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Abstract

This is the second of two invited articles reviewing the development of nucleoside analogue 

antiviral drugs, written for a target audience of virologists and other non-chemists, as well as 

chemists who may not be familiar with the field. As with the first paper, rather than providing a 

chronological account, we have chosen to examine particular examples of structural modifications 

made to nucleoside analogues that have proven fruitful as various antiviral, anticancer, and other 

therapeutics. The first review covered the more common, and in most cases, single modifications 

to the sugar and base moieties of the nucleoside scaffold. This paper focuses on more recent 

developments, especially nucleoside analogues that contain more than one modification to the 

nucleoside scaffold. We hope that these two articles will provide an informative historical 

perspective of some of the successfully designed analogues, as well as many candidate compounds 

that encountered obstacles.
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1. Introduction

This is the second of two invited articles reviewing the development of nucleoside analogue 

antiviral drugs, written for a target audience of virologists and other non-chemists, as well as 

chemists who may not be familiar with the field. As with the first paper, rather than 

providing a chronological account, we have chosen to examine particular examples of 

structural modifications made to nucleoside analogues that have proven fruitful as various 

antiviral, anticancer, and other therapeutics. The first review covered the more common, and 

in most cases, single modifications to the base and sugar moieties of the nucleosides 
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scaffold. This second paper focuses on more recent developments in the field, especially 

nucleoside analogues that contain more than one modification to the nucleoside scaffold.

The term “nucleoside” was first used by Levene and Jacobs in 1909.1 A nucleoside is 

composed of a sugar moiety and nucleobase, whereas a nucleotide is composed of a sugar, 

nucleobase, and at least one phosphate (or phosphate-like) group (Figure 1). Both 

nucleosides and nucleotides play important roles in the replication and transcription of 

genetic information, and, as such, have been utilized for decades for chemotherapy, 

antiparasitic, antibacterial or antiviral therapeutics.2–6 Ideally, a nucleoside/tide analogue 

would mimic the structure of a natural nucleoside enough to be recognized by cellular or 

viral enzymes and be incorporated into the DNA or RNA replication cycle, however, these 

analogues would possess one or more modifications that would then lead to the disruption 

and/or termination of replication.7–9 Over the years, numerous modifications to the 

nucleos(t)ide scaffold have been made, including alterations to the sugar, nucleobase, 

glycosidic bond, and phosphate group (Figure 1). As described in the first paper, these 

modifications range from adding a substituent or group to the heterocyclic base or sugar, 

replacing an atom in either moiety, by moving an atom to a different position, or a 

combination of these approaches.3, 10 More recently, researchers have employed the latter, 

utilizing a combination of many different types of modifications, which has led to the 

development of a wide array of potent nucleoside therapeutics, with complex structures. For 

convenience, this review is organized based on modifications to the various positions on the 

sugar moiety, however many of the nucleoside analogues discussed also contain 

modifications to the nucleobase moiety as well.

2. 1’-Sugar Modifications

The sugar modifications explored in the first review featured nucleosides with 2’-OH, 3’-

OH, a combination of 2’ and 3’-OH modifications, carbocyclic nucleosides, alternative ring 

sizes, acyclic nucleosides, and acyclic nucleoside phosphonates. More recently, 

modifications to the 1’-carbon of the sugar, some in combination with prodrug strategies, 

have been pursued. This section details these analogues and later, their prodrugs.

2.1 Early 1’-Modifications

Structure-activity relationship (SAR) studies are common in drug design and typically 

involve “walking” around the nucleoside’s scaffold making a particular change and 

observing its subsequent effect on biological activity. One such study by Siddiqi et. al. found 

that moving a methyl substituent to the different positions on the sugar of an adenosine 

nucleoside yielded profound differences in activity.11 For example, replacement of the 4’-

hydrogen with a methyl group in adenosine analogues led to a large decrease in activity 

against adenosine receptors, whereas replacing the 3’-hydrogen with a methyl group 

increased activity.11 Further analysis by Cappellacci et al. found that the replacement of the 

1’-hydrogen with a methyl group had a different effect on different adenosine receptors, 

most notably, A1 and A2A, however, overall the 1’-methyl analogues demonstrated little or 

no activity (Figure 2).12
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Other early 1’-modified nucleoside analogues included the 1’-fluoromethyladenosine 

analogues originally synthesized by Damont et al. (Figure 2).13 These analogues utilized 

electrophilic fluorination of an exocyclic double bond at the C-1 carbon in order to install 

the fluoromethyl group at the 1’ position.13 Unfortunately, like the 1’-methyl analogues, the 

1’-fluoromethyl analogues also did not demonstrate any antiviral activity against bovine 

viral diarrhea virus (BVDV) or against hepatitis C virus (HCV) in a subgenomic replicon 

assay, however notably, the analogues were not toxic.13 Due to the lack of any antiviral 

activity, they were not pursued further.

2.2 1’-Cyano Analogues

Further research led scientists to believe that the lack of activity demonstrated by the early 

1’-analogues was due to instability of the glycosidic bond with the addition of the 1’-methyl 

group.12, 14 In general, the glycosidic bond is stable under physiological conditions, 

however, cleavage of this bond can occur and is dependent on various factors including pH, 

type of nucleobase, and 1’-substituents.14–18 Since the glycosidic bond cleavage occurs 

either by nucleophillic attack on the 1’ carbon of the sugar or by stabilization of the leaving 

group, changing the substituent from a hydrogen to any other group at the 1’ position could 

have a profound effect on glycosidic bond cleavage, either through steric or electronic 

effects.15, 19, 20 Scientists reasoned however, that if they replaced the hemiaminal (O-C-N) 

glycosidic bond with the O-C-C bond found in C-nucleosides, then they would be able to 

add 1’ substituents without compromising the integrity of the glycosidic bond.15, 21–23 This 

subsequently led to the development of a number of 1’-substituted C-nucleoside analogues.

In that regard, some of the most promising l’-substituted C-nucleosides pursued recently 

were the 1’-substituted 4-aza-7,9-dideazaadenosine C-nucleosides developed by Gilead 

(Figure 3).14, 23–28 An SAR study focused on various 1’-substituted analogues found that the 

1’-cyano analogue displayed a broader spectrum of antiviral activity against viruses such as 

HCV, yellow fever virus (YFV), dengue-2 virus (DENV-2), influenza A, parainfluenza 3, 

Ebola virus (EBOV) and severe acute respiratory syndrome coronavirus (SARS-CoV), with 

the best antiviral activity against EBOV in HMVEC cells (EC50 = 0.78 μM).14, 23 These 

findings were especially interesting since both the 1’-methyl and 1’-vinyl analogues showed 

reduced potency, a much narrower spectrum of antiviral activity, and in some instances, 

higher toxicity compared to the 1’-cyano analogue.14,23 In contrast, the 1’-ethynyl analogue 

demonstrated no antiviral activity.14

Due to the surprising broad-spectrum antiviral activity found with the 1’-cyano analogue, 

researchers at Gilead performed a computational docking study with the triphosphate 

analogue of the 1’-cyano analogue and various RNA virus polymerases. It was found that 

the 1’-cyano group occupies a unique pocket present in only the viral polymerase binding 

site, which leads to the increased selectivity of the 1’-cyano analogues for viral polymerases 

over human polymerases.23, 27 Moreover, in order to increase the delivery of this analogue, 

they also employed the McGuigan ProTide (PROdrug nucleoTIDE) approach.29–34

The ProTide approach has proven extremely valuable for delivery of nucleotide analogues, 

as well as to overcome the rate-limiting first phosphorylation step. During DNA/RNA 

replication, nucleosides (and nucleoside analogues) are phosphorylated by various host cell 
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or viral kinases into their triphosphate form, which are then recognized by DNA 

polymerases, RNA polymerases, or reverse transcriptase and incorporated into the growing 

chain.7, 35 Since the triphosphate cannot be administered directly due to the highly charged 

nature of the phosphate groups, the prodrug helps deliver the nucleotide into the cell. A 

second limitation associated with nucleoside drugs is that the first phosphorylation step is 

often highly specific and rate-limiting, thus the nucleoside analogue is often not recognized 

and appears inactive.30–32, 36–38 To overcome this obstacle, McGuigan et al. created 

ProTides that would efficiently deliver the monophosphate nucleoside analogue into the 

target cell, bypassing the rate-limiting first phosphorylation step.23, 30–34, 39 These ProTides 

utilize a unique structure, with three “tunable” positions - the aryl, the amino acid, and the 

ester groups (Figure 4).23, 30–32 The aryl group and the amino acid ester mask the negative 

charges on the monophosphate, allowing the ProTide to efficiently cross the cell membrane.
23, 30, 32–34 Following metabolism by various host enzymes, the monophosphate nucleotide 

analogue is successfully delivered and is subsequently phosphorylated into the active 

triphosphate.23, 32–34

Using the McGuigan ProTide approach with the l’-cyano compound produced GS-5734 

(Remdesivir), which increased the overall anti-EBOV activity (EC50 = 0.06 μM compared to 

0.78 μM for the parent). In addition, this also increased the spectrum of the antiviral activity 

to include viruses that the parent nucleoside was not active against, including West Nile 

virus (WNV), Lassa fever virus, and Middle East respiratory syndrome coronavirus (MERS-

CoV) (Figure 5).25–27 Further studies found that GS-5734 was an effective post-exposure 

therapeutic in EBOV-infected rhesus monkeys at 10 mg/kg.23, 27 Studies with healthy human 

volunteers are currently underway in order to evaluate pharmacokinetics and clinical safety, 

specifically in male Ebola survivors with EBOV persistence in semen (NCT02818582).

3. 2’-Modifications

The first review focused on 2’-OH modifications, including the arabinose or “Ara” 

analogues in which the configuration of the 2’-OH is inverted, as well as the mono- and di-

fluoro substituted 2’-modified nucleoside analogues. This was due to their role in the 

development of some of the first medically relevant nucleoside analogues, which greatly 

impacted the field of drug design. In this second article, we focus on more recent 2’-

modifications, as well as 2’-modified analogues that contain additional modifications, 

especially to the nucleobase scaffold.

3.1 2’-Methyl Modifications

Of the numerous 2’ modified nucleoside analogues that have been developed, some of the 

most promising have been the 2’-methyl analogues, particularly those that have exhibited 

activity against HCV.40, 41 The presence of this 2’-methyl group alters the configuration of 

the sugar which prevents the binding of subsequent nucleotides to the enzyme active site, 

thus these analogues are considered non-obligate chain terminators.42 Of these, 2’-methyl 

adenosine, 2’-methyl guanosine, and 2’-methyl cytidine (NM107) were initially pursued and 

all displayed micromolar levels of activity against HCV in whole-cell replicon assays 

(Figure 6).40, 41, 43–45 The adenosine analogue proved to be the most potent, with an EC50 of 
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0.26 μM compared to 3.5 μM for the guanosine analogue and 1.23 μM for the cytidine 

analogue.43–45 Interestingly, none of these compounds demonstrated any cytotoxicity in 
vitro.41, 43–45 Unfortunately, they displayed low bioavailability as well as a high rate of 

deamination of the nucleobase in the 2’-methyl adenosine analogues and increased 

glycosidic bond cleavage by purine nucleoside pyrophosphorylase.43, 44 The guanosine 

analogue also exhibited low bioavailability due to insufficient phosphorylation and 

decreased cellular uptake.43, 44, 46, 47

While these initial studies were disappointing, they provided researchers with a starting 

point for developing the next generation of HCV nucleoside therapeutics. Through the initial 

studies with 2’-methyl adenosine and 2’-methyl guanosine, researchers determined that the 

bioavailability of these analogues could potentially be increased by removing the N7 of the 

purine ring system to yield a “deaza” analogue. Deazapurine nucleosides are naturally found 

in secondary metabolites produced by Streptomyces bacteria, and, due to their strong 

resemblance to natural purine nucleosides, the deazapurines have been shown to disrupt 

various biological functions, thereby leading to potent therapeutics.48 Of the initial 

deazamethyl purines synthesized, the most promising was 7-deaza-2’-methyl adenosine 

(MK-0608) (Figure 7), which demonstrated broad-spectrum activity against numerous 

flaviviruses, including HCV, DENV, Zika virus (ZIKV), tick-borne encephalitis (TBEV), 

and YFV with EC50 values ranging from 5 to 15 μM.49–55 Further analysis of MK-0608 

found that this analogue was not associated with cellular toxicity at 100 μM after 24 or 72 

hours in Huh7 cells, and HCV RNA replication was inhibited at 0.3 μM in a subgenomic 

replicon assay.50, 56, 57 In comparison to the parent analogue 2’-methyl adenosine, MK-0608 

demonstrated a dramatic increase in half-life and oral bioavailability, since MK-0608 was no 

longer susceptible to deamination or cleavage by adenosine-metabolizing enzymes.50, 58

Unfortunately, this approach proved ineffective with the corresponding guanosine analogues 

once viral strain mutations were introduced, thus only the 7-deaza-2’-methyl adenosine 

analogues were originally pursued.50, 56 Subsequently, however, researchers found that the 

addition of prodrug moieties, such as the aforementioned McGuigan ProTides, greatly 

enhanced the antiviral activity of 2’-methyl guanosine.46, 59 Of these, one of the most 

successful analogues was IDX184 (Figure 8), a 2’-methylguanosine prodrug originally 

developed by Idenix, which utilized an S-pivaloyl-2-thioethyl (tBuSATE) moiety 

functionalized with an N-benzylphosphoramidate group (O-(HO)tBuSATE N-

benzylphosphoramidate) to impart a significant increase in anti-HCV activity compared to 

the parent compound.59,60 Through an SAR study, Sizun et. al. found that the (O-

(HO)tBuSATE N-benzylphosphoramidate) derivative IDX184 was the most potent analogue, 

with an EC50 of 0.2 ± 0.03 μM and no associated cytotoxicity in an HCV subgenomic 

luciferase replicon system.59, 60 Further analysis revealed that IDX184 was well tolerated in 

a chimpanzee model, thus researchers turned to testing IDX184 in human patients.61 In 

phase II clinical trials, it was determined that IDX184 was effective in patients with chronic 

HCV infections, thus supporting further study for clinical application.59, 62, 63

In related studies by McGuigan et al, it was found that the addition of a ProTide moiety to 

2’-methylguanosine resulted in a 10-fold increase in activity against HCV in Huh 5-2 cells, 

as well as a lack of cytotoxicity at 50 μM.46 Further investigation by McGuigan led to the 
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development of INX-189 (BMS-986094), which utilized a phosphoramidate ProTide moiety 

with a naphthyl group as the aromatic component, an L-alanine as the amino acid 

component, and a t-BuCH2 group as the aliphatic component (Figure 8).47, 64 This analogue 

was considered a double prodrug, since the carbonyl group at the C6 position of the the 

guanine base was replaced with a methoxy group, which, following hydrolysis, reverts to the 

carbonyl.64 This modification proved to be essential, in that it consistently improved the 

activity against the HCV replicon across all ProTide derivatives, compared to the parent 2’-

methylguanosine.64 Further analysis revealed INX-189 to be the most potent analogue with 

an EC50 value of 0.01 μM and a CC50 value of 7 μM.34, 64 Most importantly, this approach 

delivered substantially higher levels of the 5’-triphosphate of 2’-methylguanosine compared 

to the parent analogue, and increased the half-life to over 24 hours.64, 65 Similarly, studies 

found that combination therapy with INX-189 and ribavirin resulted in significant 

synergistic anti-DENV activity in vitro, with a synergy score of 2.2 ± 0.048.66 These 

promising results prompted further clinical analysis of INX-189, including Phase III trials of 

INX-189 and another anti-HCV experimental drug daclastasvir.65 Unfortunately, severe 

cardiotoxicity complications were soon discovered, thus INX-189 was withdrawn from 

further clinical study.67–69 For similar toxicity reasons, and due to the fact that both IDX184 

and INX-189 share the same parent analogue, IDX184 was also pulled from clinical trials.
69, 70

3.2 2’-Methyl-Fluoro Modification

As mentioned in the first review, researchers have capitalized on the unique properties that 

fluorine imparts to nucleoside analogues for decades.71–73 Fluorine is often used as an 

isosteric replacement since it is similar in size to hydrogen, but is also similar in 

electronegativity to the hydroxyl groups found in nucleosides.71 The presence of fluorine on 

the sugar ring greatly influences the conformation of the “sugar pucker” in the ring system, 

which in turn has an effect on the overall conformation of the entire nucleoside, as well as 

recognition by different enzymes.74–76 Furthermore, studies have demonstrated that the 

presence of a fluorine at the 2’-position of the sugar greatly decreases the nucleoside’s 

susceptibility to enzymatic cleavage of the glycosidic bond.71, 76–80 One early successful 2’-

fluorine analogue was 2’-deoxy-2’-fluorocytidine, which demonstrated potent HCV 

inhibition with an EC90 of 5 μM and no cytotoxicity up to 100 μM.81 Unfortunately, while 

2’-deoxy-2’-fluorocytidine targeted the HCV non-structural NS5B polymerase, it was also 

shown to target cellular polymerases, thus was not pursued further.81–83

Due to the success of the 2’-methyl analogues, as well as the known impact of using fluorine 

in nucleoside drug design, Clark et. al. sought to combine these two modifications to yield 

2’-deoxy-2’-fluoro-2’-methyl analogues (Figure 9).84 The hope was that by combining both 

2’ substituents these novel analogues would demonstrate potent antiviral activity, and that 

the addition of the 2’-methyl group would target these analogues to the viral polymerases 

rather than the human polymerases, thus resulting in lower cytotoxicity compared to the 2’-

deoxy-2’-fluoro analogues. In an HCV replicon assay, the cytidine analogue demonstrated 

an EC90 of 5.40 ± 2.6 μM with no associated cytotoxicity up to 100 μM while the uridine 

analogue was inactive, although also not cytotoxic.84

Yates and Seley-Radtke Page 6

Antiviral Res. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As mentioned previously, one of the limitations of nucleoside analogues is the first 

phosphorylation step by viral or cellular kinases. Interestingly, while the 2’-deoxy-2’-

fluoro-2’-methyluridine analogue did not demonstrate any antiviral activity in the HCV 

replicon assays, the triphosphate of this analogue demonstrated potent inhibitory activity 

against the HCV NS5B, with an IC50 of 1.19 μM.85, 86 This suggested that the 2’-deoxy-2’-

fluoro-2’-methyluridine analogue was not efficiently phosphorylated to the monophosphate, 

thus the use of the phosphoramidate ProTide method could potentially increase antiviral 

activity. Through an extensive SAR study, Sofia et. al. found that a phosphoramidate 

structure with an isopropyl alkyl chain, L-alanine, and phenyl aromatic substituent (Figure 

10) greatly increased antiviral activity of the uridine analogue, PS-7851, with an EC90 of 

0.52 μM.87, 88 Further analysis to determine safety found that this analogue demonstrated no 

cytotoxicity up to 100 μM against numerous cell lines including the human hepatocyte cell 

lines Huh7 and HepG2, the human pancreatic cell line BxBC3, and the human T-

lymphoblast cell line CEM.87 As PS-7851 is a mixture of diastereomers at the phosphorus 

center, it was important to determine which isomer demonstrated a greater antiviral activity, 

was potentially more toxic, or, whether the two isomers worked synergistically. Sofia et. al. 
found that the Sp isomer (PS-7977, sofosbuvir) was indeed more active, with an EC90 of 

0.42 μM while the Rp isomer (PS-7976) had an EC90 of 7.5 μM.87 Neither analogue 

demonstrated cytotoxicity at concentrations up to 100 μM.87 Most importantly, sofosbuvir 

consistently produced high levels of triphosphate in liver cells across all species tested.87–89 

These promising results led to the development of sofosbuvir in clinical trials, and ultimately 

sofosbuvir was approved by the FDA (under the name ®Sovaldi). Moreover, sofosbuvir was 

also approved combination with other drugs such as ribavirin and ledipasvir for use in 

prophylaxis after liver transplantation, as a treatment for recurring HCV infection, as well as 

against numerous HCV genotypes.90–97

3.3 Other 2’-Combination Approaches

The field of nucleoside analogue drug design has greatly benefitted from combination 

approaches, whereby researchers merged different structural modifications that proved 

essential for antiviral activity into one analogue. This was highlighted with GS-5734, which 

combines a 1’-sugar modification, a deaza purine nucleobase, substitution of the N9 with a 

carbon to create a C-nucleoside, and the McGuigan ProTide technology.23, 25, 26 Another 

analogue to use this strategy is GS-6620 (Figure 11), a C-nucleoside adenosine analogue 

originally developed by researchers at Gilead Sciences for HCV treatment.24 As mentioned 

previously, the 1’-cyano group occupies a pocket in the viral polymerase binding site, which 

leads to the increased selectivity of the 1’-CN analogues for viral over human polymerases.
23, 27 Like GS-5734, employing a C-nucleoside replaces the hemiaminal (O-C-N) glycosidic 

bond with an O-C-C bond, thus decreasing the nucleoside analogue’s susceptibility to 

enzymatic glycosidic bond cleavage.15, 21–23 This was also observed in studies with 7-

deaza-2’-methyladenosine analogues, which exhibited an increase in antiviral activity, half-

life, and oral bioavailability, since the 7-deaza analogues were no longer susceptible to 

deamination or cleavage by adenosine-metabolizing enzymes.49, 50, 56, 58

As previously mentioned, addition of a 2’-methyl group has also proved fruitful, since once 

incorporated into the growing strand, analogues with this modification prevent incoming 
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nucleoside triphosphates from binding to the active site of HCV NS5B, thus acting as non-

obligate chain terminators.24, 42 With these modifications in mind, Cho et. al. synthesized a 

novel 1’-cyano-2’-methyl-7,9-deaza adenosine analogue (Figure 11) and screened it for 

activity against HCV.24 Unfortunately, this analogue failed to display antiviral activity up to 

89 μM in whole-cell replicon assays. This was subsequently shown to be due to the presence 

of the 1’-cyano group, which limited the first phosphorylation step, likely due to the changes 

in the sugar pucker, which can affect recognition by kinases (and other enzymes).14, 24 

Surprisingly however, the corresponding triphosphate displayed an IC50 value of 0.29 μM, 

thus the ProTide approach was employed to overcome the rate-limiting phosphorylation 

step, as well as to increase the amount of triphosphate delivered to the target cell.24 This 

proved successful, and it was found that the phosphoramidate prodrug (Figure 11) 

demonstrated moderate HCV activity in the replicon assay (EC50 = 1.05 μM) and was 

efficiently converted to the active triphosphate.24 Subsequent pharmacokinetic studies to 

determine the triphosphate levels in hamster liver revealed that the phosphoramidate 

analogue did not yield adequate amounts of triphosphate following oral absorption.24 In 

order to overcome this limitation, Cho et. al. then utilized a double prodrug approach, in 

which the 3’-OH was protected using an isobutyrate group (Figure 11).24 This modification 

not only increased lipophilicity and oral absorption, it also resulted in much higher levels of 

triphosphate in primary human hepatocytes.24 Similar to sofosbuvir, the double-prodrug 

analogue was a diastereomeric mixture, thus further analysis found that the Sp isomer was 6-

fold more potent in HCV replicon assays and delivered 3-fold higher levels of triphosphate 

to primary human hepatocytes as compared to the Rp isomer.24 Due to the promising 

antiviral profile of the Sp isomer (later known as GS-6620), this analogue was chosen for 

further clinical evaluation.24, 98, 99

3.4 2’-Cyano Modification

Not just confined to the 1’-position, the cyano group has also found use at other positions on 

the nucleoside sugar moiety. As mentioned previously, some of the first nucleosides 

discovered to have medicinal properties were the arabinose or “Ara” analogues, such as Ara-

C (Figure 12), which demonstrated potent activity against numerous cancers including non-

Hodgkin’s lymphoma, myeloid leukemia, acute myeloblastic leukemia, and many others.
100–104 Unfortunately, there are numerous drawbacks to using Ara-C in anticancer treatment 

including a short half-life in plasma, inactivation by deamination to the inactive uracil 

metabolite by cytidine deaminase, development of resistance, and ineffectiveness against 

solid tumors.105–108 It was later shown that adding various groups to the 2’-β position of 2’-

deoxycytidine could have profound effects on the stability of this analogue by decreasing its 

susceptibility to cytidine deaminase. Studies found that the introduction of an electron-

withdrawing substituent at the 2’-β position increased the acidity of the 2’-α proton, thus β-

elimination could occur, resulting in DNA strand breaks.109–113 This was particularly 

interesting, due to the hypothesis that radiation therapy causes DNA strand breaks, leading 

to tumor cell death.114 Thus, the addition of a 2’-β-cyano group was employed to yield 2’-C-

cyano-2’-deoxy-1-β-D-arabinofuranosylcytosine (CNDAC, Figure 12) which demonstrated 

potent in vitro activity against numerous human tumor cells such as sarcomas, 

osteosarcomas, fibroblastomas, and carcinomas.109–111, 113, 115–117 In comparison to the 

parent analogue Ara-C, CNDAC demonstrated potent cytotoxicity in 14 tumor cell lines, 
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with IC50 values from 0.04 to 6.8 μg/mL, whereas Ara-C was only active against 6 of these 

cell lines, with IC50 values of 0.09 to 4.5 μg/mL.111 Furthermore, CNDAC is very effective 

against solid tumors, whereas Ara-C and the widely used 5-fluorouracil and 5’-deoxy-5-

fluorouridine were not active against these solid tumors.110, 111, 117 This led to a series of 

clinical trials, including one in which CNDAC is currently in Phase I/II trials against acute 

myeloid leukemia and acute lymphatic leukemia (NCT01702155),118–120 and another in 

which a prodrug of CNDAC, sapacitabine (Figure 12), is in Phase III trials for acute myeloid 

leukemia and myelodysplastic syndrome (NCT01303796).121, 122

3.5 2’-Ethynyl Modification

From the studies with 2’-cyano groups, researchers found that acetylene-derived analogues 

were an important sugar modification associated with potent antiviral effects. Furthermore, 

modification at the N7 position of 2’-acetylene adenosine analogues, such as removal of the 

nitrogen to yield a 7-deaza analogue or addition of a carbamoyl moiety, led to profound 

antiviral activity against DENV.123–125 While the analogue, NITD449, demonstrated 

moderate anti-DENV activity (EC50 = 2.0 μM), it was also associated with cytotoxicity.124 

Interestingly, the 7-deaza analogue NITD008 (Figure 13) demonstrated similar potency 

without the associated cytotoxicity.126–128 Studies found that this analogue was not 

cytotoxic up to 50 μM across numerous cell lines and inhibited DENV-2 with an EC50 of 

0.64 μM.126

More importantly, NITD008 was also effective against the other three serotypes.126 This is 

critical, because a patient is more likely to develop severe dengue hemorrhagic fever or 

dengue shock syndrome when infected a second time, by a different serotype, thus an 

analogue with activity against all serotypes is highly sought after.129, 130 Furthermore, 

studies found that NITD008 was also effective against other flaviviruses including WNV, 

YFV, HCV, ZIKV, and TBEV, as well as against enterovirus 71.125–128, 131, 132 Elucidation 

of the mechanism of action determined that the triphosphate of NITD008 interacted with the 

flavivirus RdRp with an IC50 of 0.31 μM and served as a chain terminator in a similar 

fashion as the 2’-methyl analogues, thereby halting viral RNA elongation.125, 126 Other in 
vivo studies determined NITD008 could suppress peak viremia in infected mice and 

completely protected them from death.126 Further studies with NITD008 and other 

flaviviruses are currently under way to determine if NITD008 could prove to be a broad-

spectrum therapeutic against a variety of flaviviruses.125, 128, 131

4. 3’ Modifications

Early examples of modifications at the 3’ position of nucleoside sugars led to the 

development of novel analogues such as the 3’-methyl nucleosides,133–135 however, the 2’, 

3’-dideoxy nucleosides136–138 and 2’-deoxy-3’-modified nucleosides139, 140 ultimately 

proved to be more promising. The development of these analogues was covered extensively 

in the previous review and is not discussed here.141
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5. 4’ Modifications

Until the discovery of naturally occurring 4’-modified nucleoside analogues,142 

modifications to the 4’ position of the furanose ring was rather uncommon in drug design, 

mainly due to the synthetic challenges. As more facile synthetic routes were developed, 

more researchers began to pursue these interesting analogues. Researchers soon noted that 

modifications to the 4’ position of the furanose ring changed the sugar pucker from a C2’-

exo/C3’-endo “north” conformation, as is common in natural RNA nucleosides,143 to a C2’-

endo/C3’-exo “south” conformation.144 As mentioned previously, this affects recognition by 

different enzymes, thus can have a significant impact on their biological activity.74, 75

5.1 4’-Fluoro Modification

As mentioned previously, fluorine substitution has been utilized at a number of positions on 

both the nucleobase and the sugar moiety, however, one of the lesser explored positions has 

been substitution at the 4’-carbon of nucleoside sugars. One of the first 4’-modified 

nucleoside analogues was isolated from Streptomyces calvus in 1957,142 but it wasn’t until 

1969 that the correct structure of this analogue, later named nucleocidin, was elucidated 

(Figure 14).145–148 While this analogue was one of the first examples of a 4’-modified 

furanose sugar, it also possessed a novel 5’-sulfamoyl group.145–148 This unique structure 

endowed nucleocidin with a broad antiparasitic spectrum, particularly against trypanosomes, 

however, the practical use of this analogue as a therapeutic was severely limited due to its 

toxicity.142, 149

The initial discovery of nucleocidin prompted researchers to pursue other 4’-fluoro modified 

nucleoside analogues in an effort to decrease the overall toxicity. One such example was 

developed by Guillerm et al. as a potential S-adenosyl-L-homocysteine hydrolase (SAHase) 

inhibitor (Figure 15).150 Based on the mechanism of action of SAHase, it was hypothesized 

that the lack of a 4’-proton on 4’-fluoroadenosine would completely inhibit further catalysis, 

however, when tested against SAHase it was determined that 4’-fluoroadenosine had a 100-

fold lower affinity for SAHase compared to natural adenosine, thus this modification proved 

unsuccessful.150

Another 4’-fluoro analogue related to nucleocidin was 5’-deoxy-4’,5-difluorouridine (Figure 

15), a 5-fluorouracil analogue that demonstrated similar inhibition of growth of L1210 

mouse leukemia cells as the parent 5-fluorouracil, but 10-fold greater activity than 

previously reported prodrugs.151 Since 5’-deoxy-4’,5-difluorouridine does not have a 5’-

hydroxyl group, this analogue cannot be converted into the nucleotide and be incorporated 

by polymerases. Instead, the presence of the 4’-fluoro group makes the glycosidic bond 

unusually more acid-labile and increases glycosidic bond cleavage by uridine phosphorylase, 

thus delivering increased amounts of 5-fluorouracil to tumor sites.151, 152 In comparison to 

another 5-fluorouracil prodrug, 5’-deoxy-5-fluorouridine (discussed below), 5’-deoxy-4’,5-

difluorouridine demonstrated an IC50 of 0.3 μM and a 500-fold increase in glycosidic bond 

hydrolysis, whereas the IC50 of 5’-deoxy-5-fluorouridine was 3.0 μM, and it failed to 

undergo significant hydrolysis.152 While this analogue appeared promising as a potential 

anticancer agent, further studies have yet to be reported.
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5.2 4’-Methyl Modification

Another common isosteric modification in nucleoside drug design is the substitution of a 

methyl group for a hydrogen. While this modification has been explored at the 1’,12 2’,40–45 

and 3’133–135, 153 positions on the furanose ring, little research had been reported on the 

presence of a methyl group at the 4’ position. As mentioned previously, it was found that the 

addition of a 4’-modification altered the reactivities of the 3’ and 5’-hydroxyl groups 

compared to natural nucleosides due to steric effects,144 thus 4’-methyl modifications were 

considered an interesting avenue to pursue.

Synthesis of 4’-methyl analogues was pioneered by Waga et al. in the early 90s for use as 

potential anticancer and/or antiviral therapeutics.144, 154 While the change in sugar pucker 

due to the presence of the 4’-methyl substituent imparted these analogues with interesting 

characteristics, Waga et al. also hypothesized that the 4’-methyl modification could act 

synergistically with other sugar modifications (Figure 16).154 Combining the 4’-methyl 

modification with dideoxy sugars, 2’-deoxy sugars, and saturated dideoxy sugars with 

various nucleobases, the resulting analogues were screened against HIV-1 in MT-4 cells.154 

Most of the analogues failed to display any notable antiviral activity, with IC50 values 

ranging from 21 μM to over 500 μM, however, the 4’-methyl-thymidine analogue and the 4’-

methyl-2’-deoxycytidine analogue displayed potent activity with IC50 values of 7.2 μM and 

0.072 μM respectively.154, 155 While the thymidine analogue did not display cytotoxicity up 

to 100 μM, the cytidine analogue was quite toxic with a CC50 value of 0.13 μM, thus these 

analogues were not pursued further.154, 155

Years later, the 4’-methyl modification was revisited when Gosselin et al. synthesized a 

ribose series that focused on nucleobase modifications instead of the sugar modifications 

seen in the study by Waga et al. (Figure 16).156 Like the analogues synthesized by Waga, the 

4’-methyl ribose analogues were evaluated for their inhibitory effects against HIV-1 

replication in MT-4 cells, however, none demonstrated any meaningful antiviral activity.156 

These analogues were also tested for activity against other viruses including HBV in HBV 

DNA-transfected Hep-G2 cells (2.2.15 cells) and against YFV in BHK cells. Again, no 

antiviral activity or cytotoxicity was observed with any of the analogues against either virus,
156 so pursuit of the 4’-methyl modification approach was abandoned.

5.3 4’-Azido Modifications

With the early success of 2’-deoxy-3’-azidothymidine (AZT, zidovudine),139, 140, 157, 158 

which bears a 3’-azido modification, researchers sought to utilize this modification at 

different positions on the sugar ring to either increase antiviral activity, or, perhaps most 

importantly, decrease cellular toxicity. One example that garnered early attention was the 

addition of the azide group at the 4’-position of the sugar, due to the result the electron-

withdrawing effects of the azide group on the sugar pucker.159 Thus, a series of 2’-deoxy-4’-

azido nucleosides was synthesized and demonstrated potent anti-HIV activity. These were 

the first nucleoside analogues with potent anti-HIV activity that had an azido group in any 

position other than the 3’ position (Figure 17).159, 160 Interestingly, the presence of the 4’-

azido group in these analogues affected the 3’ and 5’-hydroxyl groups in a way that brought 

these two groups into closer proximity.159, 160 Due to its electronegativity, the 4’-azido 
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group prefers a pseudoaxial orientation, which then forces both the 3’ and 5’-hydroxyl 

groups into pseudo-equatorial positions, causing the sugar to adopt a C3’-endo/C2’-exo 

RNA-type conformation.159 Thus, while these analogues retain the 3’-hydroxyl moiety in 

contrast to AZT and other HIV chain terminators, the change in sugar pucker allows the 4’-

azido analogues to still act as DNA chain terminators, however designated as pseudo-

obligate chain terminators.159–161

While none of the analogues was more active than AZT against HIV-1 isolates, they did 

demonstrate potent activity.159, 160 The IC50 for the 4’-azido-2’-deoxyuridine analogue was 

0.8 μM with no associated cytotoxicity up to 200 μM, whereas the 4’-azido-2’-deoxy-5-

chlorouridine analogue possessed an IC50 value of 0.056 μM, also with no cytotoxicity.159 

Furthermore, the 4’-azidothymidine analogue demonstrated equipotent activity against 

HIV-1 with an IC50 value of 0.01 μM compared to AZT in A3.01 cells.160 Even more 

significant was the observation that 4’-azidothymidine was effective against strains of HIV-1 

that were AZT-resistant.159, 160 Unfortunately, this analogue proved to have increased 

cytotoxicity compared to AZT, and never progressed to the clinic.

In contrast, one of the most successful 4’-azido analogues was 4’-azidocytidine, later termed 

R1479, which demonstrated potent anti-HCV activity (Figure 18).162, 163 This analogue was 

originally discovered during a 4’-modification SAR study by Roche, where it was found that 

4’-azidocytidine showed an IC50 of 1.28 μM in an HCV replicon proliferation assay, and the 

triphosphate of 4’-azidocytidine inhibited the HCV NS5B with an IC50 of 0.30 μM.162 

Further analysis found that R1479 was also active against mutant strains of HCV.163 These 

promising results, along with low cytotoxicity, led researchers to further investigate 4’-

azidocytidine against other viruses. It was found that R1479 was effective against HCV and 

against DENV serotypes 1, 2, and 4 (EC50 range 1.3–3.2 μM) in primary human 

macrophages,164 as well as against respiratory syncytial virus (RSV), for which R1479-TP 

had an IC50 of 0.24 μM.165, 166 More recent studies found micromolar activity against the 

henipaviruses, Nipah and Hendra.165 Unfortunately, like many nucleoside analogues, R1479 

suffered from low bioavailability, thus a tri-isobutyl ester prodrug moiety was introduced to 

give balapiravir (R1626, Figure 18).167–170 Although balapiravir demonstrated increased 

antiviral activity compared to the parent analogue R1479 and was efficacious in clinical 

trials against HCV,167, 168, 171–173 the development of more potent nucleoside analogues, 

such as sofosbuvir, as well as adverse toxicity,174 halted further advancement of this 

analogue as an HCV therapeutic. Later, balapiravir was analyzed in a clinical study against 

DENV,164, 175 however, treatment was not well tolerated due to adverse effects, nor did it 

decrease viral load or fever clearance time, thus clinical trials were terminated.

Other 4’-azido analogues of early interest include 4’-azido-aracytidine (RO-9187) and 4’-

azido-2’-methyl nucleosides (Figure 19) for use as anti-HCV analogues.55, 176–179 RO-9187 

features a 4’-azide group and the 2’ ara, or “up” hydroxyl group and was discovered through 

an SAR study in which the authors were attempting to develop more potent 4’-azido 

ribonucleosides against HCV.162, 176 Interestingly, RO-9187 proved to be the most potent 

analogue tested, with an IC50 of 0.171 μM, and no associated cytotoxicity up to 1000 μM.
162, 176 Furthermore, studies found that not only was it a potent anti-HCV analogue, but it 

also was effective against TBEV with an EC50 of 0.3 ± 0.01 μM and no associated 
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cytotoxicity up to 50 μM.55 Similarly, researchers analyzed the change in antiviral activity 

when the ara hydroxyl group was substituted with a methyl group, yielding 2’-methyl 

analogues such as 4’-azido-2’-methylcytidine (Figure 19).178, 179 Unfortunately, it was 

determined that this analogue did not demonstrate potent anti-HCV activity, however, the 

addition of a phosphoramidate prodrug moiety greatly increased antiviral activity, with EC50 

values ranging from 3.0 to 4.9 μM.178, 179 This increase in activity has led researchers to 

pursue other phosphoramidate modifications in order to increase the anti-HCV activity even 

further, and these studies are currently under way.

5.4 4’-Cyano Modifications

Due to the initial successes of the various 4’-azido analogues, scientists sought more potent 

candidates, utilizing other moieties with terminal nitrogen atoms such as a 4’-cyano group. 

This led to the early development of 4’-cyanothymidine (Figure 20), which demonstrated 

activity against HIV, with an EC50 of 0.002 μM.180 Unfortunately, when studied in a mouse 

model, 4’-cyanothymidine demonstrated toxicity at 0.3 mg/kg dose per day,180 thus studies 

were discontinued.

After these initial findings of toxicity, researchers sought additional 4’-cyano analogues in 

an effort to retain their biological activity and decrease their cytotoxicity. In an SAR study 

focusing on different 4’-modifications, Nomura et al. determined that the 4’-cyano-2’-

deoxycytidine analogue (Figure 21) demonstrated activity against L1210 tumor cells, herpes 

simplex virus (HSV) 1, HSV-2, and very potent activity against HIV-1 (EC50 = 0.0012 μM) 

with no accompanying cytotoxicity.155 Interestingly, the corresponding ribose derivative, 4’-

cyanocytidine, demonstrated similar antiviral activity but exhibited much greater levels of 

cytotoxicity,162 thus the deoxyribose analogues were selected for further studies.

Synthesis of these analogues initially was challenging, since 4’-modified sugars exhibit low 

reactivity in glycosylation reactions, thus making it difficult to add the necessary 

heterocyclic bases, but researchers subsequently developed novel synthetic approaches by 

modifying naturally occurring deoxyribonucleosides as starting materials, which allowed for 

more readily available 4’-C-modifed analogues.155, 181 Subsequent studies showed that 4’-

cyano-2’-deoxyguanosine (CdG) and 4’-cyano-2’-deoxy-2,6-diaminopurine-ribonucleoside 

(CAdA) analogues (Figure 21) exhibited sub-nanomolar levels of activity against HIV-1 

(Ec50 = 0.19 nM and EC50 = 0.79 nM respectively), but were associated with significant 

toxicity.181 By comparison, the 4’-cyano-2’-deoxyadenosine (CdA) and 4’-cyano-2’-

deoxyinosine analogues (CdI) (Figure 21) exhibited sub-micromolar activity (Ec50 = 0.05 

μM for both) with little to no cytotoxicity.181 Both CAdA and CdG were analyzed further by 

Takamatsu et al., who found that both analogues demonstrated potent activity against HIV-1, 

but also had potent activity against hepatitis B virus (HBV) (EC50 = 0.4 nM for both 

analogues) with less cytotoxicity than previously reported.181, 182

5.5 4’-Combination Approach

Before the discovery of the anti-HIV activity of 4’-modified nucleoside analogues, many 

scientists believed that only HIV therapeutics lacking a 3’-hydroxyl group could act as chain 

terminators. While the absence of a 3’-hydroxyl group did impart potent anti-HIV effects, 
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there were also several disadvantages including poor phosphorylation and reduced 

recognition by the polymerases.183–186 Researchers therefore attempted to design novel 

analogues that would retain antiviral potency, as well as the recognition required for 

activation and incorporation.

One such analogue was 4’-ethylnyl-2-fluoro-2’-deoxyadenosine (EFdA, Figure 22). 

Notably, EFdA demonstrated potent anti-HIV activity with an EC50 of 0.05 nM, but also 

significant activity against nucleoside reverse transcriptase inhibitor (NRTI)-resistant strains.
183, 185, 187, 188 The design of EFdA’s scaffold was a result of combining several strategic 

structural modifications. For example, the fluorine moiety at the 2-position of the adenosine 

nucleobase was chosen due to the observation that a fluorine or another halogen at the 2-

position of 4’-modified nucleoside analogues significantly enhances antiviral activity.183, 189 

This increase in activity was due to the decreased susceptibility of EFdA to adenosine 

deaminase, as a result of the highly electronegative fluorine at the 2-position.183, 189 The 

addition of the 4’-ethynyl moiety also plays a role in decreasing deamination of EFdA by 

adenosine deaminase, thus the two modifications work synergistically.183

The second modification was the retention of the 3’-OH to ensure recognition by the 

kinases, as this was also known to be important. Related, to this, addition of the 4’-ethynyl 

group leads EFdA to strongly favor the “north” (C2’-exo/C3’-endo) conformation. A 

number of studies have determined that HIV-1 reverse transcriptase (RT) prefers NRTIs 

and/or incoming nucleotides with a north confirmation, thus EFdA binding with HIV-1 RT is 

optimized.183, 190–193 Furthermore, while EFdA is readily recognized and incorporated by 

HIV-1 RT, it does not inhibit human DNA polymerases α or β, or mitochondrial DNA 

polymerase γ, thus EFdA displays a superior toxicity profile compared to other HIV-1 

NRTIs.187, 188, 193, 194

While the addition of the 4’-ethynyl group had a profound effect on the sugar pucker, and 

thus the increased binding affinity with HIV-1 RT, the 4’-ethynyl moiety also endowed 

EFdA with two unique mechanisms of action. Instead of obligate, non-obligate, delayed or 

pseudo-obligate chain termination typical of other nucleoside analogues, EFdA acts as a 

translocation-defective reverse transcriptase inhibitor (TDRTI).193, 195, 196 Once EFdA-TP is 

incorporated by RT at the 3’-primer terminus, the unique structure of EFdA blocks 

translocation of the primer strand on the viral polymerase, thus further nucleotides cannot be 

incorporated.193, 195, 196 Interestingly, EFdA can also act as a traditional non-obligate chain 

terminator since it retains the 3’-OH.193, 195, 196 Due to its low toxicity profile and highly 

potent anti-HIV activity, EFdA has progressed to clinical trials under the name MK-8591, 

sponsored by Merck (NCT03272347, NCT02217904).

6. 5’ Modifications

While modifications to various positions of the furanose ring are very common, the 

importance of the 5’-hydroxyl group in nucleotide incorporation for both DNA and RNA 

synthesis initially caused researchers to avoid modifications at the 5’-position. In some 

instances however, as seen with the 5’-deoxy, 5’-nor, and truncated carbocyclic nucleosides 

related to aristeromycin and neplanocin developed by Schneller, Seley, Borchardt, and 
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others, removal or replacement of the 5’-methylene group and/or 5’-hydroxyl group proved 

beneficial since these analogues could no longer be phosphorylated, thus the toxicity 

observed with the parent analogues aristeromycin and neplanocin did not occur with the 

truncated analogues.141, 197–207 Other researchers have also utilized these approaches to 

their advantage in order to decrease overall toxicity of various nucleoside analogues.

6.1 5’-Deoxy-5-fluorouridine

One early nucleoside analogue that incorporated the 5’ substitution was 5’-deoxy-5-

fluorouridine (5’-dFUrd, doxifluridine, Figure 23), in which instead of a 5’-

hydroxymethylene group, 5’-dFUrd has a methyl at that position.208–211 Like other 5’-

modified analogues, 5’-dFUrd cannot be phosphorylated and converted into the 

corresponding triphosphate. Instead, 5’-dFUrd exerts its effect by acting as a prodrug and 

releases 5-fluorouracil as a result of glycosidic bond cleavage by human phosphorylases.
212,213 This analogue has demonstrated a broad range activity against numerous cancers 

including colorectal, leukemia, and melanomas.208, 209, 211, 213–216 Furthermore, compared 

to other fluorinated pyrimidines, 5’-dFUrd exhibits a higher therapeutic index and is less 

immunosuppressive.208, 209, 215, 217

Since its initial discovery in the mid 1970’s, 5’-FdUrd has progressed from Phase I to 

numerous Phase II clinical trials for treatment of squamous cell carcinomas, advanced breast 

cancer, advanced colorectal adenocarcinoma and others.218–221 Despite these successes, the 

FDA has yet to approve 5’-dFUrd as an anticancer treatment in the United States, thus more 

research is needed in order to better determine potential side effects that could be associated 

with this analogue.

7. Additional Modifications

This final section is dedicated to describing several types of nucleoside analogues that utilize 

novel and unique structural modifications, as well as explaining how some are used in 

unconventional ways.

7.1 Tricyclic Analogues

In the first article, various expanded purine nucleobases were described, including Nelson 

Leonard’s benzyl-expanded nucleosides,235–238 and Seley-Radtke’s thieno-expanded 

nucleosides.239–242 Other examples of interesting tricyclic analogues are the dual-faced 

bases or the Janus nucleosides, named after Janus, the Roman god of gates and doors (Figure 

24).243, 244 These unique nucleosides can present Watson-Crick donor/acceptor base pairing 

from two different faces of the nucleobase through rotation about the glycosidic bond, thus 

forming stable base pairs with more than one complementary nucleoside.243, 244 Synthesis 

of both ribose and 2’-methyl Janus-type nucleosides met with challenges, however, the 

ribose J-AU and J-AG analogues demonstrated moderate activity against HCV, with EC50 

values of 5.7 μM and 3 μM respectively.243 Unfortunately, they all demonstrated significant 

toxicity in numerous cell lines,243 thus were not extensively pursued.
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7.2 Fleximer Analogues

A serendipitous outcome of some of the early studies with Seley-Radtke’s thiophene-

expanded tricyclic analogues led to a new class of novel nucleoside analogues. By treating 

the tricyclic nucleosides with Raney nickel, the sulfur in the middle ring was removed 

leaving the two outer rings intact, thereby resulting in a flexible nucleoside. These unique 

analogues were termed “fleximers” (Figure 25).253–256 They feature a purine ring that is 

“split” into the imidazole and pyrimidine moieties, which remain connected by a single 

carbon-carbon bond from the C4 of the imidazole to the C5 of the pyrimidine in proximal 

fleximers, or from the C5 of the imidazole to the C6 of the pyrimidine in distal fleximers 

(Figure 26).253–257 This design retains the hydrogen bonding pattern necessary for 

nucleoside-recognizing enzymes while creating an increase in flexibility that allows for 

alternative interactions in the enzyme binding site, resulting in a number of highly beneficial 

properties.253–256, 258

The inherent flexibility of these analogues allows for free rotation about the carbon-carbon 

bond, increasing the rotational degrees of freedom and allowing the fleximer to interact with 

alternative amino acids in the binding pocket, that were previously unattainable by the parent 

nucleoside.255, 256, 258–261 Further studies found that the introduction of the flexible 

nucleoside scaffold corresponds to an increase in binding affinity compared to 

corresponding rigid inhibitors, as well as the ability to circumvent point mutations in the 

binding site, thus overcoming the development of drug resistance.255, 256, 258–261

To date a number of different types of fleximer and thienophene analogues of FDA-approved 

nucleoside analogues have been synthesized by Seley-Radtke et al.,241, 242, 255, 256, 262, 263 

however, the most promising analogues are the more recent acyclic fleximers based on the 

FDA-approved drug acyclovir. These doubly flexible nucleosides have demonstrated potent 

micromolar activity against numerous RNA viruses (Figure 27).264, 265 The most potent 

analogue, a methoxy-prodrug of Flex-Acyclovir (HP083), has an EC50 of 8.8 ± 1.5 μM 

against MERS-CoV, and also has potent activity against EBOV at 2.2 μM. 264, 265 More 

recent studies with this analogue have found sub-micromolar activity against DENV (EC50 = 

0.057 μM) and YFV (EC50 = 0.37 μM), as well as potent inhibitory activity of the 

corresponding triphosphate against both DENV and ZIKV (IC50 = 8.4 μM and 1.7 μM 

respectively).266–268 Most importantly, these analogues have demonstrated little to no 

cytotoxicity.264–266 Due to their broad-spectrum antiviral activity, they are currently 

undergoing further analysis to determine their mechanism of action.

8. Concluding remarks

As detailed in this and the previous review, nucleoside analogues remain the cornerstone of 

antiviral and anticancer therapeutics, particularly in combination therapies. As additional 

structural and biological information becomes available, new and more complex 

modifications will continue to be pursued. We hope that these two articles have increased 

our readers’ understanding of the historical modifications to the nucleoside scaffold, the 

justification for these modifications, and their significance in modern-day therapeutics.
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AVR_2018_525 Highlights

This is the second of two invited articles reviewing the development of nucleoside 

analogue antiviral drugs.

It is written for a target audience of virologists and other non-chemists, and for chemists 

unfamiliar with the field.

Numerous modifications have been made to the nucleoside scaffold in order to impart 

therapeutic benefits.

Current nucleoside analogues employ a combination approach, using multiple 

modifications to the scaffold.

We examine thought processes, progress in synthetic chemistry and results of antiviral 

testing that led to approved drugs.
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Figure 1. 
Sites for potential modifications to nucleos(t)ide analogues.
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Figure 2. 
Examples of early 1’-modified nucleoside analogues.
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Figure 3. 
Gilead’s first generation 1’-substituted 4-aza-7,9-dideazaadeonosine C-nucleosides.
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Figure 4. 
General structure of a McGuigan ProTide.
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Figure 5. 
Structure of the 1’-CN parent analogue and the McGuigan ProTide GS-5734.
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Figure 6. 
First generation 2’-methyl nucleoside analogues for HCV therapy.
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Figure 7. 
Modified 7-deaza-2’-methyl analogues.
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Figure 8. 
Second generation 2’-methylguanosine analogues.
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Figure 9. 
First generation 2’-deoxy-2’-fluoro-2’-methyl analogues.
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Figure 10. 
Phosphoramidate prodrug of 2’-deoxy-2’-fluoro-2’-methyluridine.
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Figure 11. 
Structure of the parent analogue, first generation phosphoramidate prodrug, and the double 

prodrug GS-6620.
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Figure 12. 
Structure of 2’-modified 2’-deoxycytosine analogues Ara-C, CNDAC, and the prodrug 

Sapacitabine.
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Figure 13. 
Structure of the adenosine based analogues NITD008 and NITD449.
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Figure 14. 
Structure of the first 4’-modified furanose nucleoside Nucleocidin.
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Figure 15. 
Second generation 4’-fluoro analogues.
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Figure 16. 
Examples of 4’-methyl nucleoside analogues.

Yates and Seley-Radtke Page 49

Antiviral Res. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 17. 
Novel 4’-azido nucleoside analogues with potent anti-HIV activity.
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Figure 18. 
Structure of 4’-azidocytidine and its tri-isobutyl ester prodrug balapiravir.
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Figure 19. 
Novel structure of 4’-azido-aracytidine and 4’-azido-2’-methylcytidine.
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Figure 20. 
Potent HIV inhibitor 4’-cyanothymidine.
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Figure 21. 
Second generation 4’-cyano nucleoside analogues.
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Figure 22. 
Unique structure of 4’-ethynyl-2-fluoro-2’-deoxyadenosine.
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Figure 23. 
Structure of one of the first 5’-truncated nucleoside analogues, 5’-deoxy-5-fluorouridine.
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Figure 24. 
Janus-type nucleosides that feature two pyrimidine faces.
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Figure 25. 
Origins of fleximer analogues from treatment of thienophene expanded nucleosides with 

Raney Nickel.
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Figure 26. 
Structures of proximal and distal fleximers.
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Figure 27. 
Structure of Acyclovir compared to the potent antiviral acyclic fleximer analogue HP083.
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