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Abstract

Background and Purpose: Accurate automated infarct segmentation is needed for acute
ischemic stroke studies relying on infarct volumes as an imaging phenotype or biomarker that
require large numbers of subjects. This study investigates whether an ensemble of convolutional
neural networks (CNN) trained on multiparametric DWI maps outperforms single networks
trained on solo DWI parametric maps.

Materials and Methods: CNNs were trained on combinations of DWI, ADC, and low b-value-
weighted images from 116 subjects. The performances of the networks (measured by Dice score,
sensitivity and precision) were compared to one another and to ensembles of 5 networks. To assess
the generalizability of the approach, the best performing model was applied to an independent
evaluation cohort of 151 subjects. Agreement between manual and automated segmentations for
identifying patients with large lesions volumes was calculated across multiple thresholds (21 cm3,
31 cm?, 51 cm?3, and 70 cm?).

Results—An ensemble of CNNs trained on DWI, ADC and low b-value-weighted images
produced the most accurate acute infarct segmentation over individual networks (p<0.0001).
Automated volumes correlated with manually measured volumes (Spearman’s p=0.91, p<0.0001)
for the independent cohort. For the task of identifying patients with large lesion volumes,
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agreement between manual outlines and automated outlines was high (Cohen’s x 0.86 to 0.90,
p<0.0001).

Conclusion—Acute infarcts are more accurately segmented using ensembles of CNNs trained
with multi-parametric maps than using a single model trained with a solo map. Automated lesion
segmentation can perform with high agreement with manual techniques for identifying patients
with large lesion volumes.

INTRODUCTION

Accurate acute infarct segmentation on DWI is important for many aspects of ischemic
stroke patient management such as deciding whether or not to triage the patient to an
intensive care unit, monitoring brain swelling, aiding prognosis, assessing risk for
complications, and predicting functional outcome. Robust automated segmentation of acute
infarcts also has great potential for use in clinical trials where precise volume measurements
are needed to assess differences between groups or to monitor lesion growth. Various
automated algorithms for segmenting tissue have been presented.13 However, many of these
methods focus on only using a solo diffusion parametric map, such as the isotropic high b-
value DWIL or ADC image?. There have been studies that combined DWI and ADC maps,
4-6 put these did not include the nondiffusion-weighted low b-value image (b=0 s/mm?,
LOWB), which can potentially be used to measure early vasogenic edema. Another study
has proposed using multiple b-values, up to 2000 s/mm?2 (which is typically not acquired in
the acute setting), but whether the data was acquired in the acute or subacute stage was not
reported and the effects of using combinations of parameters were not investigated.’

We hypothesize that a multimodal approach can improve the performance of automated
segmentation algorithms. Indeed, most radiologists use other sequences in addition to DWI
when assessing extent of acute infarction. We tested this hypothesis by comparing the
accuracy of fully automated acute infarct segmentation algorithms that utilize solo diffusion
parametric maps to the performance of algorithms that combine multiple parametric maps.
We also posit that ensemble models which aggregate segmentation results from multiple
algorithms will surpass single algorithms. The superior accuracy of ensemble algorithms has
been shown for tumor applications & but not yet for acute infarct segmentation. Finally, we
assessed the generalizability of our approach by evaluating its performance on an
independent cohort. We also tested the clinical utility of automated approaches for triaging
patients with large infarct volumes who might not benefit from endovascular treatment.® 10

METHODS

Subjects

All analyses were performed retrospectively under institutional review board approval. MRI
from acute ischemic stroke patients admitted at a single academic medical center between
2005-2007, imaged within 12h from when the patient was last known to be well (LKW),
whom did not receive either thrombolysis prior to MRI or experimental therapy were used
for training the convolutional neural networks (CNN)!. An independent cohort!2: 13
consisting of non-overlapping patients admitted to the same center between 1996-2012 for
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whom imaging was performed within 24 h LKW and for whom follow-up MRI data sets
were available were used for the evaluation group. Both cohorts were drawn from separate
repositories for which manual outlines were available that had been drawn several years ago
for a study of early stage stroke patterns! or for studies predicting lesion expansion.12: 13

Diffusion-weighted MRI was acquired on 1.5T scanners (General Electric Medical Systems)
with the following parameters for the majority of subjects: b-value of 1000 s/mm?, 5000 ms
repetition time, 88.9 ms echo time, 220 mm field-of-view, 23 5 mm thick slices and 1 mm
gap, and 6 diffusion directions (see Supplemental Methods for details). MRI were corrected
for eddy current distortions prior to calculation of isotropic trace DWI maps (geometric
mean of the high b-value acquisitions), and ADC maps (slope of the linear regression fit of
the log of the DWI and LOWB images using techniques described previously.14 Manual
outlines had been drawn for prior studies'1-13 using the program Display (McConnellBrain
Imaging Centre, Montreal, Canada) by a neuroscientist with 15 years of experience (Reader
1: OW, training) and a neuroradiology fellow with 4 years of experience (Reader 2: RB,
evaluation) interpreting stroke MRI. The readers were blinded to the results of the automated
segmentation algorithm. No a priori thresholds were used for manual segmentation, but
concomitant ADC and LOWB maps were referenced to avoid inclusion of susceptibility
artifacts and chronic lesions with elevated ADC values. Tissue were considered acute
infarcts if they exhibited hyperintensity on the DWI, with hypointensity on the ADC or
abnormal T2 prolongation on LOWB. To assess for interrater agreement, 10 subjects from
the evaluation cohort were randomly selected and outlines drawn by Reader 1 and two-way
intraclass correlation (ICC) calculated.

A neuroradiologist with 12 years of experience (WAC) assigned each patient to one of the
following categories, based on lesion location: brainstem, cerebellum, supratentorial/
cortical, or supratentorial/subcortical. The “supratentorial/cortical” designation was used if
any portion of one or more infarcts involved the cortex. Patients with both supra- and
infratentorial lesions, or lesions involving both the brainstem and cerebellum, were assigned
to a fifth category: “multiple.”

Image Preprocessing

DWI, ADC and LOWB images were resampled to an isotropic voxel size of 1Imm3. The
LOWB brain mask was computed using the Brain Extraction Tool (FSL version 5.0.9).15: 16
Mean and standard deviation were calculated from intensities within the brain mask limited
to the [1, 99] percentile range to normalize values to mean 0 and standard deviation 1.0.

CNN Training

CNNs were trained to classify voxels as lesion or non-lesion on a NVIDIA Tesla K40 GPU
using the DeepMedic (v0.7.0) framework with two pathways (see original publicationl’ and
Supplemental Methods). Supplemental Figure Al shows the architecture. DeepMedic is a
3D CNN that operates on multi-resolution pathways to allow efficient and accurate
supervised segmentation. This framework was chosen over other approaches since it
performed best in the Ischemic Stroke Lesion Segmentation Challenge (ISLES) 2015.18
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Additional studies have also shown DeepMedic had better or comparable performance
compared to other neural network architectures (see Supplemental Methods). Separate
CNNs were trained on single or different combinations of diffusion parametric maps (DWI,
ADC, and LOWB individually, DWI+ADC, ADC+LOWB, DWI+LOWB, DWI+ADC
+LOWB). To generate ensemble segmentations, the class posteriors from the softmax layers
of five independent CNNs were averaged voxel-wise. The results of all models were
resampled back to the original image resolution, thresholded at 50% and masked with the
resampled brain mask created at the normalization step. Performance within the training data
was assessed via 5-fold cross validation. For subjects in each fold, lesion segmentations
were generated using a CNN that was trained on data from the other four folds. Training a
single CNN with DWI+ADC+LOWB maps on the full training cohort of 116 subjects
required approximately 16 hours. Applying the trained CNN to an individual subject to
segment the lesion took on average 35 seconds. With sequential evaluation of 5 CNNs,
merging their output and resampling, we estimate a full segmentation will require less than 5
minutes.

Performance Evaluation

Binarized segmentation performances were assessed with the Dice score (measure of overlap
between automated and manual lesion segmentations), precision and sensitivity metrics.
Dice score, precision and sensitivity were computed as follows: Dice = 2TP/(2* Tp+ FP+ FN),
Precision= TP/TP+FP);, Sensitivity= TP/(TP+FN) for which TP=true positives, FP=false
positive and FN=false negatives. All metrics range from 0-100%, for which higher values
indicate better performances.

To evaluate generalizability of the approach, the best performing network was re-trained on
the full training cohort and applied to the independent cohort. The evaluation cohort was
also segmented with an approach that has been utilized in clinical trials!®. In brief, the
technique combined thresholding of ADC (<615x10-%mm?2/s), DWI and exponential
attenuation maps with morphological operations (opening with a 2-voxel structural element).
ADC images were first masked with a LOWB brain mask prior to thresholding. We
evaluated the algorithm on images that had been resampled to 1 mm resolution for
processing and on images that were segmented in their original resolution. Segmented
outputs from all algorithms were evaluated at 1 mm resolution to reduce potential confounds
from different MRI acquisition resolutions. Effects of lesion volume and location on
performance were investigated using univariable and multivariable regression analysis as a
function of the manually segmented lesion volumes (MLV). We also compared algorithm
accuracy between very small MLV < 1 cm3 (Group I-A) and larger MLV = 1cm3 (Group |-
B).

To assess the accuracy of using automatically segmented lesion volumes (ALV) in place of
MLV for identifying patients who have lesion volumes that are too large to likely benefit
from endovascular treatment, we explored the agreement between ALV and MLV for MLV
<21 cm? (Group 11-A) vs = 21 cm3 (Group 11-B), MLV <31 cm3 (Group 111-A) vs > 31 cm?3
(Group 111-B), MLV <51 cm3 (Group IV-A) vs = 51 cm?3 (Group 1V-B) and MLV < 70 cm3
(Group V-A) vs = 70 cm3 (Group V-B) to determine potential misclassification rates of
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patients with large lesions using automated algorithms compared to manual volumes. The
thresholds (21, 31, 51 and 70 cm3) were selected based on values that had been used for
enrollment in prospective endovascular clinical trials of expanded-window interventions.%10
To be eligible for endovascular treatment using the DAWN trial criterial®, patients have to
meet inclusion and exclusion criteria of 1 of the following 3 groups: Group A >=80 years of
age, NIHSS >=10 and infarct volume <21 cm?3, Group B <80 years of age, NIHSS>=10, and
infarct volume<31 cm3; Group C <80 years of age, NIHSS>=20, and infarct volume of 31 to
<51 cm3. For the MRI cohort, the infarct volume was measured on DWI. Similarly, to be
eligible for late window endovascular treatment using DEFUSE 3 MRI criteria,® patients
have to exhibit an infarct volume on DWI <70 cm3. Although there may be other volume
thresholds that might be useful for patient selection,20 we focused on thresholds that were
used in positive prospective clinical trials.

Statistical Analysis:

RESULTS

Differences between model performance metrics were tested by two-way ANOVA followed
by post-hoc paired Wilcoxon signed rank test. Correlations were assessed via Spearman
correlation coefficient (p). Univariate analysis was performed with Wilcoxon two-sample
rank sum test for continuous variables, or two-sided Fisher’s Exact Test for categorical
variables. Cohen’s Kappa (x) assessed agreement between MLV and ALV. Statistical tests
were conducted with JMP Pro 14.0 (SAS Institute, Cary, NC). P-values less than 0.05 were
considered significant. Figures of MRI data were generated using FSLeyes (version 0.27).21

Subject demographics for training (N=116) and evaluation cohorts (N=151) are shown in
Table 1. Although there were imbalances in sex and time-to-MRI likely due to different
inclusion and exclusion criteria of the two cohorts (i.e. patients for whom follow-up MRI are
ordered clinically which made up the Evaluation Cohort tend to be more severe), there was
no statistical difference in the distribution of MLVs. The median volume of the 10 subjects
randomly selected from the evaluation cohort for ICC analysis was 9.7 [2.7-32.6] cm3,
ranging from 1.2 to 94.4 cm3. The ICC for the two readers was excellent (ICC=0.997,
p<0.0001).

Effect of selection of diffusion parametric maps on CNN performance

Significant differences (p<0.0001) were found between all performance metrics (Dice,
precision, sensitivity) across all models (Table 2). Precision could not be calculated for cases
for which models could not detect a lesion.

Individual Diffusion Maps—The CNN trained on DWI yielded significantly higher Dice
scores, compared to the CNN trained on ADC (p<0.0001) or LOWB (p<0.0001) maps (see
Supplemental Figure A2, Table 2). Findings for the CNNs’ precision (DWI vs ADC,
p<0.0001; vs LOWB, p<0.0001) and sensitivity (DWI vs ADC, p<0.0001; vs LOWB,
p<0.0001) were analogous to those for the Dice score. Of the networks trained with a single
parametric map, the CNN models that use the DWI parametric map performed best,
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followed by the model based on the ADC map, with the LOWB-based model having the
worst scores.

Combinations of Two Diffusion Maps—Including additional diffusion parametric
maps as training data improved segmentation results. When training CNNs on two
parametric maps (Supplemental Figure A2b, Table 2), all three of the CNNs that utilized
combinations of 2 maps yielded higher Dice scores than all single-map CNNs (DWI+ADC
vs LOWB, vs ADC, vs DWI, p<0.0001; DWI+LOWB vs LOWB, vs ADC, vs DWI,
p<0.0001; ADC+LOWB vs LOWB, vs ADC, vs DWI, p<0.001). DWI+ADC had the highest
Dice score compared to the other combinations (ADC+LOWB, p=0.0005; DWI+LOWB,
p=0.03). Similarly, all CNNs trained with combinations of 2 parametric maps had higher
precision than CNNs trained with one map (DWI+ADC vs LOWB, vs ADC, vs DWI,
p<0.0001; DWI+LOWB vs LOWB, vs ADC, vs DWI, p<0.0001; ADC+LOWB vs LOWB,
vs ADC, vs DWI, p<0.0001). However, there was no significant difference in precision
between the combinations (DWI+ADC vs DWI+LOWB, p=0.67; DWI+LOWB vs ADC
+LOWB, p=0.28), except for DWI+ADC vs ADC+LOWB, p=0.03. DWI+ADC similarly
outperformed the individual parametric maps (LOWB, p<0.0001; ADC, p<0.0001) except
for DWI (p=0.28) in terms of sensitivity. ADC+LOWB outperformed the individual LOWB
(p<0.0001) and ADC (p<0.0001) models but not DWI (p=0.24). Similar results were found
for the DWI+LOWB model as compared to the individual parametric maps (LOWB,
p<0.0001; ADC, p<0.0001; DWI, p=0.83). DWI+ADC had comparable sensitivity to DWI
+LOWB (p=0.11) and improved sensitivity with respect to ADC+LOWB (p=0.0007). DWI
+LOWB and ADC+LOWB were equally sensitive (p=0.06).

Combination of 3 diffusion maps—The CNN model that combined all 3 parametric
maps had a significantly greater Dice score (vs LOWB, ADC, DWI, p<0.0001; DWI
+LOWB, p=0.01; ADC+LOWB, p=0.0003) compared to all other combinations with the
exception of DWI+ADC (p=0.49). Precision results showed improvement against models
using individual maps (vs LOWB, ADC, DWI, p<0.0001) but not against the other
combinations (DWI+ADC, p=0.47; DWI+LOWB, p=0.69; ADC+LOWB, p=0.19). Similar
results were found for sensitivity (vs LOWB, ADC, p<0.0001; DWI, p=0.008; DWI+ADC,
p=0.10; DWI+LOWB, p=0.007; ADC+LOWB, p<0.0001).

Ensemble of CNNs—Five CNNSs were trained each using either DWI+ADC or DWI
+ADC+LOWSB, the two best performing models. The Dice performances of each of the 5
individual CNNs were slightly different using DWI+ADC (Supplemental Table A2, Figure
A3, ANOVA p=0.02, with differences between CNN #2 and CNN #3, p=0.04; and CNN #4
and CNN #5 p=0.04 ) but were similar to one another using DWI+ADC+LOWB
(Supplemental Table A3, Figure A4, ANOVA p=0.60). Aggregating results of the individual
CNN:s to create ensembles (E2: DWI+ADC CNNs, E3: DWI+ADC+LOWB CNNs)
significantly improved the Dice performance over individual CNNs (p<0.0001). Both
ensembles yielded similar results to one another in terms of Dice (p=0.66) and precision
(p=0.62), but both surpassed the other CNNs (Table 2, p<0.0001). E3 and E2 had similar
sensitivity to one another (p=0.46), and to the DWI+ADC+LOWB model (vs E2 p=0.58; vs
E3 p=0.12), but outperformed the others (p<0.01, Table 2).
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Validation on Independent Cohort

E3 was used for the evaluation studies to assess generalizability of the approach since E3
tended to perform better than E2. Figure 1 shows the results of applying the ensemble E3 to
the evaluation cohort. Dice (p=0.59), precision (p=0.35) and sensitivity (p=0.66) were not
significantly different from the results for the training cohort. In contrast, the thresholding
approach performed significantly worse compared to E3 across all measures (p<0.0001),
achieving only a Dice score of 13.3 [2.3-41.6], precision of 7.5 [1.2-34.2] and sensitivity of
60.7 [39.5-72.2] for data analyzed in the original resolution and for data analyzed at 1 mm
isotropic resolution (Dice: 11.6 [2.2-34.7], precision: 6.5 [1.1-28.0], sensitivity: 59.4
[37.6-72.2]. We therefore focus the remainder of our analyses on E3 results. Examples of
segmentation on subjects from the evaluation cohort using E3 are provided in Figure 2 (see
Supplemental Figure A5 for probability maps). Regression analysis showed that Dice scores
(p<0.0001), precision (p<0.0001) and sensitivity (p=0.01) improved with larger lesion
volumes. The independent evaluation cohort consisted of strokes involving primarily
supratentorial/cortical strokes (N=104, 69%) locations and supratentorial/subcortical (N=30,
20%) regions. There were significant differences in MLV, PLV, Dice, precision and
sensitivity as a function of location (see Supplemental Table A4). Univariable regression
showed lesion location affected Dice scores (p=0.0019), precision (p=0.013) and sensitivity
(p<0.0001). However, multivariable analysis taking lesion volume into account (p<=0.0001),
lesion location was no longer significantly associated with Dice score (p=0.06) or precision
(p=0.17). Interestingly, sensitivity was still associated with location (p=0.0004) but not
volume (p=0.085) in multivariable analysis.

ALV correlated significantly with MLV (p =0.91, p<0.0001) and NIHSS (p=0.55,
p<0.0001), which was comparable to MLV correlation with NIHSS (p=0.46, p<0.0001).
Subgroup analysis based on MLV (Table 3) showed that the automated method performed
significantly worse on small volumes (< 1 cm3) compared to large volumes for all metrics
(Group I-A vs Group I-B, p<0.01). Misclassification rates across all thresholds were low: 21
cm3: 9/151 (6.0%), x=0.87, p<0.0001; 31 cm3: 6/151 (4.0%), ¥=0.90, p<0.0001; 51 cm3:
6/151 (4.0%), x=0.86, p<0.0001; and 70 cm?3: 4/151 (2.6%), ©=0.89, p<0.0001. There were
3 subjects for which the differences in ALV and MLV were greater than 50 cm3-these cases
had poor skull stripping as a result of scanner inhomogeneities (see Supplemental Figure
AB6). Excluding these 3 subjects, the median differences in the misclassified cases were: 21
cm3: 18.7 [8.9-25.2] cm3; 31 cm3: 7.4 [1.7-16.8] cm3; 51 cm3: 8.8 [8.0-14.6] cm?3; 70 cm?:
5.3 [3.7-6.9] cm3.

DISCUSSION

We have shown that an ensemble of CNNs trained with multi-parametric diffusion maps
improves automated segmentation of acute infarcts over methods that use solo maps. Among
the individual parameter models, CNNSs trained on DWI performed best. However, a model
trained on only DWI may incorrectly classify regions with susceptibility artifacts that appear
as DWI hyperintensities, or wrongly include subacute “T2-shine through” regions 22.
Networks trained only on ADC images provided a fair performance since reduced ADC
values represent cytotoxic edema that manifests in hyperacute stroke,23 but may under
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segment later stage strokes when ADC pseudonormalizes?2. CNNs exclusively trained on
LOWB performed poorly, likely because our data consisted of mainly early phase stroke
patients (median 6 h from LKW), before vasogenic edema is evident on LOWB.24

Combining DWI and ADC improved segmentation, consistent with “standard practice” by
expert outliners who typically refer to the ADC image to confirm that the DWI
hyperintensity coincides with reduced diffusivity to minimize inclusion of artifacts.
Combining LOWB with either ADC or DWI increased Dice, suggesting that LOWB
provides complementary information. Although inclusion of LOWB with DWI+ADC did
not result in statistically significant improved performance, a tendency towards more
accurate segmentation was observed in the ensemble models.

We have also shown that our model performs comparably to humans as reflected by both
high Dice scores and correlation between ALV and MLV. Indeed, the Dice score of the E3
algorithm results were comparable with the Dice scores between human readers in our
subcohort of 10 patients with outlines from both readers. The time for automated
segmentation currently is approximately 5 minutes, which may be similar to times required
by an experienced human reader, but we expect with optimization and faster GPUs, the time
for segmentation can be further reduced. Furthermore, the primary benefits of our automated
approach are that the results will be reproducible, unbiased, and scalable (eg clinical trials
that compare lesion volumes for thousands of subjects).

ALV and MLV were closely correlated, but segmentation of small lesion volumes was
overestimated. Accurate estimation of small lesion volumes (<1 cm?3) is more difficult as
they are harder to detect?2 and small variation from the ground truth lead to greater
aberrations of performance metrics. Small lesion segmentation could possibly be improved
by customizing specific CNNs tailored towards detecting lesions by volume size.
Nevertheless, we have shown that our automated approach performed comparably to manual
lesions delineated by our human experts with regards to patient selection tasks. The cases of
disagreement typically occurred when there were image artifacts that led to poor brain
extraction which in turn might have led to poor normalization, resulting in over
segmentation. A second reason for this failure might be that the networks have not
previously seen context outside the brain during training, since it is excluded in most cases
where the masks are correctly computed. We did not manually fix the brain masks since we
wanted to evaluate a fully automated approach. Refining the automated brain extraction step
will likely further improve our algorithms.

There were several limitations to this study. One is the retrospective nature of our analysis
that resulted in variable MRI acquisition protocols that changed over the years with clinical
practice. However, this is also a strength since our approach will likely be more
generalizable to real-world clinical situations and not dependent on a specific MRI protocol,
which is often used in clinical trials. This may also explain why the thresholding approach
performed poorly on our data as compared to other studies for which MRI acquisition was
harmonized as part of a trial.1® Another potential limitation is that a different reader created
the manual outlines used for the evaluation cohort from the training cohort. However, the
accurate segmentation results on both cohorts suggest that the model is not over-fitted to one
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particular reader. Another benefit of an automated approach is that it is reproducible and not
dependent on the expertise of the reader.

To evaluate the impact of different diffusion maps on segmentation performance, we kept the
CNN architecture constant throughout all experiments. In addition to changing the
combinations of inputs, we chose to build an ensemble from several CNNs, as ensemble
learning is known to boost performances of single classifier algorithms.8: 2> DeepMedic
samples randomly from the training cohort, i.e. both the selected subjects and extracted
samples differ in each training epoch. Although DeepMedic is very robust in its
performance, the variation in sampling inherently results in slightly different models, even
when trained with the same architecture. Merging the segmentations of several models
reduces false positives, thus improving overall performance. Although strong single
networks are desired and necessary to create a high performing ensemble, our CNNs may
come with bias specific to DeepMedic. Building an ensemble of different CNN architectures
might further enhance the performance. Future investigation will need to analyze the
benefits of merging more diverse networks to cancel out each other’s inherent biases®. This
diversity of models could be achieved by changing the hyperparameters of DeepMedic,
using completely different architectures, or training on a different data set.

In summary, ensembles of CNNSs trained on multi-parametric diffusion MRI improved
automated segmentation of acute infarcts in comparison to individual CNNs trained on solo
diffusion maps, producing results that are comparable with manual lesions drawn by experts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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.o Ensemble Performance on Evaluation Cohort
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Figure 1.

Median [interquartile range] Dice (80.2% [56.6%-88.9%]), Precision (82.9%
[59.7%-92.2%]) and Sensitivity (86.2% [71.1%-92.3%]) Scores of DWI+ADC+LOWB
Ensemble on Evaluation Cohort. The white bar within the violin plot shows the IQR, mean
is represented as diamond, median is marked as cross. LOWB=Low b-value diffusion-
weighted image.
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Figure 2:
Example Segmentation Results of Ensemble of DWI+ADC+LOWB (blue regions) on

Sample Subjects along with manual outlines (red outlines). (a) Small lesion example from a
70-year-old man, with admission NIHSS score of 1, imaged approximately 9 h from LKW:
MLV = 0.96 cm3, ALV=1.07 cm3, Dice = 89.4%. (b) Medium lesion example from a 38-
year-old woman with admission NIHSS score of 4, imaged approximately 10 h from LKW:
MLV = 54.3 cm3, ALV=57.9 cm3, Dice = 95.7%. (c) Large lesion from a 62-year-old man,
undocumented admission NIHSS score, imaged approximately 10 h from LKW: MLV =
229.0 cm3, ALV=208.7 cm3, Dice = 94.0%. ALV=Automated Lesion Volume, LKW=Last
known to be well, LOWB=Low b-value diffusion-weighted image, MLV=Manual lesion
volume
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Table 1:

Demographics for Training and Evaluation Subjects. Differences as a factor of training cohort are shown.

Characteristic Training Evaluation P-value
(N=116) (N=151)
Age, years 67.9+17.2 65.2+15.5 0.11
Sex, male 57 (49.1%) 104 (68.9%) 0.0016
NIHSS Score 7 [3_15_75]‘3 6 [3_13]b 0.53
Time-to-MRI, h 5.0 [2.9-6.8] 6.2 [3.8-8.3] 0.002

Manual Lesion Volumes, cm3 9.0 [1.5-28.4]  10.6 [2.0-32.4] 0.60

Data are shown as median [Interquartile Range] or meanzStandard Deviation or N (%).
N=112

bN=115
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Table 2:

Comparison of Performance Metrics of Segmentations for Different CNN Models. Of the non-ensemble
models, significant differences in Dice, precision and sensitivity were found (p<0.0001). The ensemble
models, E2 and E3, were superior to all other models (p<0.0001).

Model
LOWB

apc’

DWI
ADC+LOWB
DWI+LOWB
DWI+ADC

DWI+ADC+LOWB

E2 (DWI+ADC)

E3 (DWI+ADC+LOWB)

Dice
6.5[0.3-20.9]
56.4 [27.1-75.4]

72.3[46.2-82.5]
76.5 [51.9-86.1]
76.7 [58.4-85.4]
79.0 [57.1-86.4]
78.9 [56.2-86.2]
82.0 [62.9-88.1]

82.2 [64.9-88.9]

Precision
5.7 [0.3-32.7]
59.4 [22.3-78.4]

73.0 [38.3-88.1]
78.1 [47.2-88.8]
79.4 [52.0-89.8]
79.0 [62.1-90.5]
77.4 [55.0-89.8]

82.0[65.1-92.6] |
83.2 [67.7-93.3]

Sensitivity
8.5[0.3-28.5]
58.2 [32.7-78.9]

84.0 [62.4-90.8]
79.2 [66.6-89.7]
83.0 [64.8-90.6]
82.6 [68.4-91.4]
83.4[71.3-91.8]
84.1[71.0-92.6]

83.9 [71.9-92.4]

AJNR Am J Neuroradiol. Author manuscript; available in PMC 2019 December 01.

Excludes one subject with automatically segmented lesion volume of zero since precision is undefined in this circumstance.
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All metrics denoted in % as median [Interquartile Range]. CNN=Convolutional Neural Network, E2=Ensemble of 5 CNNs trained on DWI+ADC,
E3=Ensemble of 5 CNNs trained on DWI+ADC+LOWB, LOWB=Low b-value diffusion-weighted image.
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Page 16

Dependency of Automated Segmentation Performance on Measured Lesion Volume (MLV). Results of E3
(Ensemble of 5 CNNs trained on DWI+LOWB+ADC) applied to the evaluation cohort are shown as a function
of different volume thresholds.

Group

I-A

11-B

I1-A

11-B

IV-A

1V-B

V-A

V-B

Thresholds

MLV < 1cm?
(n=22)
MLV=1 cm®
(n=129)
MLV=21 cm?
(n=100)
MLV=>21 cm3
(n=51)
MLV <31 cm?
(n=113)
MLV >31 cm?
(n=38)
MLV <51 cm®
(n=124)
MLV = 51cm?
(n=27)
MLV < 70 cm®
(n=131)
MLV = 70 cm®
(n=20)

Dice

31.0
[0-50.0]
835"
[71.2-89.3]
71.2
[45.8-84.8]
89.4™
[85.4-92.5]
73.6
[48.0-85.8]
20.6™
[87.3-93.2]
75.0
[48.9-86.8]
915"
[89.1-93.6]
77.2
[51.5-87.0]

91.8™
[89.4-93.9]

PrecisionT
296
[3.4-54.9]
84.9%
[70.3-92.9]
716
[38.7-84.9]
92.3%
[85.6-96.1]
772
[46.3-85.7]
947"
[88.4-96.8]
78.1
[49.2-86.5]
959"
[92.2-97.5]
79.9
[54.2-87.0]

96.0"
[93.0-96.9]

Sensitivity
57.5
[0-90.0]
87.6™
[75.8-92.9]
81.3
[59.8-92.5]
89.3™**
[83.0-92.2]
825
[62.8-92.1]
89.4™**
[82.8-93.6]
833
[65.2-92.5]
89.2
[83.5-92.2]
84.0
[67.8-92.6]
89.6
[85.0-92.0]

Correlation

0=0.09,
p=0.68
0=0.90,
p<0.0001
0p=0.79,
p<0.0001
p=0.97,
p<0.0001
0=0.83,
p<0.0001
p=0.96,
p<0.0001
F=0.87,
p<0.0001
p=0.92,
p<0.0001
0=0.88,
p<0.0001
0=0.83,
p<0.0001

Performance metrics in median [Interquartile Range]%. CNN=Convolutional Neural Network, E3=Ensemble of 5 CNNs trained on DWI+ADC

+LOWB; LOWB=Low b-value diffusion-weighted image. MLV=Measured Lesion Volume.

*
p<0.0001

Aok

p<0.01

*okoA

p<0.05 Group A versus Group B

Excludes two subjects in Group A with automatically segmented lesion volumes of zero since precision is undefined in this circumstance.
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