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Abstract

Integrins are cell surface receptors for extracellular matrix proteins and play a key role in cell survival,
proliferation, migration and gene expression. Integrin signaling has been shown to be deregulated in
several types of cancer, including prostate cancer. This review is focused on integrin signaling
pathways known to be deregulated in prostate cancer and known to promote prostate cancer
progression.

Keywords
Focal adhesion kinase; PTEN; Pl 3-kinase/AKT; Ras/Raf/MAPK; cdc2; survivin; Bcl-2

Introduction

Prostate cancer is a significant burden in western countries and has been predicted to account
for more than 28,660 deaths and 186,320 new cases in 2008 [1]. Prostate cancer development
proceeds through a series of defined states. These include prostatic intra-epithelial neoplasia
(PIN); high-grade PIN lesions, which usually develop prior to invasive cancer; androgen-
sensitive invasive cancer and an androgen-independent castration-resistant state [2,3]. The
current therapies for prostate cancer involve surgery, androgen ablation, or the blockade of the
androgen receptor; however, a significantly high percentage of treated prostate cancers
eventually grows, despite either castration levels of androgen or the presence of anti-androgens.
For these patients, radiation therapy is the only treatment available. Still, a large number of
patients relapse.

Integrins are cell surface receptors for extra-cellular matrix proteins and play a key role in cell
survival, proliferation, migration and gene expression. Integrin signaling has been shown to
be deregulated in several types of cancer, including prostate cancer. In prostate cancer, tumor
cells have a different surrounding matrix than normal cells; thus changes in the integrin profile
may be functionally relevant and contribute to aberrant intracellular signaling [4-8]. Several
studies have associated deregulation of integrin expression with the progression of prostate
cancer to an advanced stage (Table 1) [4,8-11]. This article reviews the literature on the major
signaling pathways activated by integrins and their deregulation in prostate cancer.

Integrin deregulation in prostate cancer

Integrins are heterodimers consisting of a and B subunits. At this time, 24 heterodimers of the
integrin family, consisting of 18 o and 8  subunits, have been described [12,13], and their
ability to activate specific signaling pathways has been investigated [13]. Integrin signaling
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plays a key role in the alteration of cellular growth and tumor progression through the regulation
of gene expression, apoptosis, cell adhesion, proliferation, migration and angiogenesis [14,
15], as well as proteinase expression [16]. Most o and  subunits have been shown to be
downregulated in prostate cancer, whereas only a6, $1, 33 and 36 are upregulated [6]. Among
the o subunits, several reports show that a3, a4, a5 and a7 are downregulated [17,18]; o2 and
a6 are aberrantly expressed, whereas there are no reports on the remaining subunits [6]. A
unique expression pattern has been shown for a2, which is downregulated in prostate cancer,
but upregulated in lymph node metastases as compared to primary lesions [18,19]. An extensive
analysis of a6 expression in prostate cancer shows that a6 expression is either maintained or
overexpressed in prostate cancer, and increases in lymph node metastases [11,19-21].

Among the B subunits, B1, B3, and B6 are upregulated, while p1C and 4 are downregulated
in human prostate cancer [6,20,22-24]. No reports are available for 5, B7, and p8. Five p1
variant subunits, B1A, 1B, B1C, B1C-2, and p1D, generated by alternative splicing, have been
described. Two variants, 1C and B1A, are shown to be expressed in benign prostatic
epithelium. B1C is expressed at both protein and mRNA levels in benign prostatic epithelial
cells, but is markedly downregulated in adenocarcinoma [25-28]. Fornaro et al. show that the
expression of B1C integrin increases p27kiP1 |evels, a cell cycle inhibitor, as well as p27kiP1
association with cyclin A [26]. In contrast, the findings that the expression of the 1A integrin
variant is upregulated and is necessary for the cell’s ability to grow in an anchorage-
independent manner [29], point to the important role that the 1A integrin may have during
prostate cancer progression and will be helpful in formulating new therapeutic strategies.

Upregulation of avpB3, avp6 and the truncated allb integrin variant has been described [6].
Zheng et al., using human prostate cancer cells isolated from 16 surgical specimens, show that
these cells express avp3, whereas normal prostate epithelial cells do not [30]. Similarly, avp6
[31,32] and the truncated allb integrin variant [33] are found to be expressed in
adenocarcinoma.

The B1and B3 integrin subunits are known to localize in focal contacts and to mediate spreading
and cytoskeletal rearrangement in normal cells [12,13]. However, when we either
downregulated or upregulated these subunits by sSiRNA or ectopic expression analysis, we
show that cancer cell spreading is not affected [29,34]. These results demonstrate that the ability
of the B1 and 3 subunits to promote cancer progression is independent of cell spreading.

Overall, these findings indicate that the expression of selective integrin subunits is deregulated
during prostate cancer progression, and that these subunits are potential diagnostic markers in
prostate cancer.

of unigue signaling pathways by integrins

The expression of the B1 and B3 subunits activates specific signaling pathways and supports
distinct cancer cell functions [34,35]. Analysis of the mechanism by which 1 may promote
tumor growth in vivo, shows that 1 is uniquely required in cancer cells for the localization,
expression and function of insulin-like growth factor type 1 receptor (IGF-IR), which is known
to support cancer cell proliferation and survival [29,35]. The mechanism proposed for g1
integrins’ control of IGF-IR activity involves B1 recruiting specific adaptors to the plasma
membrane, thus increasing the concentration of specific adaptors proximal to the growth factor
receptor [35]. This study provides evidence that the 1 cytodomain plays an important role in
mediating B1 integrin association with either insulin receptor substrate-1 (IRS-1) or Grb2-
associated binderl (Gab1)/SH2-containing protein-tyrosine phosphate 2 (Shp2), downstream
effectors of IGF-IR. Specifically, B1A associates with IRS-1 and B1C with Gab1/Shp2 [29,
35,36].
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In parallel studies, we have discovered that f3 is uniquely required in cancer cells for increasing
cdc? levels, as well as cdc2 kinase activity. While B1 integrin expression does not increase
cancer cell motility or cdc2 levels, and appears to predominantly modulate cell proliferation
and survival, these effects are specific for B3. Higher levels of cdc2 result in increased cell
migration mediated by the specific association of cdc2 with cyclin B2 and the phosphorylation
of caldesmon, a substrate of cdc2. These results show that cdc2 acts as a downstream mediator
of the avpB3 integrin and promotes cancer cell migration [34]. In conclusion, the $1 and B3
integrins promote activation of selective signaling pathways that support prostate cancer
progression.

Integrin downstream effectors

Since integrins lack catalytic activity, they depend on intracellular effector proteins to
transduce signals [37,38]. In this section, we discuss the major signaling effectors that are likely
to contribute to prostate cancer progression (Figure 1 and Table 2).

Focal adhesion kinase (FAK)

FAK is a non-receptor tyrosine kinase, which becomes activated upon integrin-extracellular
matrix (ECM) interactions and integrin clustering [39,40]. Upon phosphorylation, FAK
interacts with several signaling proteins, including Src kinases, Cas, paxillin and
Phosphoinositide 3-Kinase (Pl 3-Kinase) [39,40]. FAK signaling is altered in prostate cancer.
In normal prostate, FAK expression is absent or weak in secretory epithelium and is expressed
predominantly in the basal layers. Prostate carcinoma shows a greater expression of FAK
compared to the secretory layer of normal prostate. FAK expression is further increased in
invasive prostate cancer [41,42].

Awell established role for FAK is its ability to regulate cancer cell motility [43]. The expression
of dominant negative FAK inhibits the migration of prostate carcinoma cells [44]. In our
previous study, we show that the B3 integrin induces cell migration on vitronectin, which is
mediated by FAK [30]. Recently, the role of FAK in cell migration has been confirmed by
using an inhibitor of FAK phosphorylation, PF-573,228. This inhibitor fails to inhibit cell
growth or to induce apoptosis. In contrast, treatment with PF-573,228 inhibits both chemotactic
and haptotactic migration concomitant with the inhibition of focal adhesion turnover [45]. In
addition, Dasatinib, an inhibitor of Src family kinases/Abl, blocks FAK and Cas signaling in
human prostate cancer cells, resulting in the suppression of invasion, migration and adhesion
of prostate cancer cells [46].

Bombesin is shown to stimulate PC-3 cell migration and tyrosine phosphorylation of FAK. In
addition, bombesin also increases the association between FAK and the 1, 3 and 5 integrins
[47]. Bombesin induces relocalization of FAK in focal contacts, followed by its tyrosine
phosphorylation and the formation of actin lamellipodia. FAK inhibitors cause reduced cell
motility upon bombesin treatment [48]. FAK is also required for bombesin stimulated
activation of RhoA, a GTPase required for cell migration [49]. Another example of the role
that FAK plays in cell migration is provided by Sumitomo et al., who use Neutral endopeptidase
24.11 (NEP) [50]. NEP is an enzyme which cleaves neuropeptides such as bombesin and
endothelin-1. NEP treatment blocks bombesin and endothelin-stimulated cell migration and
FAK phosphorylation. This study suggests that NEP expression results in the formation of a
complex containing NEP, Lyn and PI 3-Kinase and this complex competitively blocks FAK/
P1 3-Kinase interactions [50]. The FAK/PI 3-Kinase interactions are also shown to promote
prostate cancer cell invasion: a5B1 interacts with the PHSRN sequence of fibronectin (FN),
which induces FAK phosphorylation and FAK association with Pl 3-Kinase, resulting in
prostate cancer cell invasion [51]. FAK siRNA, or specific Pl 3-Kinase inhibitors, block
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PHSRN-mediated invasion [51]. Overall, these studies highlight a crucial role for the FAK in
prostate cancer cell invasion mediated by integrins.

Ras/Raf/MAP kinase

PTEN

Mitogen-activated protein (MAP) kinases, the principal effectors of Ras and known
downstream effectors of integrins, are major regulators of cell proliferation and cell
differentiation [52]. Although Ras and Raf mutations are not common in prostate cancer, it is
known that the activation of the Ras/MAP kinase pathway might be sufficient for progression
towards the androgen-independent state [53,54]. A high ERK/p38 activity ratio favors prostate
tumor growth and activation of a5p1 integrin is proposed as a determinant of the in vivo growth
promoting activity of a high ERK/p38 ratio [55]. Furthermore, inhibition of MAP kinase, using
U0126, decreases a6 integrin mMRNA levels in androgen-independent prostate cancer cells
[56]. Thus, blocking MAP kinase activation provides an important tool to regulate integrin
signaling during prostate cancer progression.

PTEN, adual specificity phosphatase, has the ability to dephosphorylate inositol phospholipids
such as phosphatidylinositol-3,4,5-triphosphate (PIP3) and, as a consequence, negatively
regulates AKT activation. By virtue of its ability to inhibit the AKT pathway, PTEN acts as a
tumor suppressor [57]. The Pten gene is frequently deleted or mutated in human cancers and
is shown to be involved in the regulation of cell migration on integrin substrates [58]. In 1997,
PTEN was cloned from the 10g23 region, a region frequently targeted by loss of heterozygosity
in advanced cancer [59,60]. PTEN alterations are common in prostate cancer. Recently,
Schmitz et al. have shown that 23% of patients with first time diagnoses lost PTEN expression,
and 59% of patients with lymph node metastasis no longer express PTEN. These findings
suggest that loss of PTEN expression is a possible early prognostic marker for prostate cancer
metastasis [61].

Overexpression of PTEN inhibits cell migration, whereas antisense to PTEN enhances cell
migration. These effects are suggested to be mediated by FAK regulation, since overexpression
of FAK partially antagonizes the effects of PTEN. Thus, PTEN phosphatase may function as
a tumor suppressor by negatively regulating cell interactions with the ECM, mediated by
integrins [58]. PTEN is shown to regulate the adhesion and proliferation of LNCaP-C4-2
prostate cancer cells stimulated by vascular endothelial growth factor [62]. PTEN expression
inhibits LNCaP-C4-2 cell migration toward calvaria-conditioned medium, but has no effect on
migration toward lung-conditioned medium, and this inhibitory effect is dependent on PTEN
lipid phosphatase activity [63]. All these studies suggest that PTEN downregulation contributes
to integrin activation of signaling pathways that mediate cancer progression, although the
mechanisms underlying this cross-talk remain to be investigated.

Pl 3-Kinase/AKT pathway

Pl 3-Kinase is a major downstream component of the integrin and growth factor signaling
pathways [64,65]. Pl 3-Kinase catalyzes the production of the lipid secondary messenger PIP3
at the cell membrane. PIP3, in turn, contributes to the recruitment and activation of a wide
range of downstream targets, including the serine-threonine protein kinase AKT [64]. Several
studies show that integrin-mediated activation of Pl 3-Kinase plays a crucial role in cancer cell
survival, preventing anoikis and promoting cell migration (for review, [37,66]). AKT1 kinase
activity is significantly increased in primary carcinomas of the prostate [67]. AKT activation,
assessed by immunohistochemical staining of human prostate cancer biopsies, shows greater
intensity in high Gleason grade compared to PIN and all other grades of prostate cancer [68].
Similarly, using protein microarrays, it is shown that prostate cancer progression is associated
with increased phosphorylation of AKT [69]. Although AKT promotes several integrin-

Am J Transl Res. Author manuscript; available in PMC 2010 March 25.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 5

mediated functions, our studies indicate a predominant role for the Pl 3-Kinase/AKT pathway
in prostate cancer cell migration [70].

Survivin/Bcl-2

Survivin, an important member of the inhibitor of apoptosis family, is a dual regulator of cell
proliferation and cell viability. Survivin is expressed in embryonic and fetal organs, but is
undetectable in most differentiated tissues. Survivin is shown to be upregulated in prostate
cancer, especially in aggressive forms, such as high grade carcinoma and metastasis [71-73].
We demonstrate that f1 integrin engagement by FN upregulates the expression of survivin,
and increases protection from apoptosis induced by the TNF-a in aggressive prostate cancer
cells. The expression of dominant negative survivin counteracts the ability of FN to protect
cells from undergoing apoptosis. We also show that the regulation of survivin levels by
integrins is mediated by the AKT pathway [74]. It should be noted that in addition to integrin-
ECM interactions, IGF/mTOR signaling and anti-androgen therapy are associated with the
modulation of survivin levels in prostate cancer [75].

Bcl-2 is another important regulator of cell survival. Bcl-2 expression is restricted to the basal
cells in normal and hypertrophic prostate glands, but all epithelial cells in areas of PIN express
Bcl-2 [76]. All primary prostatic carcinomas and metastases obtained from hormone-refractory
tumors are shown to express Bcl-2 [76—78]. This suggests that they may protect tumor cells
from apoptosis induced in response to radiotherapy or chemotherapy. Integrin ligation,
specifically by a5p1 and avp3, but not avpl, stimulates Bcl-2 expression via the FAK and Pl
3-Kinase pathways [79,80]. This integrin-mediated regulation of Bcl-2 is also controlled by
the activation of Ca2+/calmodulin-dependent protein kinase IV, NF-kappaB and CREB
transcription factors [79,80]. Bcl-2 is also known to suppress anoikis induced by quinazoline
based al-adrenoceptor antagonists in prostate cancer cells [81].

All these recent studies highlight a crucial role for survivin and Bcl-2 in prostate cancer cell
survival mediated by integrins.

Conclusions and future studies

The studies reviewed here indicate that designing new diagnostic and therapeutic approaches
for prostate cancer, based on inhibitors of integrin functions or of integrin downstream
signaling, will prove to be a successful strategy. However, the molecular pathways by which
integrins contribute to prostate cancer progression, and in general, the molecular mechanisms
that promote this disease remain to be fully investigated. Several areas of research appear
under-investigated. Among others, a major effort is needed to study the mechanisms by which
integrins are deregulated in prostate cancer and to characterize integrin-mediated pathways
which support survival of prostate cancer stem cells. Furthermore, new preclinical studies to
test the efficacy of integrin inhibitors in prostate cancer are necessary. For this purpose, prostate
cancer mouse models, such as the TRAMP mouse or the mouse which carries a conditional
Pten deletion in the prostate are useful tools. Future studies will also take advantage of the use
of recently developed novel small animal molecular imaging approaches, such as
bioluminescence imaging (BLI) [82,83]. A very innovative study, using BLI in mice that
ubiquitously express luciferase (FLASH, firefly luciferase activated systemically in
homozygotes), proves that we can increase our ability to detect tumor response to therapeutic
agents like siRNAs [84,85].

In conclusion, studies aimed at elucidating the mechanisms by which deregulation of integrin-

mediated signaling pathways occurs in prostate cancer will provide novel therapeutic
approaches for this disease.
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Figure 1.

Integrin-dependent signaling pathways. Schematic drawing showing the signal transduction
pathways regulated by integrins that control prostate cancer cell survival, proliferation,
adhesion, migration, and cytoskeletal organization. For a detailed description of integrin
downstream effectors like Rac, cdc42, Src, Cas, Rho and Crk, or cytoskeletal proteins like
AFAP-110, talin and paxillin, readers should refer to previous articles [38,86].
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Deregulated expression of integrin subunits in human prostate cancer and metastasis

Up-Regulated

Subunit Adenocarcinoma Metastasis References

Og unknown I Knox et al., 1994 [11]; Bonkhoff et al., 1993 [19];
Nagle et al., 1995 [20]

oy (truncated) 1 unknown Trikha et al, 1998 [33]

By 1 unknown Murant et al., 1997 [10]; Knox et al., 1994 [11];
Goel et al., 2007 [22]

B3 I I Zheng et al., 1999 [30]

B 1 1 Li and Languino, 2007 [31]

Down-Regulated

03, Oy O l unknown Nagle et al., 1994 [18]

0 1 unknown Ren et al., 2007 [17]

Bic l unknown Fornaro etal., 1996, 1998, 1999 [25-27]; Perlino et
al., 2000 [28]

Ba 1 unknown Nagleetal., 1995 [20]; Davisetal., 2001 [23]; Allen
etal., 1998 [24]

Other

0y 1 I Nagle et al., 1994 [18]; Bonkhoff et al., 1993 [19]

This table shows the expression of integrin subunits found to be deregulated in human primary and metastatic prostate cancer.
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Table 2
Aberrant Integrin-Dependent Pathways in Prostate Cancer
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Downstream Effectors

Expression/Activity

Prostate cancer stage

References

FAK

MAP kinase
PTEN
AKT

Survivin

Bcl-2

upregulated expression

increased kinase activity
downregulated expression

increased kinase activity

upregulated expression

upregulated expression

invasive cancer and metastasis

androgen-independent state
cancer and metastasis

cancer with high Gleason score

PIN, primary tumors and metastasis

PIN, primary tumors and metastasis
from recurrent cancer

Rovin et al, 2002 [41];
Tremblay et al, 1996 [42]

Bakin et al, 2003 [53]
Schmitz et al, 2007 [61]

Sunetal, 2001 [67]; Malik et
al, 2002 [68]

Shariat et al, 2004 [71];
Krajewska et al, 2003 [72];
Kishi et al, 2004 [73]

Colombel et al, 1993 [76];
Zellweger et al, 2005 [77];
Krajewska et al, 1996 [78]

Signaling proteins and inhibitors of apoptosis known to be regulated by integrins and to affect prostate cancer progression are shown. FAK, Focal adhesion
kinase; PTEN, phosphatase and tensin homolog; MAP kinase, mitogen-activated protein kinase.
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