± 0.0189) 0.23779 (± 0.0117)

LP 0.8302 (± 0.0099) 0.61756 (± 0.0123)
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