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Inflammatory cytokines are a family of molecules that coordinate inflammatory and immune
responses. One important class of inflammatory cytokines are the chemokines (for
CHEMOtactic cytoKINES). Chemokines are a large group of proteins that play a central role
in regulating the migration of leukocytes (Tran and Miller, 2003; Rostene et al., 2007). More
than 50 chemokines have been shown to be expressed in mammals, and they produce all of
their known effects by activating a family of G-protein-coupled receptors. Because of their
central role in coordinating inflammatory responses, chemokines and their receptors have been
investigated as novel therapeutic targets for anti-inflammatory drug action. Furthermore, the
chemokine receptors CXCR4 and CCR5 have been shown to be the cellular receptors mediating
HIV-1 infectivity, indicating that chemokine signaling also has a major role to play in HIV-1
pathogenesis.

Approximately a decade ago, reports started to appear in the literature demonstrating that, in
addition to the immune system, chemokine signaling may also have important functions in the
nervous system (Meucci et al., 1998; Zou et al., 1998). Thus, chemokines and their receptors
were found to be expressed by both neurons and glial cells under a variety of conditions. As a
result of these observations, investigators have attempted to understand whether there are novel
functions for chemokine signaling within the nervous system. Indeed, the evidence now clearly
suggests that chemokines represent a unique class of neuromodulators that can regulate
phenomena as diverse as development, neuroinflammation, and synaptic transmission. Some
of these roles are the result of previously understood biological functions of chemokines (e.g.,
chemotaxis), whereas others depend on novel nervous system-specific roles. In this Society
for Neuroscience mini-symposium, we wanted to present some of the recent data highlighting
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the emerging view that chemokines act as novel neuromodulators, as well as some of the
neuropathological implications of these findings. What follows is a summary of the major
themes to be discussed at the symposium, although it is not a comprehensive review of all of
the data available in the literature.

Chemokines, stem cells, and neurogenesis
Important insights into the biological functions of chemokines can be obtained by just thinking
about the evolution of these substances (Huising et al., 2003). It is clear that a rapid expansion
of the chemokine family and their receptors accompanied the evolution of a sophisticated
immune system. However, the chemokine CXCL12/SDF-1 and its major receptor CXCR4
existed phylogenetically before the development of an immune system. Hence, one would
assume that chemokine signaling had some ancient function that was not specifically concerned
with the immune system. Indeed, in contrast to many chemokines whose expression is strongly
upregulated during inflammatory responses, both CXCL12 and CXCR4 are constitutively
expressed at high levels in many tissues, including the developing and adult nervous systems
(Banisadr et al., 2002; Stumm et al., 2002; Stumm et al., 2003). Inspection of the phenotypes
of CXCL12 and CXCR4 knock-out mice has indicated that the original function of chemokine
signaling was to regulate the migration of stem cells (Miller et al., 2008). Indeed, the key role
of CXCR4 signaling in maintaining hematopoietic stem cells in the bone marrow stem cell
niche is very well established. Antagonists of CXCR4 receptors such as the drug AMD3100
[1,1′-[1,4-phenylenebis(methylene)]bis-1,4,8,11-tetra-azacyclotetradecane
octahydrochloride] are used clinically to release hematopoietic stem cells into the circulation
for transplantation purposes (Lemoli and D’Addio, 2008). It is also now clear that CXCR4
signaling regulates the migration and development of neural stem cells that form numerous
structures in the brain and peripheral nervous systems (Belmadani et al., 2005; Li and
Ransohoff, 2008).This is true for the CNS and also for structures such as the dorsal root ganglia
(DRG) formed from neural crest progenitors. Interestingly, CXCR4 signaling not only
regulates the migration and proliferation of neural stem cells but also regulates the growth of
axons once these cells start to develop into neurons (Lieberam et al., 2005; Pujol et al.,
2005).

Recent data have demonstrated that CXCR4 signaling continues to play a role in the regulation
of adult neurogenesis. It has now been widely demonstrated that new neurons continue to be
formed throughout adult life in the dentate gyrus (DG) of the hippocampus as well the
subventricular zone (SVZ), which functions as a source of new neurons that migrate to the
olfactory bulb (Zhao et al., 2008). Both CXCL12 and CXCR4 are expressed in the adult DG
and SVZ. In the DG, CXCR4 is expressed by neural stem cells and young granule cells (Tran
et al., 2007). Recently Kolodziej et al. (2008) demonstrated that CXCL12 appears to be released
in the adult DG and to regulate the development of CXCR4-expressing neural stem cells. These
data raise an interesting question: which cells in the DG normally store and release CXCL12
and under what circumstances? This question has been partly answered by Bhattacharyya et
al. (2008) who demonstrated that CXCL12 is expressed by neurons in the DG, packaged into
neurotransmitter vesicles, and can be released by depolarization like other neurotransmitters.
CXCL12 and GABA were observed to be stored in the terminals of interneurons (basket cells)
that innervate DG neural stem cells and could cooperate in producing synaptic inputs to these
cells. Overall, these data indicate that CXCL12 is actively involved in the neural regulation of
DG stem cell development. As we shall discuss below, the idea that chemokines can be
expressed by neurons and act as neurotransmitters or neuromodulators suggests a novel role
for these substances in the nervous system, which is one focus of the discussions at our
symposium. Indeed, it is clear that CXCR4 receptors are normally expressed by a wide variety
of neurons throughout the neuraxis and that CXCL12 can influence their activity (Guyon and
Nahon, 2007). For example, Apartis and colleagues have shown that CXCL12 can influence
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the electrical activity of dopaminergic neurons in the substantia nigra, resulting in DA release
and changes in locomotor activity (Guyon et al., 2006; Skrzydelski et al., 2007). In addition,
activation of CXCR4 expressed by these neurons affords a degree of protection against
neurotoxins. Results such as these indicate that neuromodulatory effects of chemokines may
influence both the short- and long-term functions of neurons (E. Apartis, unpublished
observations).

Neurogenesis in the DG is an ongoing process. However, in other parts of the brain such as
the cortex, neurogenesis in adults only occurs at extremely low levels, if at all. However, in
response to stroke or other types of brain injury, neural stem cells migrate to areas of brain
damage and participate in brain repair (Ohab et al., 2006). Here again it appears that
chemokines are important mediators of this process. Neural stem cells express a number of
different chemokine receptors, including CXCR4, but also others, such as CCR2, the receptors
for the chemokine CCL2/MCP-1 (Tran et al., 2007). The expression of chemokines such as
CXCL12 and CCL2 is upregulated by cells surrounding sites of brain injury and can attract
progenitor cells for repair purposes (Belmadani et al., 2006; Liu et al., 2007; Yan et al.,
2007). Depending on the situation, chemokine expression can be upregulated by microglia,
astrocytes, endothelial cells, and neurons (Ohab et al., 2006; Ohab and Carmichael, 2008). As
demonstrated by Banisadr and colleagues, neural and oligodendrocyte progenitors may be
targeted to areas of brain repair in association with stroke or multiple sclerosis, and chemokine
signaling is important in this migration (G. Banisadr, T. Frederick, C. Freitag, D. Ren, H. Jung,
S. D. Miller, R. J. Miller, unpublished observations) (Pluchino et al., 2003). The expression
patterns of chemokines synthesized under pathological conditions suggest that they may
coordinate brain repair together with angiogenesis and leukocyte influx, giving them a central
role in the overall response to injury.

Chemokine/microglial interactions
The idea that chemokines can act as neuromodulators also appears to be important in
communication between neurons and cells of non-neuronal origin in the brain such as
microglia, which are important cellular components of the innate immune response in the
nervous system. Thus, chemokines may play a central role in coordinating communication
between the nervous and immune systems in the context of brain injury and infection. For a
long time, neurons have been regarded as targets of activated microglia, exerting little
reciprocal control on microglial function. However, it now appears that neurons express “on
and off“ signals that can inform microglia about their status and so are capable of influencing
microglial activity (Biber et al., 2007). One example of this phenomenon is the chemokine
CCL21/SLC/ Exodus 2. In contrast to CXCL12 discussed above, which is constitutively
expressed at high levels, CCL21 expression is exclusively upregulated in “endangered”
neurons in the context of neuropathology (de Haas et al., 2007). Once expressed by these
neurons, CCL21 takes on a neuromodulator role as described above for CXCL12. Biber et al.
(2001, 2007) have shown that, in a middle cerebral artery occlusion mouse model of brain
ischemia, cortical neurons rapidly expressed CCL21 in the penumbra of the ischemic core.
Similarly, it was demonstrated recently that CCL21 is specifically expressed in neurons in a
spinal cord (SC) injury model (Zhao et al., 2007). CCL21 expression was induced in cultured
cortical neurons within 2 h after an excitotoxic insult (Biber et al., 2001; de Jong et al.,
2005). It has been proposed that release of CCL21 from damaged neurons activates local
microglia and therefore represents a way of informing microglia about neuronal damage.
Interestingly, CCL21 does not seem to activate microglia through its cognate receptor CCR7
but via another chemokine receptor, CXCR3 (Biber et al., 2001; Rappert et al., 2002; Rappert
et al., 2004). In keeping with its proposed neuromodulator role, it was observed that CCL21
was expressed in neuronal large dense-core vesicles (de Jong et al., 2005, 2008) and that
chemokine-filled vesicles could be specifically transported to presynaptic sites in which they
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can be released (de Jong et al., 2005; Rostene et al., 2007; Jung et al., 2008). Hence, it appears
that chemokines can be expressed in neurons under a variety of circumstances and are involved
in communication with other neurons and also non-neuronal cells.

Chemokines in the pathogenesis of chronic pain
The observations summarized above on the CNS have been paralleled by developments on the
role of chemokine signaling in the peripheral nervous system. In this case, investigators have
been particularly interested in the role of chemokine signaling in different types of chronic
pain syndromes such as those resulting from damage to the nervous system or infection with
agents such as HIV-1 (McMahon et al., 2005; White et al., 2005a, 2007; Wallace et al.,
2007). Generally speaking, it has been observed that chemokine expression in the peripheral
nerve and SC is upregulated under these circumstances, and interference with chemokine
signaling seems to inhibit hypersensitive pain responses under some circumstances. Two
distinct targets for the actions of chemokines have been described, namely nociceptive sensory
(DRG) neurons and microglia within the dorsal horn of the SC. One of the best studied examples
of this phenomenon is the chemokine CCL2 and its receptor (CCR2). These molecules are not
normally expressed in the DRG or SC at very high levels but are strongly upregulated in
nociceptive neurons in association with chronic pain states (White et al., 2005b; Sun et al.,
2006; Zhang and De Koninck, 2006; Bhangoo et al., 2007). CCR2 activation certainly seems
to be important in the development of chronic pain because total deletion of CCR2 receptors
or CCR2 receptor antagonists block pain behavior in a number of experimental models,
whereas overexpression of CCL2 enhances pain hypersensitivity (Abbadie et al., 2003;
Bhangoo et al., 2007; Menetski et al., 2007). As with the expression of CXCL12 or CCL21
centrally, expression of CCL2 in DRG neurons is associated with a neuromodulator function.
The upregulated chemokine is stored within neurotransmitter vesicles (in this case, together
with calcitonin gene-related peptide) and can be released from DRG neurons (Zhang and De
Koninck, 2006; Dansereau et al., 2008; Jung et al., 2008). One possible target for CCL2 released
in this way are resident spinal microglia, which have been reported to express CCR2 receptors
under some circumstances and can then be activated by CCL2 (Abbadie et al., 2003; Zhang et
al., 2007). Furthermore, Zhang et al. (2007) have demonstrated that CCL2 can attract
circulating macrophages into the SC in which they differentiate into microglia. Thus,
upregulated CCL2 may enhance activation of spinal microglia from both central and peripheral
sources. In addition to microglial activation, it has also been suggested that CCL2 may act
directly on sensory neurons (Oh et al., 2001; White et al., 2005b; Sun et al., 2006). In several
pain models, White and colleagues have shown that DRG neurons not only upregulate CCL2
but also CCR2 expression. Activation of CCR2 receptors expressed by these neurons produces
excitation, probably primarily via transactivation of TRP channels expressed by the same
neurons (Zhang et al., 2005; Dansereau et al., 2008; Jung et al., 2008). CCL2 released centrally
may also target CCR2-expressing neurons in the SC (Gosselin et al., 2005).

Release of CCL2 is not the only chemokine-mediated mechanism that is likely to be important
in the activation of spinal microglia and establishment of chronic pain. Considerable evidence
provided by Milligan and colleagues also suggests a role for the unusual chemokine CX3CL1/
fractalkine (Milligan et al., 2004, 2005; Lindia et al., 2005; Clark et al., 2007; Zhuang et al.,
2007). CX3CL1, which exists in both membrane-tethered and -soluble states, is the only
chemokine in its category and binds to one receptor, CX3CR1. CX3CL1 is expressed by
neurons within the SC, whereas its receptors are mostly expressed by microglia. In response
to peripheral nerve injury or neuronal excitation in the SC (Verge et al., 2004), matrix
metalloproteinases release membrane-tethered fractalkine, and this is accompanied by
upregulation of CX3CR1 expression in microglia located in painrelevant laminas of the SC
(Lindia et al., 2005). Dorsal horn microglia activated in association with chronic pain increase
expression of the lysosomal cysteine protease cathepsin S, an enzyme documented to induce
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additional fractalkine cleavage (Clark et al., 2007). Inhibition of microglial activation or
CX3CL1 action has been shown to reduce pain hypersensitivity in models of neuropathic pain.
Hence, both CCL2 and CX3CL1 appear to be involved in reciprocal signaling loops between
pain neurons and spinal microglia that mediate the generation of chronic pain behaviors. Other
chemokines may also participate in chronic pain under different conditions. Wilson et al.
(2008) have observed that pain hypersensitivity resulting from chronic morphine treatment is
associated with upregulation of CXCL12 in DRG neurons and that the CXCR4 antagonist
AMD3100 can reverse this type of pain. These data strongly indicate that targeting chemokine
signaling may represent a novel approach to the treatment of chronic pain syndromes that have
proved to be particularly resistant to current forms of therapy.

Conclusions
Chemokines are very well established as important regulators of the immune system. However,
this appears to be only part of the story. As we have discussed above, chemokines and their
receptors are expressed in the nervous system under a variety of circumstances in which they
play a newly appreciated role as neuromodulators. Chemokine signaling appears to be central
in helping to coordinate the response by the nervous system to injury and infection because
chemokines can “speak” directly to neurons and also immune cells. We predict that
understanding the full range of chemokine functions will provide us with an increased
understanding of the mechanisms underlying the progression of different types of diseases of
the nervous system, as well as novel therapeutic targets for combating these disorders.
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