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Abstract
New habitat-based models for spread of hantavirus are developed which account for interspecies
interaction. Existing habitat-based models do not consider interspecies pathogen transmission, a
primary route for emergence of new infectious diseases and reservoirs in wildlife and man. The
modeling of interspecies transmission has the potential to provide more accurate predictions of
disease persistence and emergence dynamics. The new models are motivated by our recent work on
hantavirus in rodent communities in Paraguay. Our Paraguayan data illustrate the spatial and temporal
overlap among rodent species, one of which is the reservoir species for Jabora virus and others which
are spillover species. Disease transmission occurs when their habitats overlap. Two mathematical
models, a system of ordinary differential equations (ODE) and a continuous-time Markov chain
(CTMC) model, are developed for spread of hantavirus between a reservoir and a spillover species.
Analysis of a special case of the ODE model provides an explicit expression for the basic reproduction
number, ℛ0, such that if ℛ0 < 1, then the pathogen does not persist in either population but if ℛ0 >
1, pathogen outbreaks or persistence may occur. Numerical simulations of the CTMC model display
sporadic disease incidence, a new behavior of our habitat-based model, not present in other models,
but which is a prominent feature of the seroprevalence data from Paraguay. Environmental changes
that result in greater habitat overlap result in more encounters among various species that may lead
to pathogen outbreaks and pathogen establishment in a new host.
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1 Introduction
Successful transmission of a directly transmitted pathogen requires opportunities for contact
between species. These opportunities often occur when the preferred habitat of a species
overlaps or is invaded by a second species. Interspecies interactions, especially among species
competitively utilizing the same resources, often result in aggressive encounters. If a pathogen
is present in a reservoir host, the encounter may result in pathogen transmission to a naive host
or adaptation of the pathogen to create a new reservoir. The reservoir population, the carrier
of the pathogen and the long-term host, often does not exhibit disease symptoms or experience
any additional mortality.

In this investigation, we develop, analyze, and numerically simulate solutions to two new
habitat-based models for the spread of a directly transmitted pathogen between two species.
Our goal is to model the process of interspecies pathogen transmission based on species habitat
preferences. The motivation for the models comes from our recent study of hantavirus in
Paraguay. Hantavirus (Family Bunyaviridae) is a genus of viruses, each generally associated
with a specific rodent species (i.e., mice and rats). Approximately 30 different hantaviruses
exist throughout the world, some of which cause human infection (Mills et al., 1997). Human
infection is incidental, generally due to indirect transmission from contact with infectious
rodent excreta, but may result in hantavirus pulmonary syndrome with a mortality rate as high
as 37% (CDC, 2002). One of the reservoir species for hantavirus in Paraguay is Akodon
montensis (Montane Akodont found in Eastern Paraguay, Northeastern Argentina and
Southeastern Brazil) carrier of Jabora virus (JABV, GenBank # EF492471). Our empirical data
show that although these species exhibit different habitat preferences, the combination of
partial habitat flexibility and temporally variable climatic and soil and vegetation conditions,
results in periodic microgeographic sympatry of Akodon with one or both of the spillover
species.

Mathematical models for the spread of hantavirus in rodents have concentrated primarily on
the dynamics of the reservoir population (Abramson and Kenkre, 2003; Abramson et al.,
2003; Allen et al, 2006a; Allen et al., 2003; Allen et al., 2006b; Sauvage et. al, 2007; Sauvage
et al., 2003; Wesley, 2008; Wesley et al., 2009; Wolf et al., 2006). A multi-species epizootic
model for susceptible and infected hosts was formulated and analyzed by McCormack and
Allen (2007) but this model was not spatially explicit and did not account for differences in
epizootiology of reservoir and spillover species. Our new models take into account habitat
partitioning and important differences in the epizootiology of the reservoir and spillover
populations. The role of the spillover species in pathogen and disease emergence is not well
understood. It has been speculated that the spillover species may contribute to maintenance of
the pathogen in the wild, provided there is spillback infection (McCormack and Allen, 2007)
or the spillover species may be instrumental in the evolution of new hantaviruses (Chu et al.,
2006). Spillover infections occur in hantavirus (Delfraro et al., 2008; Palma et al., 2009;
Klingstrom et al., 2002; Torrez-Martinez et al., 2005; Wiedmann et al., 2005) but are not unique
to hantaviruses (Daszak et al, 2000); they have been documented in other zoonotic diseases
including rabies (Nadin-Davis and Loza-Ruio, 2006; Nel et al., 1997), Nipah virus (Chua,
2003), canine distemper, parvovirus (Fiorello et. al, 2006), and the SARS coronavirus (Holmes,
2003).

The habitat-based models consist of three regions: a preferred habitat for each of the reservoir
and the spillover populations, and a third region of overlap (or boundary region) where
interspecies encounters and pathogen transmission may occur. We formulate two models, the
first model is a deterministic model, a system of ordinary differential equations (ODE), whereas
the second model is a stochastic model, a continuous-time Markov chain (CTMC) model. The
ODE system is analytically tractable in the case that encounters in the boundary region are
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brief. In this case an explicit expression for the basic reproduction number, ℛ0, can be
calculated, the threshold for disease outbreaks. The basic reproduction number is one of the
most important parameters in the study of disease ecology. Specifically, it is the number of
secondary infections caused by introduction of one infectious individual into an entirely
susceptible population (see Anderson and May, 1991; Hethcote, 2000). The ODE system does
not capture the few cases that occur due to interspecies interactions in the region of overlap.
Therefore, we formulate a CTMC model for this purpose. Numerical solutions of the stochastic
model illustrate sporadic infection in the spillover species when habitats overlap, a prominent
feature of the seroprevalence data from Paraguay. Analysis and simulation of our new models
show that as the number of encounters in the overlap region and the time spent in the overlap
region increase (which may be triggered by habitat change), there is greater likelihood of
pathogen outbreaks and disease persistence in the reservoir and spillover populations (through
increase in ℛ0). Interspecies encounters and pathogen transmission in the region of overlap
may be the first step in the evolution of a new hantavirus strain.

2 Empirical Data and Motivation for the Model
Recent data collected in Paraguay (2005–2007) have shown cases of hantaviral infection in A.
montensis, the reservoir species for JABV. Spillover infection, presumably of JABV, has been
found in several other mouse species, including Necromys lasiurus (Hairy-tailed Akodont in
Central Brazil, Southeastern Peru, Eastern Paraguay and Northeastern Argentina) and
Oxymycterus delator (Paraguayan Hocicudo in Eastern Paraguay and South Central Brazil).

2.1 Habitat Characteristics
Our field work was conducted in the Mbaracayú Biosphere Reserve in eastern Paraguay, which
lies in the western-most portion of the Interior Atlantic Forest. Vegetation composition in this
area is typical of the mixture of intact, disturbed, and deforested areas found in eastern Paraguay
(Fernández Soto and Mata Olmo, 2001).

Within this landscape of mixed habitat types, rodents were sampled on two mark-recapture
grids, R3A and R3B, representing contrasting potential habitat for A. montensis (see Figure 1).
Site R3A is largely deforested, with its natural cover replaced by native and exotic graminoids
and forbs. This site is highly disturbed by human activities and is intensively managed for
pasturing and grazing. Reforestation is suppressed and graminoid cover maintained by frequent
prescribed burning. Large ungulate grazers, primarily domestic cattle (Bos taurus) are present
on this site year-round. Vegetation in the site is dominated by species of the genus
Andropogon, warm temperature/tropical grasses used as grazing forage. Other common
vegetation genera include Merostachys (bamboo) along the fringes of pastures and Xyris (a
forb) in lower, wetter areas. Although dominated by herbaceous species, R3A retains a few
islands of woody vegetation and trees, especially along the edges of the deforested areas. These
forest remnants are better microhabitats for Akodon, and most captures of this species were
along the northwest and southeast corners of the grid, the edges closest to the woodlands.

Site R3B contrasts with R3A in that its dominant cover consists of native forest and its
associated vegetation community. Although native cover remains, the site shows evidence of
recent human disturbance, especially selective logging and nearby road construction. These
disturbances have resulted in fragmentation of the native vegetation cover, producing
numerous internal edges and gaps in the forest canopy. These edges and gaps are associated
with a dense understory at the forest floor, favorable habitat for A. montensis (Pardiñas and
D’Elía, 2003). Dominant vegetation genera in areas of intact or mostly intact forest include
Cedrela and Balfourodendron. In disturbed areas, a lower canopy dominated by Sorocea
bonplandii (a lower, woody shrub-like tree) is common, with herbaceous species and
Bromelia common in the understory, and Merostachys frequently in forest gaps.
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2.2 Empirical Data
Each sampling grid consisted of an 11×11 square array of trap stations, set 10 m apart. One
standard Sherman Live Trap was set on the ground at each station. Where vegetation structure
permitted (R3B only), another trap was placed 2–3 m above ground, in branches or vines, to
sample other more arboreal species. However, although A. montensis is preferentially a forest-
dweller, it only rarely climbs in the vegetation (651 of 661 [98.5 %] of our captures of this
species on R3B were on the ground). Both grids were sampled in nine sessions from February
2005 through May 2007, using standard mark-recapture techniques for small mammals
(Wilson et al., 1996). Each session included eight consecutive nights (seven in February 2005).
Animals were individually marked with a subdermally-implanted Passive Integrated
Transponder (PIT) tag, which can be read by passing the electronic reader near the animal’s
body. Date, grid, trap station, and the PIT tag number were recorded, animals were identified
to species, and sex and weight were recorded. Blood, saliva, urine, and feces were collected
the first time an animal was captured during each sampling session, for assay of hantavirus
antibody and viral RNA presence. Animals were then released at the site of capture. All field
protocols were approved by the Texas Tech University Animal Care and Use Committee.

A total of 582 captures was recorded on R3B, and 332 on R3A. Species captured on R3B
included A. montensis, Calomys callosus, Oligoryzomys fornesi, O. nigripes, and Oryzomys
megacephalus; on R3A, A. montensis, C. callosus, C. tener, N. lasiurus, O. nigripes, and O.
delator were encountered. In this report we consider only the populations of A. montensis, N.
lasiurus, and O. delator, as exemplifying the scenario being modeled. A. montensis has been
described as the primary reservoir of JABV. RNA-positive individuals of Akodon were
encountered on R3B and R3A, and seropositive individuals of N. lasiurus and O. delator were
trapped and identified on R3A. Each of these species is widely distributed in the central
Southern Cone of South America (Carleton and Musser, 2005), and may be locally abundant
in their preferred habitat. Habitat preferences differ somewhat among the three, which is critical
to this field situation and to the model which we present herein. N. lasiurus and O. delator
prefer grasslands, with Necromys preferring dry soil and Oxymycterus preferring wet or even
saturated soils. A. montensis preferentially inhabits disturbed woodlands, also venturing into
old-fields and grasslands which include forbs and brushy growth (Redford and Eisenberg,
1992; Goodin et al., manuscript). Our data from nine sampling sessions through 27 months
support these descriptions of habitat preferences, and further indicate that the microgeographic
separation among these three species is partial and temporally variable and often incomplete,
with overlap (microsympatry) occurring sporadically between A. montensis and one or both of
the spillover species. Figure 2 illustrates this situation on site R3A, and also indicates the
presence of seropositive individuals for each of these species in close proximity to the others.

At site R3B, A. montensis was captured but neither N. lasiurus nor O. delator. Based on 2005–
2007 data, 21 out of 84 A. montensis males (25%) tested for hantavirus showed positive titers
for antibodies or RNA, including 12 (14.3%) that were only antibody-positive, eight (9.5%)
that were antibody-positive and RNA-positive, and one (1.2%) that was only RNA-positive.
Only four out of 68 A. montensis females (5.9%) tested for hantavirus showed positive titers
for antibodies with no detectable viral RNA. In other studies of hantavirus ecology, male
seroprevalence was higher than female seroprevalence (Bernshtein et al., 1999; Childs, et al.,
1994; Glass et al., 1998; Klein et al., 2001; McIntyre et al., 2005; Mills et al., 1997; Yahnke
et al., 2001).

3 Model Derivation
Based on the empirical data, we model only male rodents in the spread of hantavirus and use
two infectious stages for the reservoir host, a highly infectious stage and a persistent stage, I
and P. The highly infectious stage represents animals that are RNA-positive and may or may
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not have antibodies, and the persistent stage represents animals that are only antibody-positive.
This latter persistent stage is less infectious than the highly infectious stage. Two infectious
stages were assumed in models for Puumala hantavirus in bank voles (Sauvage et al., 2007;
Sauvage et al., 2003; Wolf et al., 2006).

First, two basic models for the reservoir and the spillover species, each within their own habitat,
are formulated. Then these two models are merged into a habitat-based model, where
interspecies pathogen transmission may occur in a region of overlap of the two habitats (such
as R3A).

3.1 Basic Model
The disease stages for the reservoir species include susceptible, Sr, exposed or latently infected,
Er, highly infectious, Ir, and persistently infectious, Pr. The subscript r refers to the reservoir
species. The total population density is Nr = Sr + Er + Ir + Pr. The per capita birth rate and
survival to the adult reproductive stage is br. There is no vertical transmission. Disease-related
deaths are not known to occur in the reservoir host (Mills et al., 1997). The natural death rate
depends on population density, a strictly increasing function of the population density, 0 ≤ dr
(0) < br and limNr→∞dr(Nr) > br. The transmission coefficients for the two infectious stages
are βI and βP, respectively. The models described below assume density-dependent
transmission (pseudo mass action incidence) as in other hantavirus models (Abramson and
Kenkre, 2003; Abramson et al., 2003; Allen et al., 2006a; Allen et al., 2006b). The models and
results can be easily generalized to frequency-dependent transmission which in some cases
may provide a better fit to data (Begon et al., 1999). In stable environments, frequency-
dependent transmission may be appropriate, but in the overlap region, where rodents occupy
the region for only a short period of time, encounters are most likely density-dependent. The
average length of the exposed and highly infectious periods are I/δr and 1/γr, respectively. All
parameters are assumed to be positive unless noted otherwise. The model for the reservoir
population takes the following form:

(3.1)

The total population density satisfies the differential equation

(3.2)

From the assumptions on dr, it follows that there exists a unique positive constant Kr, the
carrying capacity, such that br = dr(Kr) and limt→∞ Nr(t) = Kr. With frequency-dependent
transmission the terms Sr(βIIr + βpPr) are replaced with Sr(βIIr + βpPr)/Nr.

The spillover species responds differently to hantavirus infection. Presumably, the infection is
only short-term, an acute stage, A, and therefore, we assume no disease-related deaths occur.
But this assumption can be modified. The model is an SEAR model, where animals pass
through the stages of being susceptible, latent, infectious, and finally recovered. A subscript
s is used to identify the spillover species and distinguish it from the reservoir species. The
differential equations for hantaviral infection in the spillover species are similar to the reservoir

Allen et al. Page 5

J Theor Biol. Author manuscript; available in PMC 2010 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



species but transmission of hantavirus occurs only from the infectious stage As and γS is the
recovery rate. The model for the spillover species takes the following form:

(3.3)

We assume ds(Ns) satisfies similar assumptions as dr(Nr), so that the total male population
density for the spillover species Ns satisfies a differential equation similar to equation (3.2).
Likewise, there exists a unique positive constant Ks, the carrying capacity of the spillover
population, such that limt→∞ Ns(t) = Ks.

3.2 A Habitat-Based Epizootic Model
The reservoir and spillover species generally have preferred habitats as shown by the data. The
spillover species is rarely found in the habitat where the reservoir species is dominant and vice
versa (see Figure 2). However, contact between these two species occurs in a boundary or
overlap region adjacent to their habitats, where densities of the two species may be relatively
low. Encounters between infectious and susceptible animals in this boundary region may result
in interspecies transmission of hantavirus. Figure 3 is a schematic of the three regions, the
preferred habitats for the reservoir and the spillover species and the boundary region.

These habitats are connected via movement to and from the preferred habitat and the boundary
region. Time spent in this boundary region is short for both species. The majority of the
population is susceptible, especially in the case of the spillover species.

Suppose the per capita rate of movement pi into the boundary region is low i.e., pi is small, and
that the per capita rate of movement po out of this boundary region is high, i.e., Po is large.
The same movement rates are assumed for each species. Thus, for each of the differential
equations in (3.1) and (3.3) movement into and out of the boundary region is included.
Subscripts a and b on the differential equations denote the reservoir and spillover species,
respectively, in the boundary region.

3.2.1 ODE Model—Based on the preceding assumptions, the differential equations for the
reservoir species in its preferred habitat take the following form:

(3.4)

Similar differential equations apply to the spillover species, where terms for movement into
and out of the preferred habitat are added to the differential equations in (3.3).

Because rodents are in the boundary region for a short period of time, on the order of days, no
births nor deaths occur in this region. We assume that the carrying capacity in the preferred
habitat remains constant. That is, the stable preferred habitat density for the reservoir species
is Kr which can be thought of as a population source for the boundary region. The carrying
capacity in the boundary region may increase or decrease relative to Kr if pi increases or po
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decreases, respectively. The differential equations for the reservoir species in the boundary
region are

(3.5)

and for the spillover species they are

(3.6)

Rodents may change their disease status while in the boundary, e.g., Ea → Ia or Eb → Ab. An
inherent assumption in the models is that the time spent in each of the disease states is
exponentially distributed. For example, the probability that an initially exposed reservoir host
transitions to the infectious stage while in the boundary region is

(3.7)

Other models based on more general probability distributions such as the gamma distribution
provide alternative formulations (Feng et al., 2007; Lloyd, 2001a, 2001b). More data are
required to determine the form of the distributions. In this investigation, we consider the
simplest form, an exponential distribution. If po ≫ maxi∈{a,b}{δi,γi} and if the number of
rodents exposed to the infection in the boundary region is relatively small, then transitions
between disease stages in the boundary region may have little impact on the disease dynamics.
In the analysis section 4, an explicit expression for the basic reproduction number is derived
when these transition rates are set to zero: δa = 0 = δb and γa = 0 = γb.

The total male population densities in the preferred habitat and in the boundary region are Nr
and Na for the reservoir species and Ns and Nb for the spillover species. Thus, the differential
equations for the total male population densities are

(3.8)

Initial conditions are nonnegative and strictly positive in the preferred habitat; Nr(0) > 0 and
Ns(0) > 0.
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3.2.2 CTMC Model
The ODE model can be easily extended to a CTMC model which includes variability in the
birth, death, transmission, and movement processes. In the CTMC model, the 16 random
variables are integer-valued taking on values in the set {0, 1, 2,…}. There are 38 different
events, that include births, deaths, transmission, and movement. Let (t) be a vector of 16
discrete random variables associated with the CTMC process:

Based on the 38 events, the infinitesimal transition probabilities can be defined, Prob{Δ (t)|
(t)}, where Δ (t) = (t + Δt) − (t) for Δt sufficiently small (Allen, 2003; Karlin and Taylor,

1975). For example, the probability of a birth in the reservoir population is

where the time step Δt is chosen so that the possibility of more than one transition or change
in Δt units of time is negligible. The 38 events and their corresponding transition probabilities
are described in the Appendix.

Due to climatic variations within the year-dry, wet, and transitional (D, W, T) periods-there
may be greater overlap of the habitats during certain periods of the year. One way of modeling
this variability in the overlap region is to modify the rate of movement into or out of the
boundary region for each species, depending on their habitat preferences during each of these
periods. For example, A. montensis is seen in the overlap region more frequently in period T
than in periods D or W, when densities of O. delator are high. In the model, we do not
specifically include this seasonal variability but we do consider the effects of changes in pi and
po on the basic reproduction number Ro, the threshold for disease outbreaks. More data are
required to predict whether certain periods are more likely to result in spillover infection.

4 Model Analysis
There are three types of equilibria for the ODE habitat-based model: an extinction equilibrium,
where the population density is zero, a unique disease-free equilibrium (DFE), where all the
infectious and recovered states are zero but the susceptible states are positive, and enzootic
equilibria (EE), where some infectious states have positive values. It can be easily shown that
the extinction equilibrium is unstable; the population persists. For example, it follows from
equations (3.8) that in the preferred habitats, the population densities approach a constant value,
their respective carrying capacities,

The preferred habitats serve as a population source for the boundary region. The densities in
the boundary region depend on the densities of these source populations and the movement
rates into and out of this region. In particular, in the boundary region, the reservoir and spillover
population densities are
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respectively. As the ratio pi/po increases, so do the population densities in the boundary region,
whereas the densities in the preferred habitats will approach their respective carrying-
capacities. Hence, the total reservoir population density (preferred + boundary) is Kr + Ka and
the total spillover population density is Ks + Kb. The equilibrium values for the unique DFE
are Sr = Kr, Sa = Ka, Ss = Ks, and Sb = Kb; all of the other equilibrium values are zero. We
assume initial densities are less than or equal to their respective carrying capacities, 0 ≤ Ni(0)
≤ Ki, i = r, s, a, b with Nr(0) > 0 and Ns(0) > 0. Whether the DFE is stable depends on the basic
reproduction number for the habitat-based model.

We calculate reproduction numbers for each of the preferred habitats and an approximation to
the overall basic reproduction number for the habitat-based model (3.4)–(3.6), ℛ0. If ℛ0 > 1,
then it is likely that the disease persists in the reservoir and spillover populations. The
reproduction numbers can be calculated using the next generation matrix approach (van den
Driessche and Watmough, 2002). For the general system (3.4)–(3.6), it is possible to show that
the basic reproduction number is a positive root of a fourth degree polynomial but it is difficult
to obtain a simple analytical expression for ℛ0. The simplifying assumption

(4.9)

leads to an explicit expression for ℛ0 (shown below). This explicit expression is a close
approximation to the overall basic reproduction number, if the time spent in the boundary is
short relative to the time spent in each of the disease states. This expression is very useful in
interpreting the contributions to disease outbreaks by the reservoir and the spillover species
and in making comparisons to other reproduction numbers.

Assume the condition (4.9) holds. First, the reproduction number for the reservoir species
(assuming the spillover species is not present) is

Second, the reproduction number for the spillover species (assuming the reservoir species is
not present) is

If there are no interspecies interactions so that pi = 0 = po, then Ka = 0 = Kb. Each of the
reproduction numbers simplifies to well-known reproduction numbers for SEIP or SEAR
models (3.1) or (3.3), respectively. In this case, it is straightforward to calculate the enzootic
equilibrium for the reservoir host,
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(4.10)

whenever the reproduction number for the SEIP model (3.1) is

At equilibrium, the proportion of animals that are RNA- or antibody-positive, (Īr + P̄r)/Kr, is

(4.11)

To derive an expression for the basic reproduction number for the habitat-based model when
(4.9) holds, we first define an expression  which depends on interspecies or crossover
transmission. That is, let the intraspecies transmission parameters be zero, βI = βP = βA = 0 and
βa1 = βa2 = βb3 = 0 and the interspecies transmission parameters, βb1, βb2, and βa3, be nonzero.
The reproduction number for interspecies pathogen transmission is defined as

Note that  depends on the ratio pi/po directly and indirectly through the carrying capacities
in the overlap region, Kb and Ka. The preceding definition can be used to define the basic
reproduction number for the habitat-based model (3.4)–(3.6):

(4.12)

(Derivation of this formula is given in the Appendix.) It follows that ;
interspecies pathogen transmission increases the basic reproduction number. A similar
relationship was shown in a multi-species SI model of McCormack and Allen (2007).

The local stability of the DFE follows directly from the results of van den Driessche and
Watmough (2002). Global stability of the DFE when ℛ0 < 1 and condition (4.9) holds can be
verified by construction of a Liapunov function. The full system (3.4)–(3.6) consists of 16
differential equations which makes it difficult to find an explicit closed form solution for an
enzootic equilibrium (EE). However, existence and uniqueness of a positive EE can be verified
when ℛ0 > 1 and condition (4.9) holds. It is shown, in the Appendix, that the EE for the full
system (3.4)–(3.6) is a fixed point of Er = f(Er, Es) and Es = g(Er, Es). Then the existence of a
unique positive EE follows by applying a theorem (Hethcote and Thieme, 1985) on existence
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and uniqueness of a positive fixed point. The following theorem summarizes the preceding
results.

Theorem 4.1
A basic reproduction number ℛ0 exists for system (3.4)–(3.6) such that if ℛ0 < 1, the DFE is
locally asymptotically stable. If condition (4–9) holds for system (3.4)–(3.6), then

i. ℛ0 has the form given in (4.12),

ii. if ℛ0 < 1, then the DFE is globally asymptotically stable, and

iii. if ℛ0 > 1; then the DFE is unstable and there exists a unique positive enzootic
equilibrium.

5 Numerical Examples
Selection of parameters values is based on estimates from the literature for hantavirus (δi and
γi, i = r, s) and on trapping and demographic data for the reservoir species A. montensis and
for the spillover species N. lasiurus or O. delator (bi, Ki, i = r, s and equilibrium ratios). The
reservoir species A. montensis and one spillover species (N. lasiurus) are widely distributed in
many of our study sites sampled in Paraguay, whereas the other spillover species (O.
delator) is less widespread and generally less abundant. We choose carrying capacities of Kr
= 100 and Ks = 50 for the reservoir and spillover species in their respective habitats. Although
the values for Kr and Ks are not known, the selected values are close to the estimates for minimal
number known alive based on data from the trapping regions. The basic time unit in the model
is one year. We assume total number of births per female per year that survive to the adult
reproductive stage is six for the reservoir and the spillover species (several litters per year).
Assuming an equal sex ratio, for the male population the number of males that survive to
reproductive age is br = 3 = bs. Population growth is assumed to satisfy a logistic growth
assumption so that for the reservoir and spillover species,

so that dr(Kr) = br and ds(Ks) = bS. We assume an average duration of two weeks for the latent
period E and for the spillover infectious stage A, and an average duration of three months for
the highly infectious stage for the reservoir species (Bernshtein et al., 1999; Lee et al., 1981;
Padula et al., 2004). Hence, δr = 26 = δs, γs = 26, and γr = 4, e.g., 1/26 year ≈ two weeks. In
addition, δa = δr, δb = δs, γa=γr, and γb = γS. Animals enter the boundary region several times
per year and stay only a short time. The average length of time in the boundary region is less
than the average length of time for the latent period or acute infectious period, 1/po ≤1/δi and
1/po ≤ 1/γi, i = a, b. In the numerical examples, we let pi = 8 and po = 52 which means, on
average, each animal may make eight visits per year to the boundary region, spending about
one week in the boundary region. The probability there is a transition from an exposed to an
infectious state while in the boundary region is 1/3 (see equation (3.7)). Even though this
probability is not small, the basic reproduction number given by (4.12) is a good approximation
to the overall basic reproduction number for our parameter values (shown below). The
parameter values are reasonable but are chosen for illustrative purposes (a range of values, pi
∈ [2, 25] and po ∈ [26,364], are considered later in this section). These parameter choices give
population densities in the boundary region of Ka ≈ 15 and Kb ≈8.

The transmission parameters βj cannot be estimated directly. Instead, we make some reasonable
assumptions about their relationship to disease transmission in the infectious stages, βI and
βP. The product βIKr is the number of infectious contacts that result in infection by a highly
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infectious reservoir animal per year (at equilibrium). Based on the summary data for proportion
of animals RNA- or antibody-positive, 0.25 at site R3B, if we equate formula (4.11) to 0.25
and let br = 3 and δr = 26, this leads to ℛr = 1.39 (when pi = 0 = po). Thus, the value of βI is
chosen so that  (which is close to ℛr) is between one and two. We assume that the highly
infectious stage of the reservoir host (RNA-positive and/or antibody-positive) is three times
as infectious as the persistently infectious stage (only antibody-positive), i.e., βI = 3βP
(Bernshtein et al., 1999;Lee et al., 1981;Padula et al. 2004). In addition, we assume the
transmissibility of the pathogen in the acute infectious stage A of the spillover host is the same
as for the persistent stage in the reservoir host, βA = βP. This leads to . In the boundary
region, intraspecific transmissibility remains the same as in the preferred habitats, but
interspecies transmissibility is doubled due to aggressive encounters. In particular,

(5.13)

(5.14)

The basic parameter values are given in Table 1.

If (4.9) holds and the remaining parameter values are as in Table 1 with pi = 8 and Po = 52, we
obtain , so that ℛ0 ≈ . The approximate reproduction numbers based on
the analysis in section 4 are

The overall basic reproduction number for the parameters in Table 1 is ℛ0= 1.38 which is close
to the approximation 1.42. The disease persists in the habitat-based model. For the parameter
values in Table 1, one sample path of the CTMC model and the solution to the ODE model are
graphed for the two infectious stages of the reservoir species (see Figure 4).

Although the pathogen persists, the infection in the spillover population is very low (straight
line is the ODE equilibrium value); only sporadic infection occurs in the sample path for the
spillover species in the preferred habitat and in the boundary region (Figure 5).

For the ODE model with parameter values given in Table 1, pi = 8, and po = 52, there is a
unique enzootic equilibrium which is locally asymptotically stable:

With no interspecies transmission and no overlap region (pi = 0 = po) the equilibrium values
for the reservoir host, based on the formulas given in (4.10), are (S̄r, Ēr, Īr, P̄r) = (72.1, 2.9,
10.7, 14.3). These latter equilibrium values show that the percentage of highly infectious and
persistently infectious rodents are in close agreement with the summary data for A.
montensis at site R3B, i.e., 25% are infected.

The CTMC simulation with interspecies transmission illustrates the sporadic infection in the
spillover population (as in site R3A) and provides information about the variability in number
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of cases. A quasistationary probability distribution is reached in the CTMC model (conditional
on nonextinction). Approximations (estimated from 10,000 sample paths) to the
quasistationary probability distributions for the two infectious stages in the reservoir species
are graphed in Figure 6. The mean values for Ir and Pr are μ̂Ir = 8.8, μ̂Pr= 14.0. In the absence
of interspecies transmission and pi = 0 = po, the mean values are μ̂Ir = 9.2 and μ̂Pr = 12.3.

Encounters that lead to interspecies pathogen transmission can be measured by the magnitude
of . The greater the habitat overlap, the greater the number of interspecies and intraspecies
encounters which in turn increase the likelihood of pathogen outbreaks and disease persistence.
Changes that affect the overlap region will have the greatest impact on the parameters pi and
po rather than the parameters affecting transmission, births, or deaths. As more animals enter
and stay in the boundary region, that is, if pi increases and po decreases, then  increases and
consequently, ℛ0 increases. This increase can be seen in Figure 7. The value of ℛ0, computed
from formula (4.12), is compared to the exact value of ℛ0 based on the parameter values in
Table 1. Both reproduction numbers show similar increases with pi (average number of visits/
year) and 364/po (average number of days in the boundary region). The difference between
these two reproduction numbers is also computed (Figure 7 (c)); the largest relative difference
is 0.12, when pi = 25 and po = 26.

6 Discussion
Biologically-motivated models for pathogen spread between two species were formulated, an
ODE model (3.4)–(3.6) and a CTMC model. The models are based on the fact that spatial
overlap of habitats leads to greater numbers of interspecies encounters. From the ODE model,
an explicit expression for the basic reproduction number ℛ0 was calculated based on the
assumption (4.9), as well as reproduction numbers for the preferred habitats,  and , and
for crossover or interspecies transmission, . In this case, we showed global stability of the
disease-free equilibrium when ℛ0 < 1 and existence of an enzootic equilibrium when ℛ0 > 1.
Greater numbers of interactions among species allow the pathogen to be transmitted more
frequently from an infectious host to a susceptible host. This, in turn, increases ℛ0 so that it
exceeds the reproduction number in the preferred habitat, ℛ0 > ℛr (Figure 7), which ultimately
results in greater likelihood of outbreaks and disease persistence. As illustrated in Figure 2, the
overlap region is spatially- and temporally-dependent. We did not consider temporal variability
of this overlap region which may depend on seasonal variations. But we did include
demographic variability due to births, deaths, transmission, and movement in the CTMC
model. Seasonal variations, in general, will cause additional variability in the solution behavior
(e.g., Allen et al., 2005). As more data are collected, the effects of seasonal and climatic
variations on the reservoir and spillover species will be studied. In addition, controlled studies
are needed to obtain data on the duration and shape of the rodents’ disease stage distributions.

Interspecies pathogen transmission, where a known virus “jumps” into a new host, is one of
the primary reasons for the large increase in emerging diseases in wildlife in recent years
(Daszak et al., 2000; Parrish et al., 2008; Richomme et. al., 2006). Our mathematical models
illustrate the first step in this emergence and the role that the spillover species may play in
emerging diseases. Our models were developed for spread of hantavirus in rodents but can be
modified and applied to other species, where spatial spread results in spillover infection.

Acknowledgments
This research was supported by a grant from the Fogarty International Center #R01TW006986-02 under the NIH NSF
Ecology of Infectious Diseases initiative. We thank R. K. McCormack for preliminary discussions on this work, the
Fundación Moises Bertoni for facilitating access to the field sites, and the Vendramini family for allowing us to work

Allen et al. Page 13

J Theor Biol. Author manuscript; available in PMC 2010 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in Estancia Rama III. The Secretaría de Ambiente provided necessary permits for working with wildlife. In addition,
we thank the referees for their helpful suggestions.

References
Abramson G, Kenkre VM. Spatiotemporal patterns in hantavirus infection. Phys Rev E

2002;66:0011912-1–5.
Abramson G, Kenkre VM, Yates TL, Parmenter RR. Traveling waves of infection in the hantavirus

epidemics. Bull Math Biol 2003;65:519–534. [PubMed: 12749537]
Allen, LJS. An Introduction to Stochastic Processes with Applications to Biology. Prentice-Hall, Upper

Saddle River; NJ: 2003.
Allen, LJS.; Allen, EJ.; Jonsson, CB. The impact of environmental variation on hantavirus infection in

rodents. In: Gumel, AB.; Castillo-Chavez, C.; Mickens, RE.; Clemence, DP., editors. Contemporary
Mathematics Series, 410, Proceedings of the Joint Summer Research Conference on Modeling the
Dynamics of Human Diseases: Emerging Paradigms and Challenges. AMS, Providence; RI: 2006a.
p. 1-15.

Allen LJS, Langlais M, Phillips CJ. The dynamics of two viral infections in a single host population with
applications to hantavirus. Math Biosci 2003;186:191–217. [PubMed: 14583172]

Allen LJS, McCormack RK, Jonsson CB. Mathematical models for hantavirus infection in rodents. Bull
Math Biol 2006b;68:511–524. [PubMed: 16794943]

Anderson, RM.; May, RM. Infectious Diseases of Humans, Dynamics and Control. Oxford Univ, Press;
Oxford: 1991.

Bailey, NTJ. The Elements of Stochastic Processes with Applications to the Natural Sciences. John Wiley
&; Sons; New York: 1990.

Begon M, Hazel SM, Baxby D, Bown K, Cavanagh R, Chantrey J, Jones T, Bennett M. Transmission
dynamics of a zoonotic pathogen within and between wildlife host species. Proc Roy Soc Lond B
1999;266:1939–1945.

Bernshtein AD, Apekina NS, Mikhailova TV, Myasnikov YA, Khlyap LA, Korotkov YS, Gavrilovskaya
IN. Dynamics of Puumala hantavirus infection in naturally infected bank voles (Clethrinomys
glareolus). Arch Virol 1999;144:2415–2428. [PubMed: 10664394]

Carleton, MD.; Musser, GG. Order Rodentia. In: Wilson, DE.; Reeder, DM., editors. Mammal Species
of the World. Vol. 3. Vol. 2. Johns Hopkins University Press; Baltimore, MD: 2005. p. 745-752.

Castillo-Chavez, C.; Thieme, HR. Asymptotically autonomous epidemic models. In: Arino, O.; Axelrod,
D.; Kimmel, M.; Langlais, M., editors. Mathematical Population Dynamics: Analysis of
Heterogeneity, Theory of Epidemics. Vol. 1. 1995. p. 33-49.

CDC MMWR. Hantavirus pulmonary syndrome – United States: updated recommendations for risk
reduction. 2002 July 26;51(RR09):1–12.

Childs JE, Ksiazek TG, Spiropoulou CF, Krebs JW, Morzunov S, Maupin GO, Gage KL, Rollin PE,
Sarisky J, Enscore RE, Frey JK, Peters CJ, Nichol ST. Serologic and genetic identification of
Peromyscus maniculatus as the primary rodent reservoir for a new hantavirus in the Southwestern
United States. J Infect Dis 1994;169:1271–280. [PubMed: 8195603]

Chu YK, Milligan B, Owen RD, Goodin DG, Jonsson CB. Phylogenetic and geographical relationships
of hantavirus strains in eastern and western Paraguay. Am J Trop Med Hyg 2006;75:1127–1134.
[PubMed: 17172380]

Chua KB. Nipah virus outbreak in Malaysia. J Clin Virol 2003;26:265–275. [PubMed: 12637075]
Daszak P, Cunningham AA, Hyatt AD. Emerging infectious disease of wildlife: threats to biodiversity

and human health. Science 2000;287:443–449. [PubMed: 10642539]
Delfraro A, Tome L, D’Elía G, Clara M, Achával F, Russi JC, Rodonz JR. Juquitiba-like hantavirus from

two nonrelated rodent species, Uruguay. Emerg Infect Dis 2008;14:1447–51. [PubMed: 18760017]
Feng Z, Xu D, Zhao H. Epidemiological models for non-exponentially distributed disease states and

applications to disease control. Bull Math Biol 2007;69:1511–1536. [PubMed: 17237913]
Fernández Soto A, Mata Olmo R. Deforestatión y dinámica vegetal en un area de frontera agrícola del

la Región Oriental del Paraguay. Revista Geonotas (Universidade Estadual de Maringá) 2001;5:1.

Allen et al. Page 14

J Theor Biol. Author manuscript; available in PMC 2010 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fiorello CV, Noss AJ, Deem SL. Demography, ecology, and pathogen exposure of domestic dogs in the
Izozog of Bolivia. Conserv Biol 2006;20:762–771. [PubMed: 16909569]

Glass GE, Livingston W, Mills JN, Hlady WG, Fine JB, Higgler W, Coke T, Frazier D, Atherley S, Rollin
PE, Ksiazek TG, Peters CJ, Childs JE. Black Creek Canal Virus infection in Sigmodon hispidus in
southern Florida. Am J Trop Med Hyg 1998;59:699–703. [PubMed: 9840584]

Goodin DG, Paige R, Owen RD, Ghimire K, Koch DE, Chu Y-K, Jonsson CB. Microhabitat
characteristics of Akodon montensis, a reservoir for hantavirus, and hantaviral seroprevalence in an
Atlantic forest site in eastern Paraguay. Journal of Vector Ecology. Submitted to

Hethcote HW. The mathematics of infectious diseases. SIAM Review 2000;42:599–653.
Hethcote HW, Thieme HR. Stability of the endemic equilibrium in epidemic models with subpopulations.

Math Biosci 1985;75:205–227.
Holmes K. SARS-associated coronavirus. New Engl J Med 2003;348:1948–1951. [PubMed: 12748314]
Karlin, S.; Taylor, H. A First Course in Stochastic Processes. Vol. 2. Academic Press; NY: 1975.
Klein SL, Bird BH, Glass GE. Sex differences in immune responses and viral shedding following Seoul

virus infection in Norway rats. Am J Trop Med Hyg 2001;65:57–63. [PubMed: 11504409]
Klingstrom J, Heyman P, Escutenaire S, Sjölander KB, De Jaegere F, Henttonen H, Lundkvist A. Rodent

host specificity of European hantaviruses: evidence of Puumala virus interspecific spillover. J Med
Virol 2002;68:581–588. [PubMed: 12376967]

LaSalle, JP. The Stability of Dynamical Systems. SIAM; Philadelphia: 1976.
Lee HW, Lee PW, Baek LJ, Song CK, Seong IW. Intraspecific transmission of Hantaan virus, etiological

agent of Korean hemorrhagic fever, in the rodent Apodemus agrarius. Am J Trop Med Hyg
1981;30:1106–1112. [PubMed: 6116436]

Lloyd A. Realistic distributions of infectious periods in epidemic models. Theor Pop Biol 2001a;60:59–
71. [PubMed: 11589638]

Lloyd A. Destabilization of epidemic models with the inclusion of realistic distributions of infectious
periods. Proc R Soc Lond B 2001b;268:985–993.

McCormack RK, Allen LJS. Disease emergence in multi-host epidemic models. Math Med Biol
2007;24:17–34. [PubMed: 17012365]

McIntyre NE, Chu Y-K, Owen RD, Abuzeineh A, De La Sancha N, Dick CW, Holsomback T, Nisbet
RA, Jonsson C. A longitudinal study of Bayou virus, hosts, and habitat. Amer J Trop Med Hyg
2005;73:1043–1049. [PubMed: 16354810]

Mills JN, Ksiazek TG, Ellis BA, Rollin PE, Nichol ST, Yates TL, Gannon WL, Levy CE, Engelthaler
DM, Davis T, Tanda DT, Frampton JW, Nichols CR, Peters CJ, Childs JE. Patterns of association
with mammals in the major biotic communities of the southwestern United States. Am J Trop Med
Hyg 1997;56:273–284. [PubMed: 9129529]

Mills JN, Yates TL, Ksiazek TG, Peters CJ, Childs JE. Long-term studies of hantavirus reservoir
populations in the southwestern United States: Rationale, potential and methods. Emerg Infect Dis
1999;5:95–101. [PubMed: 10081676]

Nadin-Davis SA, Loza-Rubio E. The molecular epidemiology of rabies associated with chiropteran hosts
in Mexico. Virus Res 2006;117:215–226. [PubMed: 16303200]

Nel L, Jacobs J, Jaftha J, Meredith C. Natural spillover of a distinctly Canidae-associated biotype of
rabies into an expanded wildlife host in southern Africa. Virus Genes 1997;15:79–82. [PubMed:
9354274]

Padula P, Fogueroa R, Navarrette M, Pizarro E, Cadiz R, Bellomo C, Jofre C, Zaror L, Rodriguez E,
Murua R. Transmission study of Andes hantavirus infection in wild sigmodontine rodents. J Virol
2004;78:11972–11979. [PubMed: 15479837]

Palma RE, Polop JJ, Owen RD. Hantavirus-host ecology in the Southern cone of South America:
Argentina, Chile, Paraguay and Uruguay. Vector Borne and Zoonotic Disease. 2009Submitted to

Pardiňas UF, D’Elía G. The genus Akodon (Muroidea: Sigmodontinae) in Misiones, Argentina.
Mammalian Biology 2003;68:129–143.

Parrish CR, Holmes EC, Morens DM, Park EC, Burke DS, Calisher CH, Laughlin CA, Saif LJ, Daszak
P. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol
Biol Rev 2008;72:457–470. [PubMed: 18772285]

Allen et al. Page 15

J Theor Biol. Author manuscript; available in PMC 2010 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Redford, KH.; Eisenberg, JF. Mammals of the Neotropics: The southern cone. University of Chicago
Press; Chicago: 1992.

Richomme C, Gauthier D, Fromont E. Contact rates and exposure to inter-species disease transmission
in mountain ungulates. Epidemiol Inf 2006;134:21–30.

Sauvage F, Langlais M, Pontier D. Predicting the emergence of human han-tavirus disease using a
combination of viral dynamics and rodent demographic patterns. Epidemiol Infect 2007;135:46–56.
[PubMed: 16753079]

Sauvage F, Langlais M, Yoccoz NG, Pontier D. Modelling hantavirus in fluctuating populations of bank
voles: the role of indirect transmission on virus persistence. J Anim Ecol 2003;72:1–13.

Thieme HR. Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous
differential equations. J Math Biol 1992;30:755763.

Torrez-Martinez N, Bharadwaj M, Goade D, Delury J, Moran P, Hicks B, Nix B, Davis JL, Hjelle B.
Bayou virus-associated hantavirus pulmonary syndrome in Eastern Texas: identification of the rice
rat, Oryzomys palustris, as reservoir host. Emerg Infect Dis 1998;4:105–111. [PubMed: 9452404]

van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for
compartmental models of disease transmission. Math Biosci 2002;180:29–48. [PubMed: 12387915]

Weidmann M, Schmidt P, Vackova M, Krivanec K, Munclinger P, Hufert FT. Identification of genetic
evidence for dobrava virus spillover in rodents by nested reverse transcription (RT)-PCR and TaqMan
RT-PCR. J din Microbiol 2005;43:808–812.

Wesley, CL. PhD Dissertation. Texas Tech University; Lubbock, Texas, U. S. A: 2008. Discrete-time
and continuous-time models with applications to the spread of hantavirus in wild rodents and human
populations.

Wesley CL, Allen LJS, Jonsson CB, Chu YK, Owen RD. A discrete-time rodent-hantavirus model
structured by infection and developmental stages. International Conference on Difference Equations
and Applications July, 2006, Kyoto, Japan. Advanced Studies in Pure Mathematics 2009;53:1–12.

Wilson, DE.; Cole, FR.; Nichols, JD.; Rudran, R.; Foster, MS. Standard Methods for Mammals.
Smithsonian Institution Press; Washington: 1996. Measuring and Monitoring Biological Diversity.

Wolf C, Langlais M, Sauvage F, Pontier D. A multi-patch epidemic model with periodic demography,
direct and indirect transmission and variable maturation rate. Math Pop Studies 2006;13:153–177.

Yahnke CJ, Meserve PL, Ksiazek TG, Mills JN. Patterns of infection with Laguna Negra virus in wild
populations of Calomys laucha in the central Paraguayan chaco. Am J Trop Med Hyg 2001;65:768–
776. [PubMed: 11791973]

Appendix

Appendix

Basic Reproduction Number
The basic reproduction number ℛ0 for system (3.4)–(3.6) is obtained via the next generation
matrix approach (van den Driessche and Watmough, 2002). Reorder the vector of 16 state
variables as follows:

Then ˙ = ℱ − , where ℱ is the changes due to new infections and  is the other transitions.
The Jacobian matrix of ℱ and , evaluated at the DFE, is
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where F and V are 10 × 10 matrices, corresponding to the Jacobian matrices for the first 10
variables in . The symbol O represents a zero matrix. Matrix −J2, a 6 × 6 matrix, has
eigenvalues with negative real part. The basic reproduction number, ℛ0, is the spectral radius
of

where matrix A is a 4 × 4 nonnegative matrix. Thus,

the largest positive root of the characteristic polynomial of matrix A, a fourth degree
polynomial. Under condition (4.9),

The elements of matrix A are

(6.15)

where br = dr (Kr) and bs = ds(Ks).

The characteristic polynomial of matrix A is

Note that  and . It follows that the largest positive root of the
quadratic equation is ℛ0, given in equation (4.12). Local stability of the DFE if ℛ0 < 1 and
instability if ℛ0 > 1 follows directly from van den Driessche and Watmough (2002). This
verifies the first part of Theorem 4.1.

Proof of Theorem 4.1(ii)–(iii)
Before we give the proof of Theorem 4.1 (ii)–(iii), some preliminary facts are stated in the two
cases, ℛ0 < 1 and ℛ0 > 1. When ℛ0 < 1, to verify global stability, we use an expression
equivalent to ℛ0,
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It can be easily shown that ℛ0 < 1 (> 1, = 1) iff ℛ○0 < 1 (> 1, = 1). Let

It is clear that D0 is forward invariant. As t → ∞, the total population density of each patch
approaches their respective carrying capacities Kr, Ka, Ks, and Kb. We assume solutions are
initially in D0. Then the ω-limit set of solutions to (3.4)–(3.6) is a subset of

which is contained in D0. We will show for ℛ0 < 1 that solutions to the limiting system
(beginning in D1) approach the DFE. Then global asymptotic stability of the DFE will follow
from the theory of asymptotically autonomous systems.

The EE can be can be written as a fixed point problem. It can be easily verified that at an EE,
the values of the variables Pr, Ir, Sr, Pa, and Ia can be expressed in terms of Er and that the
variables Rs, As, Ss, Rb, and Ab can be expressed in terms of Es. Also, due to these relationships,
Sa, Ea, Sb and Eb can be expressed in term of Er and Es. If the solutions to Er and Es are positive,
then all of these other variables are also positive. Using these relationships and some algebraic
manipulation lead to the following expressions for Er and Es:

(6.16)

and

(6.17)

where

and c1,…, c6 are defined in (6.15).
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Proof of Theorem 4-1 (ii)–(iii)
Assume ℛ0 < 1. Consider the limiting system of (3.4)–(3.6), where the total population
densities are at their respective carrying capacities. Define the Liapunov function for the
limiting system as follows:

where

The coefficients zi, i = 1,…, 10, are positive if  and . But ℛ0 < 1 implies
 and . Therefore, if ℛ0 < 1, V is nonnegative and equals zero only if

equals the zero vector. Differentiating V with respect to t along solution trajectories for the
limiting system leads to

where Ω (0) = 0. A computer algebra system can be used to verify that Ω(Y) > 0 for Y ≥ 0, Y
≠ 0. It follows that dV/dt ≤ 0 for ℛ̂0 < 1 (or equivalently ℛ0 < 1). The Liapunov-Lasalle
extension theorem (LaSalle, 1976) implies solutions to the limiting system in D1 approach the
largest positively invariant subset of the set where dV/dt = 0. Hence, solutions to the limiting
system converge to the DFE.

As noted previously, the ω-limit set of solutions to (3.4)–(3.6) is contained in D1. The preceding
argument shows that all solutions beginning in D1 converge to the DFE. It follows from the
theory of asymptotically autonomous systems (Thieme, 1992, Theorem 4.1 or Castillo-Chavez
and Thieme, 1995, p. 39) that if ℛ0 < 1, then the ω-limit set of (3.4)–(3.6) is the DFE.

Next, assume ℛ0 > 1. To prove existence and uniqueness of a positive EE, denote the vector-
valued function F(Er,Es) = (f(Er, Es),g(Er, ES))T, where f(Er,Es) and g(Er,Es) are defined in
(6.16) and (6.17), respectively. The function F is positive, continuous, and bounded (each of
the component functions is bounded by brKr/(br + δr) and bsKs/(bs + δS)). In addition, F(0,0)
= (0, 0)T. The derivative of F evaluated at the origin is
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where c1,…,c6 are defined in (6.15). It is clear that F′(0, 0) is irreducible with spectral radius
equal to ℛ0 > 1. With the aid of a computer algebra system, it can be shown that F is a monotone
increasing function in each of its variables. These properties of F are sufficient to show the
existence of a positive EE (Hethcote and Thieme, 1985, p. 209). To ensure a unique EE exists,
a sufficient condition is that the function F is strictly sublinear: A vector-valued function G
(x) = (Gi(x)) from  into itself is called strictly sublinear if for fixed x in (0, ∞)n and
fixed h in (0,1), there exists an ε > 0 such that Gi(hx) ≥ (1 + ε)hGi(x), for i = 1,…, n.

We define positive constants εr and εs so that f(hEr,hEs) = (1 + εr)hf(Er,Es) and g(hEr, hEs) =
(1 + εs)hg(Er, Es) for a fixed h ∈ (0,1) and fixed (Er, Es) in , then choose ε = min{εr, εs}.
The positive constants

and

where

and

Hence, the function F defined in (6.16)–(6.17) is strictly sublinear. All of the conditions of
Theorem 2.1 inHethcote and Thieme (1985, p. 209) are satisfied. The function F has a unique
fixed point which implies that a unique positive EE exists for the full system (3.4)–(3.6).
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CTMC Model
A CTMC model can be derived based on the ODE model (3.4)–(3.6), where variability is
included in the birth, death, transmission, and movement processes (Allen, 2003). There are
38 events in the CTMC model, where a change occurs. Let X(t) = (X1(t),…, X16(t)) be a vector
of 16 discrete random variables

where X1(t) = Sr(t), X2(t) = Er(t), etc., and X16(t) = Rs(t). The 38 events are divided into events
for birth, death and transmission (22 events) and for movement (16 events). If there is a change
in the ith random variable at time t we denote it by ΔXi = ai, ai ∈ {−1,1}; the variable t is
omitted for simplicity. There is no change in the variable Xi if ai = 0. The 22 transition
probabilities P(ΔX|X) = Prob{ΔX = (a1,…, a16)|X} based on birth, death and transmission are
as follows (some ai ≠ 0):

where dr = dr(Nr} and ds = ds(Ns). The 16 transition probabilities associated with movement
between the preferred habitat and the boundary region are
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The probability of no change is one minus the sum of the 38 probabilities defined above and
the probability of any other change is o(Δt).

Differential equations for the joint probability function  of X follow from these infinitesimal
transition probabilities. The joint probability function is a solution of the forward Kolmogorov
differential equations, an infinite system of differential equations. For multivariate processes,
the form of these differential equations is often too complicated for analytical purposes. This
is the case for our CTMC model with 16 random variables. The general form of the forward
Kolmogorov differential equations depends on the set S = U×U×…×U = U16, where U =
{−1,0,1}. Let ha(X) denote the rate at which events occur for a ∈ S, where the values of a =
(a1,…, a16) are defined above. For example, for the 38th event, a16 = 1, a12 = −1 and ai = 0
for i ≠ 12,16 so that ha(X) = p0X12. There are 38 events for which ha(X) ≠ 0. The general form
for the forward Kolmogorov differential equations is

where , ℤ+ = {0,1,2,…} (see e.g., Bailey, 1990).

Allen et al. Page 22

J Theor Biol. Author manuscript; available in PMC 2010 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Natural color satellite imagery showing location and general land cover characteristics of the
two data collection grids. Larger image (acquired Feb. 2003 from Landsat ETM+), shows the
general setting of the collection grids within and near the Mbaracayú forest reserve (reserve
boundaries are indicated by the white outline). Smaller images (acquired May 2005 from
DigitalGlobe Quickbird) show detailed views of the forested (R3B) and deforested (R3A) sites.
Boxes indicate the exact boundaries of the 1 ha trapping grids. Location of the study site within
Paraguay is indicated by the inset map.
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Figure 2.
Data for nine trapping sessions in 2005–2007 for three species A. montensis (AKMO), N.
lasiurus (NLAS) and O. delator (ODEL) at site R3A. Symbols indicate numbers of animals
captured at each station during eight nights of trapping, and the number of these which were
seropositive.
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Figure 3.
A schematic of the three regions representing preferred habitats for the reservoir and spillover
species and the boundary or overlap region adjacent to the two habitats.
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Figure 4.
Solution to the ODE model (straight lines) and one sample path of the CTMC model (highly
variable curves) for the reservoir species in its preferred habitat (Ir and Pr) and in the overlap
region (Ia and Pa). The parameter values are given in Table 1 with pi = 8 and po = 52. Initial
values are at the equilibrium values given in (4.10), rounded to the nearest integer.
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Figure 5.
Solution to the ODE model and one sample path of the CTMC model for the spillover species
in its preferred habitat (As) and in the boundary region (Ab). In the ODE model, Ās = 0.07 and
Āb = 0.02, whereas, in the CTMC model, the values for the random variables As and Ab lie in
the set {0,1,2,…}. Initial values and parameter values are the same as those in Figure 4.
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Figure 6.
Probability histograms for the reservoir species in the preferred habitat for the two infectious
stages, Ir and Pr (10,000 sample paths of the CTMC model). Parameter values are given in
Table 1. The mean and standard deviation of the distributions for Ir are μ̂Ir = 8.8 and σ ̂Ir = 4.3
and for Pr they are μ̂Pr= 14.0 and σ ̂Pr = 5.4.
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Figure 7.
The basic reproduction number ℛ0 for the habitat-based model (3.4)–(3.6) as a function of the
average number of visits to boundary region (pi) and average length of time (days) spent in the
boundary region (364/po), (a) based on formula (4.12), [Approx], and (b) based on the
parameter values in Table 1, [Exact]. The graph in (c) is the relative difference or relative error
in these two ℛ0 values: ([Approx]−[Exact])/[Exact].
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Table 1
Basic parameter values for the ODE and the CTMC models for the reservoir and the spillover species.

Reservoir Parameter Value Spillover Parameter Value

Kr 100 Ks 50

br 3 bs 3

δr 26 δs 26

γr 4 γs 26

δa 26 δb 26

γa 4 γb 26

βI 0.075 βA 0.025

βP 0.025 βb3 0.025

βa1 0.075 βb1 0.15

βa2 0.025 βb2 0.05

βa3 0.05
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