
Gains in power for exhaustive analyses of haplotypes using
variable-sized sliding window strategy: A comparison of
association mapping strategies

Yanfang Guo1,2, Jian Li3, Aaron J. Bonham2, Yuping Wang4, and Hongwen Deng1,2,4
1 The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute
of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an
710049, P R China
2 Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri - Kansas
City, Kansas City, MO 64108,USA
3 Department of Informatic Medicine and Personalized Health, SOM, University of Missouri - Kansas
City, Kansas City, MO 64108,USA
4 Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal
University, Changsha, Hunan 410081, P R China
5 Department of Computer Science & Electrical Engineering, University of Missouri – Kansas City,
Kansas City, MO 64110 ,USA

Abstract
Linkage disequilibrium (LD)-based association mapping is often performed by analyzing either
individual SNPs or block-based multi-SNP haplotypes. Sliding windows of several fixed sizes (in
terms of SNP numbers) were also applied to a few simulated or real data sets. In comparison,
exhaustively testing based on variable sized sliding windows (VSW) of all possible sizes of SNPs
over a genomic region has the best chance to capture the optimum markers (single SNPs or
haplotypes) that are most significantly associated with the traits under study. However, the cost is
the increased number of multiple tests and computation. Here a strategy of VSW of all possible sizes
is proposed and its power is examined, in comparison with those using only haplotype blocks (BLK)
or single SNP loci (SGL) tests. Critical values for statistical significance testing that account for
multiple testing are simulated. We demonstrated that, over a wide range of parameters simulated,
VSW increased power for the detection of disease variants by ∼1-15% over the BLK and SGL
approaches. The improved performance was more significant in regions with high recombination
rates. In an empirical data set, VSW obtained the most significant signal and identified the LRP5
gene as strongly associated with osteoporosis. With the use of computational techniques such as
parallel algorithms and clustering computing, it is feasible to apply VSW to large genomic regions
or those regions preliminarily identified by traditional SGL/BLK methods.
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Introduction
Case-control association studies provide a powerful tool for dissecting the genetic basis of
complex human diseases, especially for those with a late-age of onset.1 Recent advances in
high-throughput genotyping technologies have allowed us to test allele frequency differences
between case and control populations on a genome-wide scale.2

The linkage disequilibrium (LD)-based association analysis can be performed by analyzing
either individual single-nucleotide polymorphism (SNP) loci or multi-SNP haplotypes. For
indirect LD association mapping, the haplotype-based association method may be more
powerful than the single locus test, as multi-SNP haplotypes may capture the available LD
information in a particular region.3 However, single locus test may outperform the haplotype-
based analysis under some scenarios, e.g., when a causal locus is genotyped directly.4 In
practice, both single locus and haplotype-based analyses are widely used in genetic association
studies.

A challenge for association mapping is how to make full use of the information embedded in
a set of SNPs genotyped in an analysis. So far, the haplotype-based association has mainly
been applied to haplotype blocks, which are defined as discrete chromosome regions containing
SNPs in high LD and haplotypes with low diversity.5 Although a number of algorithms have
been developed for haplotype block partitioning, the block structures and boundaries are
somewhat discrepant across different methods.6,7

An alternative strategy is based on the sliding window methodology. A few studies applied
this strategy with several fixed window sizes. Durrant et al applied sliding widows of sizes 4,
6, 8, and 10 markers via cladistic analysis of SNP haplotypes.8 Cheng et al. explored all possible
widths of haplotypes under the pre-set maximum window size of five markers on the simulated
data set from the Genetic Analysis Workshop (GAW) 12, using both population-based9 and
family-based designs.10 More recently, a graphical assessment of p-values from sliding
window haplotype tests of association were developed with window sizes of 2 to 6.11 In
addition, some investigators performed sliding window analyses in fine mapping of complex
disease (such as Alzheimer's disease, hypertensions, asthma and so on) candidate genes or
regions.12-14

For a set of genotyped SNPs, the maximum detection power for association with the study
traits can be achieved only when the authentic block or window or single SNPs that contain or
best capture LD with a disease susceptibility locus is selected to conduct the association test.
15 Single SNPs may not best capture LD with a disease susceptible locus. In block-based
association mapping, it is possible to miss the potential perfect window of SNPs, thus losing
power. This situation may also arise for the sliding window approach when a limited number
of window widths are applied.

In contrast, exhaustively testing based on variable sized sliding windows (VSW) of all possible
sizes over a genomic region has the best chance to capture the optimum markers (single SNPs
of haplotypes) that are most significantly associated with study traits. The strategy essentially
combines both the strength of single marker analyses and that of haplotype analyses and
overcomes the potential problems with defining haplotype blocks. However, the potential cost
is the increased number of multiple tests and increased amount of computation.

In this study, we present a strategy that exhaustively tests haplotypes based on variable-sized
sliding windows (VSW) to analyze disease association studies. Extensive simulations and an
empirical data study were conducted to probe the extent of power gain for this strategy in
contrast with traditional haplotype blocks (BLK) and single SNP loci (SLG) tests. We also
evaluated how statistical power of VSW, in comparison with BLK and SLG methods, varies
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with changes in magnitude of LD, sample size and disease effects. Strategies are proposed for
the application of our VSW method when the capability of computation becomes a problem
in practice.

Methods
Test Statistic

For demonstration, here we use a simple test statistic for the haplotype association test in case-
control study with unrelated individuals. Suppose that N affected individuals (cases) and N
unaffected individuals (controls) are genotyped. For each window or block, the haplotype
frequency data can be arranged in a 2*k contingency table, where k is the number of distinct
haplotypes. The null hypothesis H0 to be tested is that haplotype frequencies in affected and
unaffected individuals will be equal. A conventional χ2 statistic for testing H0 can be written
as follows:

(1)

where p̂i−cases and p̂i−controls are the observed frequencies of the ith haplotype in cases and
controls respectively. Under the null hypothesis of no association, the above statistic has an
asymptotical χ2 distribution with k − 1 degrees of freedom.4 The test statistic using individual
marker allele data is the same as  except that haplotype frequencies are replaced by the
observed marker allele frequencies in the cases and controls, respectively.

For the VSW strategy, a set of all possible windows wb≤e (b, e) consisting of consecutive
markers were constructed in a simulated genomic region beginning at position B and ending
at position E, where b ≥ B and e ≤ E. Haplotype association analyses described above were
performed to search for associations of any single SNPs and/or possible haplotype window
with the disease. Haplotypes with very low frequency (< 0.001) were pooled together to avoid
bias on association test. The association evidence at a marker position x in the region is defined
as the smallest p-value among all analyses of this marker and/or all possible haplotype windows
containing this marker,

(2)

We then conducted power comparison between strategies that use VSW, BLK, and SGL to
analyze disease association studies respectively. For easy demonstration, we formulated our
comparisons based on standard χ2 statistics which are conceptually straightforward and have
been widely applied in many association studies.1,16 We utilized Java to implement this
approach, which includes the module of functions for performing permutations.

For the BLK approach, block partitioning was accomplished through a commonly-used
algorithm proposed by Gabriel et al17, the default block partition algorithm used in
Haploview18 for HapMap data. Specifically, intervals for D′ (D′= D/Dmax, proportion of
observed LD of maximum possible LD) values for all pairs of SNPs are first estimated by
bootstrap method. Then, SNP pairs are defined to be in ‘strong’ LD if the one-sided upper 95%
confidence bound is larger than 0.98 and the lower bound is larger than 0.70. A haplotype block
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is identified when at least 95% of SNP pairs within a chromosomal region meet the criteria for
strong LD.

Simulation Scheme for Power Comparison
We simulated SNP haplotypes through the coalescent process with recombination rate
implemented in program MS.19 In order to simulate regions with different extents of LD, the
recombination rate per site per generation is set to 10-9, 10-8, and 10-7, corresponding to high,
moderate LD region, and low LD region, respectively. In each simulation, with an effective
population size of 10,000, genealogies of 2,000 haplotypes were generated for a 30kb human
chromosome region, containing 30 SNPs with minor allele frequencies over 0.05. One SNP
with minor allele frequency in the range of 0.10 to 0.12 was randomly selected as the disease-
causing variant in the region. Then each subject of the simulated sample was created by
randomly pairing the haplotypes according to different sample sizes. The disease status was
determined by the commonly-used multiplicative disease model. Based on this model,4
suppose that D and d are the high and low-risk alleles at the disease locus, the probability of
being affected for genotypes DD, Dd, and dd are f, fγ, and fγ2, separately, where f is the
phenocopy rate and γ is the relative risk. Given disease prevalence P,γ and disease allele
frequency q, f can be calculated using the following equation:

(3)

For the simulation, we set the disease prevalence to be 0.05 and four levels for the genotype
relative risk (1.5, 1.75, 2.0, and 2.25). Different sample sizes (600, 800, 1000, and 1200)
including equal number of cases and controls were considered in the simulations. Before
statistical analysis, genotypic information of the selected causal SNP was removed from the
simulated haplotypes for all cases and controls. We took haplotype phase and frequency of the
simulated data set as unknown, and used EM algorithm for estimation.

Construction of Null Distribution under H0
For the VSW strategy, overlapping sliding windows and correlated neighboring SNPs may
confound the issue of multiple-testing. Bonferroni correction1 is overly conservative to correct
for multiple-testing in the presence of correlation and information overlapping. Simulations
under H0 are usually employed to construct the null distribution of a new test statistic. Many
genetic mapping studies have used such simulations to establish significance levels while
accounting for multiple-testing and related-testing.20,21 In this study, 10,000 replications were
first generated to construct the null distribution for each set of parameters to determine the
critical value of p for a given false positive error rate (α =0.05) over the simulated region, i.e.,
the smallest p value of each replication over the simulated region were collected to form the
null distribution. We used the same genealogies of haplotypes generated for power study and
then we randomly assigned the affection status independent of the individual genotype.
Subsequently, according to the established critical values, we assessed the power (the rate of
declaring association is based on the smallest p-values over the simulated region at the
significant level of corresponding critical values) to detect the disease association under
varying conditions, such as the extent of LD, sample size, and risk effect.

Guo et al. Page 4

Eur J Hum Genet. Author manuscript; available in PMC 2009 September 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Results
Simulation Studies

Critical values under the null hypothesis—Table 1 displays the critical values for all
the three strategies based on the given significant level of α = 0.05 over the simulated haplotype
region. As expected, the critical values of VSW strategy were most conservative, ranging from
0.0011 to 0.0023. Less conservative critical values were obtained for SGL. BLK achieved the
least stringent critical values. The extent of LD had an influenced on the determination of the
critical values over the simulated regions, namely critical values were slightly more
conservative in lower LD regions. For each simulated LD extent, critical values for different
sample sizes were found to be comparable for each method.

P-value distribution under the alterative hypothesis—To intuitively compare the p-
values between the three proposed strategies, Fig. 1 shows the distribution of p-values obtained
by each of the proposed strategies in an example randomly selected from the power simulation
studies. To be convincing, empirical p-values for each strategy were obtained through 10,000
permutations based on this simulated sample. In this region, SNP 12 was selected and removed
as the causal locus (Fig. 1). Five blocks with high LD, with sizes ranging from 2 to 16 SNPs,
were identified by Gabriel's block partitioning method.17 As expected, the most significant p-
value (-log10p = 5.2143, empirical p = 0.0073) for BLK strategy was achieved at the biggest
block consisting of SNPs from 8 through 24, covering the causal variant. Impressively, the
VSW approach successfully detected the disease locus with the highest peak (-log10p = 7.2171,
empirical p = 0.0005) obtained at the nearest SNP. The best window (consisting of SNP 7 to
SNP 13) for VSW strategy was much more narrow than the most significant block of BLK,
with five markers (SNP 8, SNP 9, SNP 10, SNP 11, SNP 13) overlapping. The SGL analysis
almost missed the association signal, with all values of -log10p were less than 3 (the smallest
empirical p = 0.0174).

Power Comparison—Based on our simulation studies, the power to detect association
between the putative allele and disease status was affected by risk effect, sample size and
recombination rate (see Fig. 2). With larger risk effect, larger sample size, and lower
recombination rate, the detection power for all three proposed methods increased, which is
consistent with previous findings.22 Almost full power (over 90%) was achieved when
detecting putative locus with large relative risk (2.25) in high LD region. In all cases, the
detection power for VSW strategy was consistently greater than the other two strategies (∼1
to 15%), and the improved performance was more significant in the lower LD region with
larger risk effect and larger sample size.

Empirical Data Analyses
We evaluated and compared the relative performance of the study strategies by analyzing a
published empirical data set from Xiong et al.23 In their studies, a Chinese cohort including
the genotypes of 21 SNPs of 733 unrelated subjects (369 men and 364 women) was collected
to study genetic association between the LRP5 gene and osteoporosis. The subjects were
selected from an expanded database for osteoporosis research by choosing those having top
(366 controls) and bottom (367 cases) bone mineral density (BMD) values at the total hip.23

In our analyses, we used the three proposed strategies to perform association analyses between
BMD statuses and the LRP5 gene. Haplotype frequencies for this sample were estimated
through EM algorithm24 We also conducted 10,000 permutations to obtain the empirical p-
values based on the studied sample. The results are summarized in Fig. 3. The most significant
association signals were obtained at rs312778 and rs643981 (-log10p = 10.48, empirical p <
0.0001) by VSW. Block 3 consisting of four SNPs (rs312778, rs643981, rs312788,
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rs160607) defined by BLK captured less significant association results (-log10p = 9.70,
empirical p = 0.0001). SGL strategy only achieved a smallest p-value of 0.0006 at rs643981
(empirical p = 0.0049). These findings are much more significant than those from Xiong et al,
23 in which BMD was treated as a quantitative trait.

Discussion
We implemented and investigated a strategy of exhaustively testing haplotypes based on VSW
to detect disease association. We compared the performance of this approach with those using
BLK and SGL through both a range of simulated conditions and an empirical data analysis.
To the best of our knowledge, this is the first study to demonstrate that under a variety of
simulation conditions, the statistical power of VSW is uniformly greater than both BLK and
SGL, in the framework of standard χ2 statistics. This suggests that the VSW strategy might
gain potential valuable association results which could be missed by using SGL or BLK.
Therefore, with available genotypes for dense markers, the VSW mapping is strongly
recommended to capture the greatest number of significant signals.

As genome-wide association studies on complex disease become increasingly visible, the VSW
strategy for haplotype association mapping can be ideally used for replication, follow-up, and
fine mapping of previously identified genomic regions of interest. A common finding in
genome-wide association studies is to have only a small number of SNPs or block regions that
exceed the specific significance level (i.e. 10-7). However, many of the less significant but
suggestive markers or regions are usually ignored due to their lack of statistical significance.
This raises the possibility of missing certain causal loci due to a failure to use the best window
size for constructing the test. Based on the findings of the current study, the application of the
VSW strategy is highly recommended for additional haplotype association analyses around
such suggestive regions in a genome-wide association study.

Compared with the BLK/SGL approach, VSW has its own advantages. First, VSW in nature
has the advantages of both single marker analyses and haplotype analyses. Second, VSW does
not require a priori knowledge of the most appropriate haplotype window size for detecting a
susceptibility site. Rather, it examines haplotypes in each sliding window of varying size. If
the susceptibility loci are detectable in the study sample, exhaustively testing based on VSW
of all possible sizes over a genomic region is most likely to discover the optimum markers or
regions that are significantly associated with the study traits. Third, it also doesn't require prior
knowledge of the LD structure, which is a requirement of BLK for haplotype block partition,
thus avoiding the potential problems of hapltoype block boundaries. With considerable
haplotype variation among global populations25 due to locus-specific factors (recombination,
mutation, and gene conversion) as well as population-specific factors (recent migration and
admixture, expansions and bottlenecks and random drift) 26, VSW is helpful for association
mapping of complex diseases in those isolated populations without proper reference LD
structure in the International HapMap data.27

The power gain for VSW over lower LD regions is reasonable. In our simulation study, the
genotype information of the causal locus was removed and thus was unavailable to analysis
methods. In lower LD region, SGL has very low detection power because single marker carries
very little information about the causal locus. BLK in low LD region will identify limited small
haplotype blocks, which may not cover the causal locus at all. On the other hand, VSW tests
all the possible blocks in the region and will always cover the causal locus. This will help in
gaining more power. However, we realize that all methods are far from powerful in low LD
regions.
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While VSW is a more powerful test, using it to estimate large haplotypes with multiple SNPs
(i.e. EM algorithm) may be fraught with delays due to a heavy computation load and limitations
of computer memory, because the analysis grows exponentially with the number of loci. For
whole genome, or a chromosome, exhaustive searching with the window size as big as that of
a chromosome is impossible. A question is raised regarding how to decide the maximum
window size to balance between the detection power and the computational complexity. One
choice is to preset the maximum window size, larger than that chosen by Cheng et al9,10,
possibly up to 500 kb, since most LD blocks are less than 500 kb.28 However, as LD patterns
are expected to vary widely across genome region, this pre-fixed maximum window size may
cause problems where there are too many haplotypes in a hot-spot region. At the time of this
writing, Li et al29 suggested a method to decide the maximum window size based on the local
haplotype diversity and the available sample size. To minimize the computation load and
maximize the feasibility of VSW for whole genome association, we suggest the following
strategies: first carry out a preliminary SGL/BLK analysis for the whole genome; then, select
those loci with suggestive signals (e.g. p<10-3) and determine the maximum window sizes for
each region according to Li et al29, i.e. the number of distinct haplotypes in a window should
be no greater than the sample size; and finally limit VSW analysis to these regions. The initial
scan of whole genome association may potentially miss some signals. It is a problem faced by
many current analysis methods for GWAS. Without a better choice, we would focus on those
most likely regions with suggestive evidences.

To illustrate that the proposed method is computationally practical, we assessed the CPU time
required by the program in simulation and empirical data analyses. All the analyses were carried
out on a computer with Intel® Pentium® 4 3.4GHz dual processors and 2.0GB RAM. It took
∼3.2days (76hrs 40mins) for VSW to complete simulation analyses for all 20 simulated
scenarios (including power and critical values analyses) and 1hrs 55mins for the empirical data
set analyses (including 10,000 permutations to get the empirical p values). That is, an average
of ∼0.69secs (76hrs 40mins divided by 20 simulation combinations and 20,000 simulation
replicates) is required to analyzing one set of simulated data. This indicates that the computation
time required for simulation and empirical data analyses is acceptable, and thus our method is
practical for association analyses in the field of candidate gene/region. Furthermore, with
improvements in computer technology, computationally efficient methods such as parallel
programs that are widely used in many scientific fields (i.e., multiple eQTL/QTL interval
mapping) can be applied. Distributing the heavy computing load into clustered processors is
another alternative approach, which can significantly reduce the computing time, making tasks
such as exhaustively searching sliding windows feasible.

To address the multiple-testing problem, which is still a challenge in genome-wide association
studies, we performed a large number of simulations under the null distribution to determine
the expected significance threshold for our simulated region. The Bonferroni correction for
multiple testing is usually too conservative in the presence of correlated markers. Another
option is to use the permutation for each replication. For VSW, the computational cost becomes
a problem in a huge number of permutations for large numbers of simulation replications.
Fortunately, in experimental practice, the considerable amounts of permutations are relatively
easy to carry out to obtain empirical p-values for the studying sample (e.g., we did permutations
for our experimental data), as implemented in several association mapping programs, e.g.
PlINK.30 In order to make power comparison, we utilized simulations under the null hypothesis
to determine the empirical critical values for each proposed method, keeping the false-positive
error rates under the region-wide level (α =0.05).

The VSW strategy can be easily extended to other haplotype association mapping algorithms.
In recent years, extensive efforts have been devoted to exploring a number of statistical methods
for association analysis.1 The VSW strategy implemented in this study is in terms of the most
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natural χ2 statistic, which is commonly used in genetic association literature. A more efficient
association method could be incorporated straightforward into an association mapping strategy
based on sliding windows. For example, haplotype clustering methods were proposed for
dealing with low frequency concern and reducing the haplotype dimensionality.31 Moreover,
an approach has been suggested to quantitatively incorporate existing information of SNPs
(conservation, functional category, linkage, etc.) into the analysis to enrich the association
signal.32

In summary, the haplotype association mapping strategy based on VSW outperforms the other
two approaches in both our simulated studies and an experiment data set, with an expense of
higher computation cost. With rapid advances in computation technology, the application of
VSW is feasible for large genomic regions or those regions preliminarily identified by the
traditional SGL/BLK methods. With the promise of genome-wide association studies for
revealing genetic mysteries that underlie complex diseases, such improvements are therefore
necessary and welcome.
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Figure 1.
The –log10 of raw p-values obtained via the three proposed strategies in an example randomly
selected from the power simulation studies and its LD structure. VSW, BLK and SGL denote
association mapping strategy using variable-sized sliding windows, haplotype blocks, and
single SNP loci, respectively. Four hundred cases and an equal number of controls were
simulated, with medium recombination rate (10-8 per site per generation). The X-axis shows
the simulated loci and the 4-point star in the middle of X-axis indicates the location of the
putative locus with relative risk of 2. The dashed line on top, covering SNP 7 to SNP 13,
indicates the best window with which the smallest p-value for VSW was achieved. LD block
structure is shown in the bottom frame. The color from white to black represents the increasing
strength of LD.
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Figure 2.
Detection power for the three proposed mapping strategies. Disease relative risk (rr) was set
to 1.5, 1.75, 2.0, and 2.25 (four rows). Extent of LD was categorized as low, moderate, and
high LD (three columns), with recombination rate (r) per site per generation in the simulation
region set to 10-7, 10-8 and 10-9, separately. Disease prevalence was 5%. VSW, BLK and SGL
denote association mapping strategy using variable-sized sliding windows, haplotype blocks,
and single SNP loci, respectively.
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Figure 3.
Association results obtained by each of the three proposed strategies between the LRP5 gene
and hip BMD. The X-axis shows the tested SNPs and the other figure legends are the same as
those in Fig. 1. The two dashed lines on top indicate the covering region of the best windows
for VSW.
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Table 1
Empirical critical values (α =0.05).

Sample size

600 800 1000 1200

High LD region ra =10-9

 VSWb 0.0023 0.0021 0.0020 0.0021

 BLKc 0.0092 0.0091 0.0090 0.0089

 SGLd 0.0043 0.0039 0.0039 0.0037

Medium LD region r =10-8

 VSW 0.0018 0.0018 0.0016 0.0018

 BLK 0.0085 0.0081 0.0082 0.0078

 SGL 0.0036 0.0035 0.0034 0.0034

Low LD region r =10-7

 VSW 0.0014 0.0013 0.0012 0.0011

 BLK 0.0043 0.0041 0.0042 0.0042

 SGL 0.0019 0.0020 0.0020 0.0019

a
r represents the recombination rate per site per generation.

b
VSW denote association mapping strategy using variable-sized sliding windows, haplotype blocks, and single SNP loci, respectively.

c
BLK denote association mapping strategy using variable-sized sliding windows, haplotype blocks, and single SNP loci, respectively.

d
SGL denote association mapping strategy using variable-sized sliding windows, haplotype blocks, and single SNP loci, respectively.
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