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Abstract
In the auditory cortex of awake animals, a substantial number of neurons do not respond to pure
tones. These neurons have historically been classified as ‘unresponsive’ and even been speculated
as being non-auditory. We discovered, however, that many of these neurons in the primary auditory
cortex (A1) of awake marmoset monkeys were in fact highly selective for complex sound features.
We then investigated how such selectivity might arise from the tone-tuned inputs that these neurons
likely receive. We found that these non tone-responsive neurons exhibited nonlinear combination-
sensitive responses that require precise spectral and temporal combinations of two tone pips. The
nonlinear spectrotemporal maps derived from these neurons were correlated with their selectivity
for complex acoustic features. These non tone-responsive and nonlinear neurons were commonly
encountered at superficial cortical depths in A1. Our findings demonstrate how temporally and
spectrally specific nonlinear integration of putative tone-tuned inputs might underlie a diverse range
of high selectivity of A1 neurons in awake animals. We propose that describing A1 neurons with
complex response properties in terms of tone-tuned input channels can conceptually unify a wide
variety of observed neural selectivity to complex sounds into a lower dimensional description.
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Introduction
Sounds such as human speech (Rosen, 1992) and monkey vocalizations (Wang, 2000;
DiMattina and Wang, 2006) contain acoustic information distributed across multiple
frequencies that span in timescales from a few to tens or hundreds of milliseconds. At the
thalamo-recipient layers of the primary auditory cortex (A1), these sounds may be represented
with high precision (for example, Engineer et al., 2008) by neurons that are tuned to pure-tones,
or individual frequency components of these sounds, in a variety of species (Merzenich et al.,
1975; Recanzone et al., 2000; Philibert et al., 2005; Moshitch et al., 2006; Kilgard and
Merzenich, 1999; Linden et al., 2003; Sadagopan and Wang, 2008). In secondary auditory
cortical areas, neurons are typically not responsive to pure tones, but exhibit tuning to complex
features such as noise bandwidth (Rauschecker et al., 1995), species-specific vocalizations
(Tian et al., 2001) or behaviorally relevant sounds (Hubel et al., 1959). This rapid increase in
receptive field complexity led us to hypothesize that an intermediate stage might exist within
A1, providing a bridge between tone-tuned thalamo-recipient A1 neurons and neurons in
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secondary auditory cortex that exhibit complex response properties. One likely candidate for
such an intermediate stage was the population of non tone-responsive neurons that are often
encountered in recordings from A1 of awake animals (Evans and Whitfield, 1964; Sadagopan
and Wang, 2008; Hromadka et al., 2008). In this study, we make the first attempt to reveal
underlying response properties of non tone-responsive A1 neurons in awake marmosets.

High proportions of so-called ‘unresponsive’ neurons have been reported in auditory cortex of
awake animals historically (Evans and Whitfield, 1964) as well as more recently (Hromadka
et al., 2008), with an estimated 25 – 50% of neurons being unresponsive to auditory stimulation.
These studies typically used relatively simple auditory stimuli such as pure tones and noise.
Consistent with these results, we reported earlier that a large proportion of neurons (∼26%) in
A1 of awake marmosets could not be driven using pure-tones (Sadagopan and Wang, 2008).
Importantly, we found a majority of these neurons at shallow recording depths within A1. Such
‘unresponsive’ or non tone-responsive neurons have been ignored by most researchers, and
most reported recordings from A1 have been restricted to tone-responsive neurons, likely
located in middle, or thalamo-recipient cortical layers (using reported recording depths as an
indicator) in a variety of species such as primates (Recanzone et al., 2000; Philibert et al.,
2005), cats (Merzenich et al., 1975; Moshitch et al., 2006), rats (Kilgard and Merzenich,
1999) and mice (Linden et al., 2003). We suspected that some of the unresponsive neurons
might in fact exhibit high selectivity for particular acoustic features. In the present study, we
focused on neurons recorded from superficial cortical depths of A1 that were not responsive
to pure tones or even unresponsive to a wide variety of other tested stimuli.

Materials and Methods
Neurophysiology

We recorded from A1 of three awake marmoset monkeys. Details of surgical and experimental
procedures are described in a previous publication (Liang et al., 2002). All experimental
procedures were in compliance with the guidelines of the U.S. National Institutes of Health
and approved by the Johns Hopkins University Animal Care and Use Committee. A typical
recording session lasted 4 – 5 hours, during which an animal sat quietly in a specially adapted
primate chair with its head immobilized. The experimenter monitored the behavioral state of
the animal via a TV camera mounted inside the sound-proof chamber. The experimenter
ensured the animal opened its eyes before stimulus sets were presented. A tungsten
microelectrode (impedance 2 – 4 MΩ, A-M Systems, Carlsborg, WA) was positioned within
a small craniotomy (∼1 mm diameter) using a micromanipulator (Narishige Instruments,
Tokyo, Japan) and advanced through the dura into cortex using a hydraulic microdrive (Trent-
Wells, Los Angeles, CA). The contact of the electrode tip with the dural surface was verified
visually, which allowed us to estimate the depth of each recorded unit from the surface. We
typically recorded from most well-isolated single units encountered on a given track. It is quite
likely that the deeper cortical layers (V and VI) were under-sampled in our experiments.

The experimenter typically advanced the electrode by ∼25 μm (in a single movement) and
waited for a few minutes to allow the tissue to settle. During this period, a wide set of search
stimuli were played that typically consisted of pure tones (∼5 steps per octave), band-passed
noise, linear frequency modulated (lFM) sweeps and marmoset vocalizations at multiple sound
levels. This strategy of stepped electrode movements with long waits while playing a wide
array of stimuli helped us detect and isolate single units with very low spontaneous activity
and avoid biases toward any particular kind of units. Single-unit isolation was accomplished
online using a template match algorithm (Alpha-Omega Engineering, Alpharetta, GA), with
two additional adjustable time-amplitude windows included when necessary. Proximity to the
lateral sulcus, clear tone driven responses in the middle cortical layers, tonotopic relationship
with other recorded units and reversal of tonotopy at the boundaries were used to determine if
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a recording location was within A1. Three of the hemispheres recorded from here overlapped
with an earlier study of pure tone responses in A1 (Sadagopan and Wang, 2008), further
confirming location within A1.

Acoustic Stimuli
Stimuli were generated digitally in MATLAB (MathWorks, Natick, MA) at a sampling rate of
97.7 kHz using custom software, converted to analog signals (Tucker-Davies Technologies,
Alachua, FL), power amplified (Crown Audio, Elkhart, IN), attenuated (Tucker-Davies
Technologies), and played from a loudspeaker (Fostex FT-28D or B&W-600S3) situated ∼1m
in front of the animal. The loudspeaker had a flat frequency response curve (+/- 5dB) across
the range of frequencies of the stimuli used, with a calibrated level (at 1 kHz) of ∼90 dB SPL
at a set level of 0 dB attenuation.

Two-pip stimuli consisted of two short 20 – 40 ms long tone pips, with one pip centered on an
estimated best frequency (‘BF’) to reduce search space. Since we were interested in neurons
that did not respond to pure tones, estimating ‘BF’ of such neurons was a difficult task. Usually,
we first defined a narrow search range (usually 0.5 octaves) based on tone responses in the
middle cortical layers in the neighborhood of the present electrode track. We then used a wide
variety of search stimuli centered on this range including species-specific vocalizations,
environmental sounds, random frequency modulated (FM) contours, amplitude modulated
tones, linear and sinusoidally FM (lFM and sFM respectively) sweeps, click trains and band-
passed noise (BPN). We continued to present such complex stimuli until we elicited reliable
responses to one of our search stimuli from which we could narrow down the range of possible
‘BFs’ by presenting band-pass filtered versions of these stimuli. Determining the ‘BF’ was
further complicated by the fact that a majority of neurons in A1 were non-monotonically tuned
for sound level (best level, BL) with ∼25 dB widths (Sadagopan and Wang, 2008), necessitating
presentation of some stimuli in our search set at multiple sound levels. On average, determining
the ‘BF’ and BL of a neuron on which to center our two-pip stimuli took ∼ 15 – 20 minutes
from unit isolation. It is quite possible that we failed to drive some units because of wrong
‘BF’ and BL estimates (see Supplementary Discussion). We typically presented 5 repetitions
of any given stimulus (tones, vocalizations, etc) and used a Wilcoxon rank sum test at p<0.05
to establish if a given neuron was significantly driven by that stimulus, compared to
spontaneous rate of the neuron over the entire stimulus set.

Once ‘BF’ and BL of a unit were determined, we fixed the frequency of one pip at ‘BF’ and
changed the frequency and onset time of the second pip with respect to the ‘BF’ pip (Figure
S1A). We usually sampled ±1 octave in frequency (1/8 octave bins) and ±100 ms in time (12.5
ms bins). Stimuli were presented in a randomized fashion and each two-pip combination was
repeated at least 8 times. We also presented single-pip stimuli of the same length to estimate
single-frequency contributions to the response. On average, it took ∼40 minutes to complete
a typical two-pip stimulus set. Taken together with the time to estimate ‘BF’, arriving at the
nonlinear response map took ∼1 hour of recording time from single unit isolation. We
completed presentation of 8 repetitions of the entire two-pip stimulus set (typically, n = 289
stimuli) on 118 neurons with max. tone response <22 spikes/s. We chose this cut-off based on
an earlier study from our lab in the same preparation that observed a median tone driven
response at BF of 22 spikes/s for a population of sharply tuned tone-responsive units. 41/118
neurons showed statistically significant supra-linear excitatory responses (p<0.05 compared
to sum of individual pip responses, modified permutation test, see below) to at least one two-
pip combination. 22 of these 41 neurons (54%) were completely unresponsive to pure tones.
We collected responses of neurons to other stimuli such as lFM sweeps, click trains and
vocalizations that overlay the two-pip interaction map to determine if these responses could
be explained by the two-pip interaction map (typically 3 – 5 repetitions). However, this step
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was constrained by unit isolation quality, as median hold time for single units in our preparation
was ∼50 minutes.

Analysis and statistics
To quantify the degree of nonlinearity we used the following framework:

Here, R was the neuron's response to the combination of two tone pips, a was the response to
the ‘BF’ pip alone and b was the response to the second pip alone. These quantities were
measured experimentally by presenting the combination stimuli and single tone pips. We
calculated c, the purely interactive term arising from the combination of frequencies (f0 and
Δf) at a particular relative onset time (Δt), from the above equation. We then determined the
ratio of the second-order term to the sum of first-order terms as a measure of nonlinearity. In
order to prevent this ratio from artificially inflating due to zero tone responses, we did not
subtract out spontaneous spikes from our estimates of a, b and c. Therefore, the % Nonlinearity
measure should be treated as a lower bound. Nonlinear maps plotted in figures are the purely
second-order component given by c. These maps were smoothed for visualization purposes
only. Statistical significance was established by comparing each combination's response
distribution with the average value of a + b using a t-test (as a pre-filtering step) and with all
possible permutations of a + b values (usually 64 values resulting from 8 repetitions each of
a and b) using a Wilcoxon rank-sum test (resulting in a modified permutation test). In 41
neurons, we obtained p<0.05. In 39 of these cases we obtained p<0.01. It could be argued that
we are designating a given neuron as ‘nonlinear’ or not based on multiple independent statistical
tests (one for each combination response bin). Therefore, we also required that the p-value in
at least the bin with maximal response (peak p-value) also met multiple-comparison corrected
criteria. All 39 neurons with uncorrected peak p<0.01 met Bonferroni-corrected criteria as well
(actual p-value < 1.7 × 10-4 for a typical stimulus set consisting of 289 stimuli). These neurons
were used for final population analysis (histogram of actual peak p-values from all neurons is
shown in Figure 7D).

To quantify selectivity and population sparseness of neural populations (pure-tone and
nonlinear), we measured reduced kurtosis of the firing rate distributions obtained in response
to a given stimulus set (Lehky et al., 2005; Sadagopan and Wang, 2008). Briefly, if a neuron
responded well to all stimuli in a given set, the firing rate distribution would be symmetric
about the mean with low kurtosis. However, if a neuron only responded to a few stimuli in a
given set (highly selective responses), the resultant firing rate distribution would be asymmetric
with high kurtosis. Similarly, population sparseness could be derived by constructing firing
rate distributions of a population of neurons responding to a given stimulus.

Results
We recorded from a total of 460 well-isolated single-units located in A1 from three awake
marmoset monkeys. Most of these units (342/460, 74%) exhibited significant pure-tone
responses and their response properties have been described in an earlier study (Sadagopan
and Wang, 2008). However, out of the total population of 460 units, 118 units did not
significantly respond to pure tones (∼26% of total sample). In this study, we focused attention
on these 118 seemingly unresponsive neurons. We discovered that these neurons responded
with significant firing rates to at least one of the following complex stimuli: linear frequency
modulated (lFM) sweeps, sinusoidally amplitude modulated (sAM) tones, narrowband click
trains, band-passed noise (BPN), two-pip stimuli, marmoset vocalizations or environmental
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sounds. These 118 unresponsive units were studied with the two-pip stimulus set. 41 of the
118 units (35%) showed statistically significant nonlinear interactions in their two-pip
responses (see Methods). We will first present representative single-unit examples in detail to
illustrate the diversity of responses that we observed amongst non tone-responsive neurons in
A1 of awake marmosets. We will then present population analyses of these non tone-responsive
neurons.

Complex feature selectivity of A1 neurons and underlying nonlinear interactions
In superficial cortical depths of A1 in awake marmosets, we often encountered neurons that
exhibited high stimulus selectivity to particular features of complex sounds such as marmoset
vocalizations. Figure 1A illustrates the responses of one such example neuron (significant
responses to 6 of 40 vocalization tokens consisting of 20 natural (forward) calls and their
reversed versions). Figure 1B shows the spike responses of this unit to the particular
vocalization (a trill-twitter) that elicited the maximal response overlaid on the vocalization
spectrogram with spikes plotted around the ‘BF’ of this neuron (6.9 kHz). In addition to
preferring the natural to the reversed vocalization (Wang et al., 1995; Wang and Kadia,
2001), we made the qualitative observation that this unit reliably responded only when a
particular feature (upward FM ‘trill’ element) of the natural call occurred. Despite its location
within A1, this unit was unresponsive to tones (Fig. 1E).

However, the kind of data shown in Fig. 1A by themselves do not reveal what causes such high
stimulus selectivity. We hypothesized that precise nonlinear spectro-temporal integration of
tone inputs could generate the RF complexity underlying the high stimulus selectivity we
observed. To determine these putative nonlinear interactions, we developed a two-pip stimulus
set (Fig. S1A; see Methods for details). Based on responses to these stimuli, we constructed
nonlinear (second-order) ‘two-pip interaction maps’ that revealed how discrete tone-tuned
subunits interacted over frequency and time to result in each neuron's response.

The two-pip interaction map for the neuron shown in Fig. 1 revealed that the minimal effective
stimulus for this neuron was the combination of a 5.8 kHz pip followed 75 ms later by a 6.9
kHz ‘BF’ pip, with both pips at 20 dB SPL (Fig. 1C). When we tested this neuron with upward
and downward linear FM sweeps spanning a range of frequencies from 5.6 to 7.2 kHz (0.363
octave span around 6.9 kHz; gray lines overlaid on Fig. 1C), it showed tuning for the 80 ms
long upward sweep (Fig. 1D), as would be predicted from the two-pip interaction map in Fig.
1C. The exquisite sharpness of this neuron's tuning to this feature should be emphasized; at
half-maximal response, the unit responds to FM sweep velocities ranging from 3.63 oct./s (16
Hz/ms) to 6.04 oct./s (26.7 Hz/ms).

The two-pip interaction map (Fig. 1C) also explains this neuron's responses to vocalizations
(Fig. 1A & 1B). Qualitatively, one can observe that the initial upward-going ‘trill’ part of the
vocalization in Fig. 1B is an ∼100 ms long upward frequency modulated fragment around 6
kHz that overlays the subunits of the two-pip interaction map shown in Fig. 1C. However, in
the reversed version of this vocalization, the upward frequency modulated fragment becomes
downward and no longer overlays the subunits of the two-pip interaction map. As shown in
Fig. 1B, this neuron did not respond to the reversed vocalization. These response examples
illustrate how this neuron's selectivity to FM sweep ‘fragments’ and preference for forward
over reversed calls are related response properties, and how they arise from a simple underlying
nonlinear computation.

Figures 2 – 4 show further single-unit examples of such complex tuning properties observed
in non tone-responsive neurons in A1. The unit in Fig. 2A – D was unresponsive to tones but
responded robustly and was tuned without stimulus synchronization to inter-click intervals of
40 ms and 80 ms (Fig. 2B left, Fig. 2C) of a Gaussian pulse train stimulus set (tonal click-trains
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at BF with Gaussian envelopes, s.d. = 8 ms) with varying inter-click intervals. We also found
that this neuron could be driven more strongly by a train of 50 ms long upward lFM sweeps
centered around 8.5 kHz and repeating every 50 ms (Fig. 2B right, Fig. 2D), but required at
least 2 repeated linear FM sweeps to elicit a response. Detecting repetitive FM sweeps is
relevant to tasks such as vocalization recognition (for example, of marmoset twitter calls). On
deriving its two-pip interaction map, we discovered subunits at ‘BF’ representing a repetitive
temporal structure of a ∼40 ms repetition period (Fig. 2A; labeled ‘1’ and ‘2’), with an
additional subunit occurring at a lower frequency and earlier time than the ‘BF’ subunit (Fig.
2A; labeled ‘3’). This nonlinear RF structure could explain the neuron's preference for the
particular inter-click intervals, FM sweep repetition periods, direction and the minimum
number of sweeps we observed. Spike rasters of pulse train and lFM responses are displayed
in Fig. 2B to demonstrate robustness of response.

Fig. 3 shows an example of selective stimulus tuning and underlying nonlinear interactions
along the spectral dimension. This neuron was unresponsive to pure tones, but tuned to band-
passed noise centered at 5.2 KHz with a 0.4 octave bandwidth presented at 70 dB SPL (Fig.
3B, left; Fig. 3C). This neuron was also tuned to a specific modulation frequency (512 Hz) of
sinusoidally amplitude modulated (sAM) tones with a center frequency of 5.2 KHz presented
at 70 dB SPL (Fig. 3B right; Fig. 3D). In a stimulus-based description framework, this neuron
would be described as one that was tuned to the bandwidth of band-passed noise, such as those
reported earlier in the lateral belt (LB) of macaque monkeys (Rauschecker et al., 1995), or one
that had a certain rate-based modulation transfer function (rMTF), similar to earlier
descriptions of A1 neurons (Liang et al., 2002). However, from the two-pip map in Fig. 3A, it
is clear that both the noise and sAM responses are generated by a simple underlying
computation. In this case, the two-pip map exhibited excitatory ‘side-bands’ that were located
0.125 oct. away from ‘BF’ at both higher and lower frequencies occurring simultaneously with
the ‘BF’ pip. Band-passed noise excited both these second-order peaks in addition to the ‘BF’
peak causing a response. It should be noted that at a ‘BF’ of 5.2 KHz, amplitude modulation
of 512 Hz created side-bands that were ∼0.125 oct. distant from the 5.2 KHz spectral peak.
Therefore, the peak of the rMTF of this neuron appeared to be caused by a spectral, rather than
temporal effect of amplitude modulation.

The neuron in Figure 4A – C is a more complex example. While we successfully obtained a
two-pip interaction map for this unit (Fig. 4A), we could not drive this unit using any other
stimuli from an extensive repertoire. Fig. 4B plots the firing rates of this neuron to 831 stimuli
of 15 different types, including species-specific marmoset vocalizations, environmental
sounds, lFM sweeps, random FM contours, sAM tones, noise of different bandwidths and click
trains. Only a few two-pip stimuli (40 ms pips) elicited significant responses. Some of the FM
stimuli used in the testing included those that ‘connected’ the nonlinear peaks in the two-pip
interaction map (similar to stimuli in Fig. 1C) but did not elicit any response. Therefore, this
neuron seemed to prefer discrete pips that occurred immediately in succession. This neuron's
responses to the preferred two-pip stimuli were strong, robust and occurred after both pips
(Fig. 4C), as would be expected from a computation that integrates multiple inputs over time.

Over the four single neuron examples discussed above, we observed some of the most
representative stimulus tunings found in neurons located in superficial cortical depths within
A1, which included (but was not limited to) sharp tuning to FM sweep velocity, selectivity to
vocalizations, non-synchronized band-pass tuning to click rate, tuning to repetition rates of FM
sweep trains, tuning to sAM frequency, tuning to bandwidth of band-passed noise, selectivity
for features of environmental sounds and selectivity for discrete tone-pip combinations. This
heterogeneity was typical of the population of non tone-responsive neurons that we recorded
from.
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Population response properties
Here we report population analysis based on 39 of 41 nonlinear neurons that passed the more
stringent Bonferroni-corrected statistical criteria (see Materials and Methods). Despite the
heterogeneity of individual non tone-responsive neurons, several consistent features were
evident across the sampled population with respect to their two-pip response maps. First, these
neurons were not responsive or only weakly responsive to pure-tone stimulation. 22/41 (54%)
neurons were completely unresponsive pure tones, and median pure-tone response of the
remaining 19 neurons was 16 spikes/s (gray histogram in Fig. 5A). Using two-pip stimuli,
however, we were able to drive these neurons significantly above their pure-tone responses
(median max. driven rate of two-pips: 24 spikes/s; range: 16 spikes/s to 86 spikes/s; black
histogram in Fig. 5A). On average, we observed a 250% non-linearity as a result of the spectro-
temporal interaction of two-tone pips (Fig. 5B). Histograms of spectral and temporal precision
of the second-order subunits (extents of subunits at 50% maximum facilitation) are plotted in
Fig. 5C. The observed second-order peaks were precise to the order of 0.125 oct. in frequency
and 12.5 ms in time. Such high precision in frequency was consistent with the tuning widths
observed in a population of level-tuned pure-tone responsive neurons in A1 that may form the
putative inputs to non-linear neurons (median 0.25 oct., Sadagopan and Wang, 2008).

It is important to note that although the actual duration in which stimulus energy was present
was only 2*pip-length, the estimated firing rates for two-pip stimuli were calculated within a
window stretching from the onset of the first pip to 50 ms after the offset of the second pip
(minimum window length of 70 ms and maximum window length of 230 ms in our entire data
set). We used this conservative metric because in the context of feature selectivity, the delay
between the two pips might be viewed as an essential part of the ‘stimulus’, as neural response
is contingent upon this delay. Therefore, the reported maximum firing rates for two-pip stimuli
could be underestimates. In terms of the absolute number of spikes elicited, a median response
rate of 24 spikes/s translates to 1.7 spikes/trial for the shortest (70 ms) stimuli and 5.5 spikes/
trial for the longest (230 ms) stimuli in our stimulus set. In comparison, for a population of
finely-tuned tone-responsive units at a median response rate of 22 spikes/s (Sadagopan and
Wang, 2008), 2.2 spikes/trial were elicited for 100 ms pure-tone stimuli. Therefore, the
nonlinear neurons were driven as robustly as tone-tuned neurons given the right stimuli.

Second, these neurons were commonly found in superficial cortical depths as evidenced by
both absolute (from dural surface) and relative (from first neuron encountered) recording depth
measurements (black dots, Fig. 6A). In contrast, the tone-responsive neurons were more
commonly found at deeper cortical depths (gray dots, Fig. 6A). The nonlinear neurons exhibited
a significantly lower (p<0.01; Wilcoxon rank-sum test) median spontaneous rate (0.9 spikes/
s) than pure-tone responsive neurons (2.7 spikes/s), suggesting that they are likely to be
‘missed’ if only spontaneous spikes or simple acoustic stimuli are used to ‘search’ for these
neurons. Most subunit frequencies in the two-pip interaction maps were <0.5 octaves from
‘BF’ (Fig. 6B), which corresponds to a <500μm distance on the cortical surface of the marmoset
(Aitkin et al., 1986). Temporal interactions were also over short timescales (mostly <50 ms,
Fig. 6B). These data thus suggest a highly localized computation, possibly occurring at a
columnar scale.

Third, the observed nonlinear interaction exhibited generality across the frequency and sound
level dimensions. The distribution of the ‘BF’ estimated for the nonlinear neurons was
indistinguishable from the BF distribution obtained from 275 pure-tone responsive neurons
(Fig. 7A, top). Similarly, the distribution of best levels (BLs) for the nonlinear neurons was
also no different from the distribution of BLs of pure-tone responsive neurons observed (Fig.
7A, bottom). These data also suggest that a common mechanism might underlie the generation
of such nonlinear units over a wide range of frequencies and sound levels.
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The observed degree of non-linearity was not a consequence of using short tone-pips (20 – 40
ms) for estimating first-order response strengths or an overall stimulus length/energy effect for
the following reasons. In only 1 of 39 cases, we observed no facilitation when comparing
interaction responses using short pips (20 – 40 ms) to single tone responses using longer stimuli
(100 ms). This neuron responded to pure tones, but only of longer lengths. In all other cases,
a high degree of supra-linear facilitation occurred even when compared to long (100 ms) pure
tones (Fig. 7B). This suggests that the observed nonlinear facilitation effect was not a
consequence of using short tone-pips that resulted in artificially low estimates of the first order
responses. Moreover, an overall energy effect was ruled out due to the fact that most of the
nonlinear neurons were non-monotonically tuned to sound level (distribution of BLs shown in
Fig. 7A). An increase in the sound level stimuli typically resulted in the cessation of responses,
an observation inconsistent with energy integration models. It should be noted that the putative
tone-tuned inputs to these nonlinear units are also tuned to sound level (Sadagopan and Wang,
2008).

In order to assess how well the relative positioning of subunits in a given nonlinear interaction
map could predict a neuron's responses to complex stimuli, we compared predictions of
preferred lFM velocities derived from nonlinear interaction maps to actual lFM velocity tuning
curves obtained by presenting lFM stimuli in a subset of neurons (n = 22). The nonlinear
interaction maps of these neurons exhibited subunits that were separated in both frequency and
time (non-zero Δf and Δt), suggesting that these neurons could be selective to FM sweeps. The
predicted ‘preferred’ lFM velocity of each neuron was simply taken as the slope of the line
connecting the peaks of the subunits (Δf / Δt) without interpolation, expressed in octaves/s.
The actual ‘preferred’ lFM velocity was the lFM velocity that generated the maximum firing
rate in a neuron. Because the parametric lFM stimuli used were typically centered on the ‘BF's
of the nonlinear neurons, firing rates were calculated in an analysis window beginning 15 ms
after stimulus onset and ending 50 ms after ‘BF’ was crossed for upward sweeps, or beginning
15 ms after ‘BF’ was crossed and ending 50 ms after stimulus offset for downward sweeps.
From the plot of predicted vs. actual velocity selectivity (Fig. 7C), it is evident that the nonlinear
map robustly predicts the lFM velocity selectivity (r2 = 0.574; p < 0.01). Note that because
these neurons do not respond to pure-tones, it is not possible to predict a ‘preferred’ lFM
velocity using pure-tone responses alone. In a smaller subset of neurons where subunits were
separated in frequency alone (Δt = 0, n = 8), we attempted to predict ‘preferred’ BW of BPN
stimuli (predicted BW = Δf + 2*subunit halfwidth). In this case, predictions were markedly
poorer (Fig. 7C inset; r2 = 0.39; p = 0.06), perhaps because inhibitory subregions could not be
adequately uncovered by the two-pip stimulus set (see Discussion).

Functional differences between pure-tone and nonlinear neurons
Functionally, the representation of complex sounds by the population of pure-tone and
nonlinear neurons may be quite different. For example, Figs. 8A and 8B are spike rasters of a
pure-tone neuron (BF = 8.6 KHz) and a nonlinear neuron in response to a stimulus set consisting
of 20 marmoset vocalizations and their reversed versions. An additional example of a nonlinear
neuron's responses to the same set of vocalization stimuli is shown in Fig. 1A. Pure-tone
neurons typically respond when components in a vocalization cross the neuron's BF, resulting
in responses to many features present in many vocalization tokens. In contrast, nonlinear
neurons exhibit far greater selectivity to vocalization stimuli, responding only when particular
features in a small number of vocalizations are present. This leads to much more selective
responses to vocalization stimuli, as evident from the spike rasters (Figs. 1A and 8B). Figs. 8C
and 8D show distributions of the firing rates of the data shown in Figs. 8A and 8B, respectively,
calculated over the entire duration of each vocalization stimulus after subtracting spontaneous
firing rate. The exemplar tone-tuned neuron (Figs. 8A and 8C) responded with a mean firing
rate of 5.9 +/− 5.15 spikes/s to 40 stimulus tokens, with most stimuli eliciting similar firing
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rates. This resulted in a largely symmetric distribution with low kurtosis about the mean (κ =
0.185; see Methods; Lehky et al., 2005). The exemplar nonlinear neuron (Figs. 8B and 8D)
however, failed to respond to most stimuli (mean firing rate = 0.65 +/− 1.33 spikes/s), and
elicited large responses for only few stimuli from the entire set. Consequently, the firing rate
distribution for this neuron exhibited high kurtosis (κ = 14.22). Over the population, pure-tone
neurons were almost three times as responsive to the 40 vocalization stimuli (population mean
firing rate = 4.6 +/- 9.2 spikes/s, n=35) compared to the nonlinear neurons (population mean
firing rate = 1.6 +/- 3.8 spikes/s, n=22). Pure-tone neurons were also driven to a higher peak
firing rate (mean = 46.5 +/- 45.2 spikes/s, calculated in 20-ms bins, spontaneous rate subtracted)
than nonlinear neurons (mean = 24.6 +/- 25.5 spikes/s), averaged over the entire vocalization
stimulus set.

We used the excess kurtosis of the firing rate distributions to quantify the selectivity and
population sparseness of pure-tone and nonlinear neurons (see Methods; Lehky et al., 2005;
Sadagopan and Wang, 2008). Because such analyses require that identical stimuli be presented
to all constituent neurons, we performed it only on 22 nonlinear neurons and 35 pure-tone
neurons that were presented with the same vocalization stimulus set (20 forward marmoset
calls and their reversed versions). Because these neurons had different best levels (BLs), the
only difference was the sound levels at which the stimulus sets were presented. All neurons
included in this analysis exhibited significant responses (p<0.05, t-test compared to
spontaneous rate) in at least one 20-ms bin to at least one of the stimuli. Note that the accuracy
of such analyses is constrained by the number of neurons and stimuli used. Figs. 8E and 8F
are comparisons of the selectivity and population sparseness of pure-tone (gray) and nonlinear
neurons (black) respectively. Nonlinear neurons showed significantly higher selectivity for
vocalization stimuli (pure-tone neuron median = 2.4, nonlinear neuron median = 4.8; p<0.05,
Kolmogorov-Smirnoff test) and higher population sparseness (pure-tone neuron median = 2.6,
nonlinear neuron median = 7.5; p<0.01, Kolmogorov-Smirnoff test) than pure-tone neurons.
Therefore, a given nonlinear neuron responded to fewer stimuli in a stimulus set (i.e., higher
selectivity), and fewer nonlinear neurons of the population responded to a given stimulus (i.e.,
higher population sparseness) compared to pure-tone neurons. This highlights the
transformation in the representation of complex stimuli that occur between populations of pure-
tone and nonlinear neurons.

Discussion
Combination-selectivity of non tone-responsive neurons in A1 of awake marmosets

A high proportion of apparently unresponsive neurons (25 – 50%) have been reported by
previous studies in awake animals (Evans and Whitfield, 1964; Sadagopan and Wang 2008;
Hromadka et al., 2008). These neurons have not been systematically studied, and it has been
unclear what function they might serve. Our findings demonstrate that non tone-responsive
neurons are in fact nonlinear and highly selective for complex stimuli. The broad distributions
of BF and preferred sound level of nonlinear neurons suggest that they may serve as ‘feature
detectors’ for a wide range of complex sounds such as marmoset vocalizations. It should be
emphasized that the high selectivity, non tone-responsiveness and low spontaneous firing rates
of these neurons make them difficult to isolate and drive, which may explain why earlier studies
have not encountered a large number of such neurons. Three methodological factors helped us
successfully accomplish our experiments: 1) The use of a rich and complex stimulus set
consisting of both natural and artificial stimuli, 2) Interactively determining stimuli that best
drive each neuron based on their responses to these stimuli, rather than using a ‘standard’
stimulus set, 3) The use of a stop-and-search strategy while searching for units (see
Methods).
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Nonlinear neurons were located at superficial cortical depths as measured by absolute and
relative electrode depth measurements, but we did not confirm their laminar location using
anatomical tracing methods. The clear differential distributions of both absolute and relative
depths of non-linear and tone-responsive neurons (Fig. 6A) offered strong evidence that the
nonlinear neurons were located in superficial cortical layers (layers II/III), and may be at a
higher stage of an auditory processing hierarchy than pure-tone responsive neurons. The low
spontaneous rates of these neurons may offer further support for a superficial laminar location.
However, it is possible that some of these neurons might be located in the thalamo-recipient
layers. It is also likely that the deep (infragranular) cortical layers were undersampled in our
experiments.

Relationship to earlier studies
Combination-sensitive responses have been well described in the auditory system of
echolocating bats at both cortical and sub-cortical levels (Suga et al., 1978; O'Neill and Suga,
1979; Suga et al., 1983; Suga, 1992; Esser et al., 1997; Razak and Fuzessery, 2008).
Combination-sensitive neurons that are specific to song sequences have been observed in
songbirds (Margoliash, 1983; Lewicki and Konishi, 1995). Our findings from awake
marmosets support the notion that the combination-selectivity initially demonstrated in
echolocating bats is a general organizational principle for cortical neurons across many species.
Our data differ from these previous studies in that we show a much greater diversity of best
frequencies, best levels, frequency differences and longer time scales of combination-
selectivity (of the order of an octave in frequency and tens of milliseconds in time), as opposed
to several kilohertz and a few milliseconds, distributed within the range of echolocation
frequencies and levels in bats (Suga et al., 1978; O'Neill and Suga, 1979; Suga et al., 1983).

Spectrotemporal interactions of many different flavors have also been described in pure tone-
responsive neurons of primary auditory cortex in non-specialized systems (Nelken et al.,
1994a, 1994b; Brosch and Schreiner, 1997; Brosch and Schreiner, 2000; Brosch and Scheich,
2008). Linear spectrotemporal interactions between frequency channels have been observed
in tone-responsive A1 neurons using STRF estimation methods (e.g., deCharms et al., 1998;
Miller et al., 2002; Depireux et al., 2001). Other nonlinearities such as those with respect to
stimulus contrast (Barbour and Wang, 2003), sound level and adaptation (Ahrens et al.,
2008) and foreground-background interactions (Bar-Yosef et al., 2002) have also been reported
in tone-responsive neurons in A1. Of particular note is the study of awake owl monkey A1 by
deCharms et al. (1998) that demonstrated how stimuli that matched a given neuron's linear
STRF elicited stronger responses than non-matched stimuli, and in some cases could predict
a neuron's selectivity to certain stimulus features. In the present study, we made a similar
observation but with an important difference – we specifically investigated the non-responsive
and putatively nonlinear neurons in awake marmoset A1. For these neurons, stimuli overlying
their nonlinear receptive fields in frequency and time elicited maximal responses, and the
nonlinear interaction map could predict these neurons' responses to some complex sounds.

Methods to study nonlinear neurons
We did not use reverse correlation or spectro-temporal receptive field (STRF) methods with
an underlying assumption of linearity in the present study for the following reasons. First,
previous data have demonstrated a stimulus dependence of STRF estimates, especially in the
context of natural stimuli (Theunissen et al., 2000; Christianson et al., 2008), that is caused by
underlying nonlinearities manifesting differently in linear estimates. Second, instead of
receptive field estimation, we were interested in exploring neural computations underlying
feature-selectivity in A1 and therefore framed the problem in terms of integration of receptive
field sub-units. The use of two-pip stimuli was crucial in this regard. Third, the nonlinear
neurons exhibited high spectral and temporal specificity, low firing rate, and were non-
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responsive to dense stimuli. Therefore, from a methodological standpoint, it was unclear if we
could compute a statistically significant reverse correlation function for the nonlinear neurons.
A weakness of the present study is that we were unable to obtain responses to standardized
‘test’ or validation stimuli, largely due to the limitation of unit holding time. Depending on the
type of nonlinear interaction we observed, our test stimuli were varied (such as lFM sweeps
of different bandwidths and rates, pulse trains at different rates or BPN of different bandwidths).
In a subset of neurons, we obtained robust predictions of tuning properties to lFM stimuli from
the nonlinear interaction map. However, developing faster and more efficient methods of
obtaining the nonlinear interaction map is necessary before a quantitative prediction framework
can be applied to these neurons.

A high dimensional space is required to describe the diverse response properties of nonlinear
neurons (Figures 1 – 4) in terms of ‘tuning curves’, as many arbitrary axes are required to
describe each neuron's responses depending on the stimulus set used. However, in terms of
their nonlinear interaction maps, the relative positioning of the RF ‘subunits’ in frequency and
time, and subsequent nonlinear integration of these subunits could explain a wide range of
responses. Thus, we propose that framing the responses of these neurons in terms of subunit
composition on the two-pip interaction map can reduce the dimensionality of the description
and has the potential to unify diverse response types, to a second-order approximation. This
description of neural responses may be thought of as a generative model for the family of highly
selective responses observed in neurons located in superficial cortical depths of A1. However,
the second-order map may not completely account for their response properties (e.g., the neuron
shown in Fig. 4). It is possible that RFs of these neurons contain higher-order components that
cannot be estimated by the two-pip method.

Putative mechanisms for generation of nonlinear neurons
Nonlinear interactions between subunits could result from temporally delayed coincidence
detection. The scant spontaneous rates of the nonlinear neurons (median 0.9 spikes/s) suggest
a high spiking threshold and short temporal integration window, consistent with such
coincidence detection. In combination-sensitive neurons of songbirds, the combination of
rebound excitation following inhibition from the first stimulus with excitation elicited by the
second stimulus and stimulus-specific nonlinearities produce supra-linear temporal-
combination sensitivity (Margoliash, 1983; Lewicki and Konishi, 1995). Another likely
possibility is the combination of tone responses with ‘on’, ‘off’ and ‘sustained’ temporal
response profiles (Qin et al., 2003; Wang et al., 2005) that could generate delays of the order
of tens of milliseconds. In echolocating bats, inter-hemispherical connections may generate
delays of the order of a few milliseconds (Tang et al., 2007). Further experiments are necessary
to test these hypotheses in primates.

The behavior of the nonlinear units we reported was well-constrained by the nature of the
putative inputs to these units – neurons in the thalamo-recipient layers of A1. The precision of
the reported RF subunits was comparable to the frequency tuning bandwidth of tone-tuned
neurons (median bandwidth at BL = 0.25 octaves; Sadagopan and Wang, 2008). Spectral
precision of the subunits did not vary with sound level, consistent with a level-invariant
distribution of tuning bandwidths across this input population. Tone responsive neurons
typically exhibited strong lateral inhibition (for example, Fig. S1B – C) that rendered them
unresponsive to broadband sounds. Consequently, nonlinear neurons, which presumably
receive inputs from these tone neurons, did not respond to wide-band noise as well.

Implications for auditory coding
The non tone-responsive neurons described in this report are ideally placed to form a stage of
intermediate complexity in an auditory processing hierarchy, bridging the gap in receptive field
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complexity between tone responsive A1 neurons and neurons in lateral belt regions that encode
complex signals (Rauschecker et al., 1995; Tian et al., 2001; Hubel et al., 1959). Models of
hierarchical processing in the visual system propose highly nonlinear ‘composite feature’
detection as an intermediate step in object recognition (Riesenhuber and Poggio, 1999). The
nonlinear neurons we discovered might form a similar intermediate stage of an auditory
processing hierarchy, using acoustic features to build up auditory ‘objects’. Nonlinear neurons
may also sparsify the representation of complex sounds within A1, possibly leading to more
efficient representations of ecologically important sounds than possible using pure-tone tuned
neurons. Subunit identification methods derived from the one described here could be exploited
to describe and explain neural responses in higher auditory areas that are much more selective
and nonlinear, for example to species-specific vocalizations (Tian et al., 2001). Our study may
be viewed as a first-pass attempt to develop explanations for the observed progression of the
auditory hierarchy from pure-tone responses in A1 to more complex, vocalization-selective
responses in LB areas.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Selectivity for complex features in A1. (A) Raster of example neuron's responses to marmoset
vocalizations (n = ‘natural’, r = ‘reversed’). Gray shading corresponds to stimulus duration;
different vocalization tokens had different lengths. Gray and black dots correspond to
spontaneous spikes and spikes falling within our analysis window (15 ms after stimulus onset
to 50 ms after stimulus offset) respectively. (B) Responses to a particular token (‘trill-twitter’
call and reversed version) showed preference for natural over reversed call. Also note that
maximal response occurs immediately following the initial upward-going ‘trill’ segment. (C)
This unit responded strongly to a specific combination of two tone pips – a 5.8 kHz pip followed
75 ms later by a 6.9 kHz ‘BF’ pip (red disk, both pips at 20 dB SPL). Purely second-order
interaction map is plotted, image is smoothed for display. Colormap indicates % facilitation
over sum of first-order responses (see Methods), dark red contour and pink contour denote
significance at p<0.01 and p<0.05 (modified permutation test) respectively. The nonlinear
component was 180% the sum of linear components (number in corner of interaction map).
Gray lines are cartoons of lFM sweep stimuli tested in D, intensity corresponds to response
strength (lightest = 0 spikes/s, darkest = 12.5 spikes/s; ‘u’ = upward; ‘d’ = downward lFM
sweep direction). (D) This unit strongly responded to ‘up’ FM sweeps that ‘connected’ the RF
subunits in the nonlinear map and not to ‘down’ FM sweeps that spanned the same frequency
range (mean +/- 1 s.d. plotted). The unit was tuned to an 80 ms long upward lFM sweep
spanning 5.6 kHz to 7.2 kHz (darkest gray line in C), precisely ‘connecting’ the subunits. (E)
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This unit was unresponsive to pure tones over a wide range of frequencies (2 octaves) and
levels around estimated ‘BF’ and BL (raster shown; frequency and level are interleaved on y-
axis).
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Figure 2.
Example A1 neuron that displayed selectivity to repetitive stimuli. (A) Subunits were observed
at 8.5 kHz (‘BF’) spaced at ∼50 ms intervals. Another significant subunit was located 0.25
octaves below ‘BF’ occurring ∼25 ms earlier. (B) Spikes rasters of this neuron's response to
Gaussian pulse trains (left) and lFM sweep trains (right; 5 sweeps per train). Responses were
sustained throughout stimulus duration. (C) Consistent with the nonlinear response map, this
unit was tuned to inter-click intervals of 40 ms and 80 ms when tested with Gaussian pulse
train stimuli at ‘BF’ (carrier frequency 8.5 kHz, click width s.d. 4 ms). (D) The unit preferred
50 ms-long upward lFM sweeps trains around 8.5 kHz with a preferred inter-sweep interval of
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50 ms, also consistent with A. At least two sweeps were required to elicit a response. Darkest
line corresponds to 7 sweeps in train, lightest line to a single sweep. Colormap, contours and
raster conventions as in Figure 1. ‘u’ and ‘d’ refer to ‘upward’ and ‘downward’ lFM sweeps
and are alternated along the axis.
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Figure 3.
Example A1 neuron showing purely spectral combination sensitivity. (A) Nonlinear interaction
map for this neuron showed excitatory subunits located 1/8 oct. above and below ‘BF’ at
coincident onset times with the ‘BF’ pip. (B) Spike rasters of this neuron's response to band-
passed noise (BPN) of different bandwidths (BW; left) and sinusoidally amplitude-modulated
tones (sAM) at different modulation rates (AM rate; right). (C) This unit was tuned to a
bandwidth of ∼0.4 oct. centered at ‘BF’ and BL, consistent with the nonlinear map obtained.
(D) Interestingly, this unit was narrowly tuned to sAM tones at 5.2 kHz modulated at 512 Hz.
It should be noted that at a ‘BF’ of 5.2 kHz, this amplitude modulation at 512 Hz produces
spectral sidebands that are approximately 1/8 oct. away from ‘BF’. Thus, these responses are
also consistent with the nonlinear map in A. Error bars correspond to ±1 s.e.m., dashed orange
line is spontaneous rate. Colormap, contours and raster conventions as in Figure 1.
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Figure 4.
Nonlinear spectro-temporal interactions underlie complex feature selectivity in A1. (A)
Nonlinear interaction map of another example A1 neuron that showed strong non-linear
interactions around a ‘BF’ of 6.5 kHz. (B) However, this unit did not respond to a wide variety
of commonly used stimuli (see text). Red circles are responses to two-pip stimuli and pink
circles are responses to pure tones. Each dot is driven response rate (after subtracting
spontaneous rate) to an individual stimulus belonging to that particular stimulus set.
Abbreviations used in addition to those defined in text are: FRA – frequency response area
(tones), Col. - Colony noise (environmental sounds from monkey colony), Voc. - marmoset
vocalizations, BW – BPN of varying bandwidths. (C) Raster of two-pip responses
corresponding to map in A showing robust spiking occurred after integration of both pips.
Colormap, contours and raster conventions as in Figure 1.
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Figure 5.
Response enhancement by two-pip stimuli in nonlinear A1 neurons. (A) Nonlinear neurons
were not responsive to tones (median = 0 spikes/s, gray histogram). However, using two-pip
stimuli, we could drive these neurons to a median of 24 spikes/s (black histogram), comparable
to the median pure tone response (at BF) of tone-responsive neurons in the awake marmoset.
(B) When we quantified degree of nonlinearity (see Methods), we observed a median 250%
facilitation over the sum of linear components. (C) Histograms of precision in frequency and
time of the second-order subunits (half-maximal extent). Median spectral and temporal
precision were 0.125 oct. and 12.5 ms respectively.
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Figure 6.
Location and properties of nonlinear neurons in A1. (A) Distribution of absolute depth (from
dural surface) and relative depth (from first neuron encountered) of nonlinear (black dots) and
tone-responsive (gray dots) units. Nonlinear units were located at shallower cortical depths
compared to tone-responsive units (histograms of absolute and relative depths are on margins,
numbers are medians; * and ** denote p<0.05 and p<0.01 respectively, Wilcoxon rank-sum
test). This suggested that nonlinear neurons may be localized to superficial cortical layers.
(B) Distribution of all observed subunits plotted relative to normalized ‘BF’. Gray ellipses are
locations of statistically significant nonlinear subunits, shading corresponds to percent
facilitation. Most subunits were located <0.5 octaves away from ‘BF’ suggesting a local
computation. Most subunits also occurred within 50 ms of the ‘BF’ pip.
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Figure 7.
Generality and robustness of A1 nonlinear neurons. (A) We did not find any differences in the
distributions of ‘BFs’ (top) or BLs (bottom) between nonlinear neurons (black histograms) and
tone-responsive neurons (gray histograms) suggesting that the observed phenomenon was a
general computation (n.s. = not significant). (B) High nonlinearity observed was not a
consequence of using short stimuli to obtain linear response rates. When responses to 100 ms
long pure tones were used to compute single-tone response rates, we still observed significant
nonlinear facilitation when compared to two-pip responses computed using 20 – 40 ms pips.
The neuron falling below the diagonal (y = × line) presumably exhibited a stimulus length
effect. (C) Predicted versus actual preferred lFM velocities of a subset of nonlinear units (n =
22; ** denotes p<0.01). inset: predicted versus actual preferred BWs of BPN stimuli in another
subset of nonlinear units (n = 8; not significant). (D) Distribution of actual p-values from all
neurons that met our initial screening criterion of peak p<0.05, modified permutation test (n =
41, gray histogram). Dotted line indicates the Bonferroni-corrected p-value criterion for the
most common stimulus set (n=289 stimuli). 39/41 neurons met this criterion.
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Figure 8.
Differential representation of vocalizations in pure-tone and nonlinear neuron populations.
(A) Spike raster of an example pure-tone neuron responding to 20 natural marmoset
vocalizations (‘n’) and their reversed versions (‘r’). Gray shading is stimulus duration, black
dots are spikes falling within analysis window, gray dots are spontaneous spikes. (B) Same as
A, but for an example nonlinear neuron. (C) Distribution of firing rates obtained from the raster
in A for the pure-tone neuron. (D) Same as C, but for nonlinear neurons. κ denotes the excess
kurtosis of the distributions. (E) Distributions of selectivity for nonlinear (black) and pure-tone
(gray) neurons. Nonlinear neurons exhibited more selective responses than pure-tone neurons
(*: p<0.05, Kolmogorov-Smirnoff test). (F) Distributions of population sparseness for
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nonlinear (black) and pure-tone (gray) neurons. Nonlinear neurons represented complex
stimuli more sparsely than pure-tone neurons (**: p<0.01, Kolmogorov-Smirnoff test).
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