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Abstract

Background and Purpose: Accurate automated infarct segmentation is needed for acute 

ischemic stroke studies relying on infarct volumes as an imaging phenotype or biomarker that 

require large numbers of subjects. This study investigates whether an ensemble of convolutional 

neural networks (CNN) trained on multiparametric DWI maps outperforms single networks 

trained on solo DWI parametric maps.

Materials and Methods: CNNs were trained on combinations of DWI, ADC, and low b-value-

weighted images from 116 subjects. The performances of the networks (measured by Dice score, 

sensitivity and precision) were compared to one another and to ensembles of 5 networks. To assess 

the generalizability of the approach, the best performing model was applied to an independent 

evaluation cohort of 151 subjects. Agreement between manual and automated segmentations for 

identifying patients with large lesions volumes was calculated across multiple thresholds (21 cm3, 

31 cm3, 51 cm3, and 70 cm3).

Results—An ensemble of CNNs trained on DWI, ADC and low b-value-weighted images 

produced the most accurate acute infarct segmentation over individual networks (p<0.0001). 

Automated volumes correlated with manually measured volumes (Spearman’s ρ=0.91, p<0.0001) 

for the independent cohort. For the task of identifying patients with large lesion volumes, 
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agreement between manual outlines and automated outlines was high (Cohen’s κ 0.86 to 0.90, 

p<0.0001).

Conclusion—Acute infarcts are more accurately segmented using ensembles of CNNs trained 

with multi-parametric maps than using a single model trained with a solo map. Automated lesion 

segmentation can perform with high agreement with manual techniques for identifying patients 

with large lesion volumes.

INTRODUCTION

Accurate acute infarct segmentation on DWI is important for many aspects of ischemic 

stroke patient management such as deciding whether or not to triage the patient to an 

intensive care unit, monitoring brain swelling, aiding prognosis, assessing risk for 

complications, and predicting functional outcome. Robust automated segmentation of acute 

infarcts also has great potential for use in clinical trials where precise volume measurements 

are needed to assess differences between groups or to monitor lesion growth. Various 

automated algorithms for segmenting tissue have been presented.1-3 However, many of these 

methods focus on only using a solo diffusion parametric map, such as the isotropic high b-

value DWI1 or ADC image2. There have been studies that combined DWI and ADC maps,
4-6 but these did not include the nondiffusion-weighted low b-value image (b=0 s/mm2, 

LOWB), which can potentially be used to measure early vasogenic edema. Another study 

has proposed using multiple b-values, up to 2000 s/mm2 (which is typically not acquired in 

the acute setting), but whether the data was acquired in the acute or subacute stage was not 

reported and the effects of using combinations of parameters were not investigated.7

We hypothesize that a multimodal approach can improve the performance of automated 

segmentation algorithms. Indeed, most radiologists use other sequences in addition to DWI 

when assessing extent of acute infarction. We tested this hypothesis by comparing the 

accuracy of fully automated acute infarct segmentation algorithms that utilize solo diffusion 

parametric maps to the performance of algorithms that combine multiple parametric maps. 

We also posit that ensemble models which aggregate segmentation results from multiple 

algorithms will surpass single algorithms. The superior accuracy of ensemble algorithms has 

been shown for tumor applications 8 but not yet for acute infarct segmentation. Finally, we 

assessed the generalizability of our approach by evaluating its performance on an 

independent cohort. We also tested the clinical utility of automated approaches for triaging 

patients with large infarct volumes who might not benefit from endovascular treatment.9, 10

METHODS

Subjects

All analyses were performed retrospectively under institutional review board approval. MRI 

from acute ischemic stroke patients admitted at a single academic medical center between 

2005-2007, imaged within 12h from when the patient was last known to be well (LKW), 

whom did not receive either thrombolysis prior to MRI or experimental therapy were used 

for training the convolutional neural networks (CNN)11. An independent cohort12, 13 

consisting of non-overlapping patients admitted to the same center between 1996-2012 for 
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whom imaging was performed within 24 h LKW and for whom follow-up MRI data sets 

were available were used for the evaluation group. Both cohorts were drawn from separate 

repositories for which manual outlines were available that had been drawn several years ago 

for a study of early stage stroke patterns11 or for studies predicting lesion expansion.12, 13

MRI

Diffusion-weighted MRI was acquired on 1.5T scanners (General Electric Medical Systems) 

with the following parameters for the majority of subjects: b-value of 1000 s/mm2, 5000 ms 

repetition time, 88.9 ms echo time, 220 mm field-of-view, 23 5 mm thick slices and 1 mm 

gap, and 6 diffusion directions (see Supplemental Methods for details). MRI were corrected 

for eddy current distortions prior to calculation of isotropic trace DWI maps (geometric 

mean of the high b-value acquisitions), and ADC maps (slope of the linear regression fit of 

the log of the DWI and LOWB images using techniques described previously.14 Manual 

outlines had been drawn for prior studies11-13 using the program Display (McConnellBrain 
Imaging Centre, Montreal, Canada) by a neuroscientist with 15 years of experience (Reader 

1: OW, training) and a neuroradiology fellow with 4 years of experience (Reader 2: RB, 

evaluation) interpreting stroke MRI. The readers were blinded to the results of the automated 

segmentation algorithm. No a priori thresholds were used for manual segmentation, but 

concomitant ADC and LOWB maps were referenced to avoid inclusion of susceptibility 

artifacts and chronic lesions with elevated ADC values. Tissue were considered acute 

infarcts if they exhibited hyperintensity on the DWI, with hypointensity on the ADC or 

abnormal T2 prolongation on LOWB. To assess for interrater agreement, 10 subjects from 

the evaluation cohort were randomly selected and outlines drawn by Reader 1 and two-way 

intraclass correlation (ICC) calculated.

A neuroradiologist with 12 years of experience (WAC) assigned each patient to one of the 

following categories, based on lesion location: brainstem, cerebellum, supratentorial/

cortical, or supratentorial/subcortical. The “supratentorial/cortical” designation was used if 

any portion of one or more infarcts involved the cortex. Patients with both supra- and 

infratentorial lesions, or lesions involving both the brainstem and cerebellum, were assigned 

to a fifth category: “multiple.”

Image Preprocessing

DWI, ADC and LOWB images were resampled to an isotropic voxel size of 1mm3. The 

LOWB brain mask was computed using the Brain Extraction Tool (FSL version 5.0.9).15, 16 

Mean and standard deviation were calculated from intensities within the brain mask limited 

to the [1, 99] percentile range to normalize values to mean 0 and standard deviation 1.0.

CNN Training

CNNs were trained to classify voxels as lesion or non-lesion on a NVIDIA Tesla K40 GPU 

using the DeepMedic (v0.7.0) framework with two pathways (see original publication17 and 

Supplemental Methods). Supplemental Figure A1 shows the architecture. DeepMedic is a 

3D CNN that operates on multi-resolution pathways to allow efficient and accurate 

supervised segmentation. This framework was chosen over other approaches since it 

performed best in the Ischemic Stroke Lesion Segmentation Challenge (ISLES) 2015.18 
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Additional studies have also shown DeepMedic had better or comparable performance 

compared to other neural network architectures (see Supplemental Methods). Separate 

CNNs were trained on single or different combinations of diffusion parametric maps (DWI, 

ADC, and LOWB individually, DWI+ADC, ADC+LOWB, DWI+LOWB, DWI+ADC

+LOWB). To generate ensemble segmentations, the class posteriors from the softmax layers 

of five independent CNNs were averaged voxel-wise. The results of all models were 

resampled back to the original image resolution, thresholded at 50% and masked with the 

resampled brain mask created at the normalization step. Performance within the training data 

was assessed via 5-fold cross validation. For subjects in each fold, lesion segmentations 

were generated using a CNN that was trained on data from the other four folds. Training a 

single CNN with DWI+ADC+LOWB maps on the full training cohort of 116 subjects 

required approximately 16 hours. Applying the trained CNN to an individual subject to 

segment the lesion took on average 35 seconds. With sequential evaluation of 5 CNNs, 

merging their output and resampling, we estimate a full segmentation will require less than 5 

minutes.

Performance Evaluation

Binarized segmentation performances were assessed with the Dice score (measure of overlap 

between automated and manual lesion segmentations), precision and sensitivity metrics. 

Dice score, precision and sensitivity were computed as follows: Dice = 2TP/(2*Tp+FP+FN); 
Precision = TP/(TP+FP); Sensitivity = TP/(TP+FN) for which TP=true positives, FP=false 

positive and FN=false negatives. All metrics range from 0-100%, for which higher values 

indicate better performances.

To evaluate generalizability of the approach, the best performing network was re-trained on 

the full training cohort and applied to the independent cohort. The evaluation cohort was 

also segmented with an approach that has been utilized in clinical trials19. In brief, the 

technique combined thresholding of ADC (<615×10−6mm2/s), DWI and exponential 

attenuation maps with morphological operations (opening with a 2-voxel structural element). 

ADC images were first masked with a LOWB brain mask prior to thresholding. We 

evaluated the algorithm on images that had been resampled to 1 mm resolution for 

processing and on images that were segmented in their original resolution. Segmented 

outputs from all algorithms were evaluated at 1 mm resolution to reduce potential confounds 

from different MRI acquisition resolutions. Effects of lesion volume and location on 

performance were investigated using univariable and multivariable regression analysis as a 

function of the manually segmented lesion volumes (MLV). We also compared algorithm 

accuracy between very small MLV < 1 cm3 (Group I-A) and larger MLV ≥ 1cm3 (Group I-

B).

To assess the accuracy of using automatically segmented lesion volumes (ALV) in place of 

MLV for identifying patients who have lesion volumes that are too large to likely benefit 

from endovascular treatment, we explored the agreement between ALV and MLV for MLV 

<21 cm2 (Group II-A) vs ≥ 21 cm3 (Group II-B), MLV <31 cm3 (Group III-A) vs ≥ 31 cm3 

(Group III-B), MLV <51 cm3 (Group IV-A) vs ≥ 51 cm3 (Group IV-B) and MLV < 70 cm3 

(Group V-A) vs ≥ 70 cm3 (Group V-B) to determine potential misclassification rates of 
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patients with large lesions using automated algorithms compared to manual volumes. The 

thresholds (21, 31, 51 and 70 cm3) were selected based on values that had been used for 

enrollment in prospective endovascular clinical trials of expanded-window interventions.9,10 

To be eligible for endovascular treatment using the DAWN trial criteria10, patients have to 

meet inclusion and exclusion criteria of 1 of the following 3 groups: Group A >=80 years of 

age, NIHSS >=10 and infarct volume <21 cm3, Group B <80 years of age, NIHSS>=10, and 

infarct volume<31 cm3; Group C <80 years of age, NIHSS>=20, and infarct volume of 31 to 

< 51 cm3. For the MRI cohort, the infarct volume was measured on DWI. Similarly, to be 

eligible for late window endovascular treatment using DEFUSE 3 MRI criteria,9 patients 

have to exhibit an infarct volume on DWI <70 cm3. Although there may be other volume 

thresholds that might be useful for patient selection,20 we focused on thresholds that were 

used in positive prospective clinical trials.

Statistical Analysis:

Differences between model performance metrics were tested by two-way ANOVA followed 

by post-hoc paired Wilcoxon signed rank test. Correlations were assessed via Spearman 

correlation coefficient (ρ). Univariate analysis was performed with Wilcoxon two-sample 

rank sum test for continuous variables, or two-sided Fisher’s Exact Test for categorical 

variables. Cohen’s Kappa (κ) assessed agreement between MLV and ALV. Statistical tests 

were conducted with JMP Pro 14.0 (SAS Institute, Cary, NC). P-values less than 0.05 were 

considered significant. Figures of MRI data were generated using FSLeyes (version 0.27).21

RESULTS

Subject demographics for training (N=116) and evaluation cohorts (N=151) are shown in 

Table 1. Although there were imbalances in sex and time-to-MRI likely due to different 

inclusion and exclusion criteria of the two cohorts (i.e. patients for whom follow-up MRI are 

ordered clinically which made up the Evaluation Cohort tend to be more severe), there was 

no statistical difference in the distribution of MLVs. The median volume of the 10 subjects 

randomly selected from the evaluation cohort for ICC analysis was 9.7 [2.7-32.6] cm3, 

ranging from 1.2 to 94.4 cm3. The ICC for the two readers was excellent (ICC=0.997, 

p<0.0001).

Effect of selection of diffusion parametric maps on CNN performance

Significant differences (p<0.0001) were found between all performance metrics (Dice, 

precision, sensitivity) across all models (Table 2). Precision could not be calculated for cases 

for which models could not detect a lesion.

Individual Diffusion Maps—The CNN trained on DWI yielded significantly higher Dice 

scores, compared to the CNN trained on ADC (p<0.0001) or LOWB (p<0.0001) maps (see 

Supplemental Figure A2, Table 2). Findings for the CNNs’ precision (DWI vs ADC, 

p<0.0001; vs LOWB, p<0.0001) and sensitivity (DWI vs ADC, p<0.0001; vs LOWB, 

p<0.0001) were analogous to those for the Dice score. Of the networks trained with a single 

parametric map, the CNN models that use the DWI parametric map performed best, 
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followed by the model based on the ADC map, with the LOWB-based model having the 

worst scores.

Combinations of Two Diffusion Maps—Including additional diffusion parametric 

maps as training data improved segmentation results. When training CNNs on two 

parametric maps (Supplemental Figure A2b, Table 2), all three of the CNNs that utilized 

combinations of 2 maps yielded higher Dice scores than all single-map CNNs (DWI+ADC 

vs LOWB, vs ADC, vs DWI, p<0.0001; DWI+LOWB vs LOWB, vs ADC, vs DWI, 

p<0.0001; ADC+LOWB vs LOWB, vs ADC, vs DWI, p<0.001). DWI+ADC had the highest 

Dice score compared to the other combinations (ADC+LOWB, p=0.0005; DWI+LOWB, 

p=0.03). Similarly, all CNNs trained with combinations of 2 parametric maps had higher 

precision than CNNs trained with one map (DWI+ADC vs LOWB, vs ADC, vs DWI, 

p<0.0001; DWI+LOWB vs LOWB, vs ADC, vs DWI, p<0.0001; ADC+LOWB vs LOWB, 

vs ADC, vs DWI, p<0.0001). However, there was no significant difference in precision 

between the combinations (DWI+ADC vs DWI+LOWB, p=0.67; DWI+LOWB vs ADC

+LOWB, p=0.28), except for DWI+ADC vs ADC+LOWB, p=0.03. DWI+ADC similarly 

outperformed the individual parametric maps (LOWB, p<0.0001; ADC, p<0.0001) except 

for DWI (p=0.28) in terms of sensitivity. ADC+LOWB outperformed the individual LOWB 

(p<0.0001) and ADC (p<0.0001) models but not DWI (p=0.24). Similar results were found 

for the DWI+LOWB model as compared to the individual parametric maps (LOWB, 

p<0.0001; ADC, p<0.0001; DWI, p=0.83). DWI+ADC had comparable sensitivity to DWI

+LOWB (p=0.11) and improved sensitivity with respect to ADC+LOWB (p=0.0007). DWI

+LOWB and ADC+LOWB were equally sensitive (p=0.06).

Combination of 3 diffusion maps—The CNN model that combined all 3 parametric 

maps had a significantly greater Dice score (vs LOWB, ADC, DWI, p<0.0001; DWI

+LOWB, p=0.01; ADC+LOWB, p=0.0003) compared to all other combinations with the 

exception of DWI+ADC (p=0.49). Precision results showed improvement against models 

using individual maps (vs LOWB, ADC, DWI, p<0.0001) but not against the other 

combinations (DWI+ADC, p=0.47; DWI+LOWB, p=0.69; ADC+LOWB, p=0.19). Similar 

results were found for sensitivity (vs LOWB, ADC, p<0.0001; DWI, p=0.008; DWI+ADC, 

p=0.10; DWI+LOWB, p=0.007; ADC+LOWB, p<0.0001).

Ensemble of CNNs—Five CNNs were trained each using either DWI+ADC or DWI

+ADC+LOWB, the two best performing models. The Dice performances of each of the 5 

individual CNNs were slightly different using DWI+ADC (Supplemental Table A2, Figure 

A3, ANOVA p=0.02, with differences between CNN #2 and CNN #3, p=0.04; and CNN #4 

and CNN #5 p=0.04 ) but were similar to one another using DWI+ADC+LOWB 

(Supplemental Table A3, Figure A4, ANOVA p=0.60). Aggregating results of the individual 

CNNs to create ensembles (E2: DWI+ADC CNNs, E3: DWI+ADC+LOWB CNNs) 

significantly improved the Dice performance over individual CNNs (p<0.0001). Both 

ensembles yielded similar results to one another in terms of Dice (p=0.66) and precision 

(p=0.62), but both surpassed the other CNNs (Table 2, p<0.0001). E3 and E2 had similar 

sensitivity to one another (p=0.46), and to the DWI+ADC+LOWB model (vs E2 p=0.58; vs 

E3 p=0.12), but outperformed the others (p<0.01, Table 2).
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Validation on Independent Cohort

E3 was used for the evaluation studies to assess generalizability of the approach since E3 

tended to perform better than E2. Figure 1 shows the results of applying the ensemble E3 to 

the evaluation cohort. Dice (p=0.59), precision (p=0.35) and sensitivity (p=0.66) were not 

significantly different from the results for the training cohort. In contrast, the thresholding 

approach performed significantly worse compared to E3 across all measures (p<0.0001), 

achieving only a Dice score of 13.3 [2.3-41.6], precision of 7.5 [1.2-34.2] and sensitivity of 

60.7 [39.5-72.2] for data analyzed in the original resolution and for data analyzed at 1 mm 

isotropic resolution (Dice: 11.6 [2.2-34.7], precision: 6.5 [1.1-28.0], sensitivity: 59.4 

[37.6-72.2]. We therefore focus the remainder of our analyses on E3 results. Examples of 

segmentation on subjects from the evaluation cohort using E3 are provided in Figure 2 (see 

Supplemental Figure A5 for probability maps). Regression analysis showed that Dice scores 

(p<0.0001), precision (p<0.0001) and sensitivity (p=0.01) improved with larger lesion 

volumes. The independent evaluation cohort consisted of strokes involving primarily 

supratentorial/cortical strokes (N=104, 69%) locations and supratentorial/subcortical (N=30, 

20%) regions. There were significant differences in MLV, PLV, Dice, precision and 

sensitivity as a function of location (see Supplemental Table A4). Univariable regression 

showed lesion location affected Dice scores (p=0.0019), precision (p=0.013) and sensitivity 

(p<0.0001). However, multivariable analysis taking lesion volume into account (p<=0.0001), 

lesion location was no longer significantly associated with Dice score (p=0.06) or precision 

(p=0.17). Interestingly, sensitivity was still associated with location (p=0.0004) but not 

volume (p=0.085) in multivariable analysis.

ALV correlated significantly with MLV (ρ =0.91, p<0.0001) and NIHSS (p=0.55, 

p<0.0001), which was comparable to MLV correlation with NIHSS (ρ=0.46, p<0.0001). 

Subgroup analysis based on MLV (Table 3) showed that the automated method performed 

significantly worse on small volumes (< 1 cm3) compared to large volumes for all metrics 

(Group I-A vs Group I-B, p<0.01). Misclassification rates across all thresholds were low: 21 

cm3: 9/151 (6.0%), κ=0.87, p<0.0001; 31 cm3: 6/151 (4.0%), κ=0.90, p<0.0001; 51 cm3: 

6/151 (4.0%), κ=0.86, p<0.0001; and 70 cm3: 4/151 (2.6%), κ=0.89, p<0.0001. There were 

3 subjects for which the differences in ALV and MLV were greater than 50 cm3-these cases 

had poor skull stripping as a result of scanner inhomogeneities (see Supplemental Figure 

A6). Excluding these 3 subjects, the median differences in the misclassified cases were: 21 

cm3: 18.7 [8.9-25.2] cm3; 31 cm3: 7.4 [1.7-16.8] cm3; 51 cm3: 8.8 [8.0-14.6] cm3; 70 cm3: 

5.3 [3.7-6.9] cm3.

DISCUSSION

We have shown that an ensemble of CNNs trained with multi-parametric diffusion maps 

improves automated segmentation of acute infarcts over methods that use solo maps. Among 

the individual parameter models, CNNs trained on DWI performed best. However, a model 

trained on only DWI may incorrectly classify regions with susceptibility artifacts that appear 

as DWI hyperintensities, or wrongly include subacute “T2-shine through” regions 22. 

Networks trained only on ADC images provided a fair performance since reduced ADC 

values represent cytotoxic edema that manifests in hyperacute stroke,23 but may under 
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segment later stage strokes when ADC pseudonormalizes22. CNNs exclusively trained on 

LOWB performed poorly, likely because our data consisted of mainly early phase stroke 

patients (median 6 h from LKW), before vasogenic edema is evident on LOWB.24

Combining DWI and ADC improved segmentation, consistent with “standard practice” by 

expert outliners who typically refer to the ADC image to confirm that the DWI 

hyperintensity coincides with reduced diffusivity to minimize inclusion of artifacts. 

Combining LOWB with either ADC or DWI increased Dice, suggesting that LOWB 

provides complementary information. Although inclusion of LOWB with DWI+ADC did 

not result in statistically significant improved performance, a tendency towards more 

accurate segmentation was observed in the ensemble models.

We have also shown that our model performs comparably to humans as reflected by both 

high Dice scores and correlation between ALV and MLV. Indeed, the Dice score of the E3 

algorithm results were comparable with the Dice scores between human readers in our 

subcohort of 10 patients with outlines from both readers. The time for automated 

segmentation currently is approximately 5 minutes, which may be similar to times required 

by an experienced human reader, but we expect with optimization and faster GPUs, the time 

for segmentation can be further reduced. Furthermore, the primary benefits of our automated 

approach are that the results will be reproducible, unbiased, and scalable (eg clinical trials 

that compare lesion volumes for thousands of subjects).

ALV and MLV were closely correlated, but segmentation of small lesion volumes was 

overestimated. Accurate estimation of small lesion volumes (<1 cm3) is more difficult as 

they are harder to detect22 and small variation from the ground truth lead to greater 

aberrations of performance metrics. Small lesion segmentation could possibly be improved 

by customizing specific CNNs tailored towards detecting lesions by volume size. 

Nevertheless, we have shown that our automated approach performed comparably to manual 

lesions delineated by our human experts with regards to patient selection tasks. The cases of 

disagreement typically occurred when there were image artifacts that led to poor brain 

extraction which in turn might have led to poor normalization, resulting in over 

segmentation. A second reason for this failure might be that the networks have not 

previously seen context outside the brain during training, since it is excluded in most cases 

where the masks are correctly computed. We did not manually fix the brain masks since we 

wanted to evaluate a fully automated approach. Refining the automated brain extraction step 

will likely further improve our algorithms.

There were several limitations to this study. One is the retrospective nature of our analysis 

that resulted in variable MRI acquisition protocols that changed over the years with clinical 

practice. However, this is also a strength since our approach will likely be more 

generalizable to real-world clinical situations and not dependent on a specific MRI protocol, 

which is often used in clinical trials. This may also explain why the thresholding approach 

performed poorly on our data as compared to other studies for which MRI acquisition was 

harmonized as part of a trial.19 Another potential limitation is that a different reader created 

the manual outlines used for the evaluation cohort from the training cohort. However, the 

accurate segmentation results on both cohorts suggest that the model is not over-fitted to one 
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particular reader. Another benefit of an automated approach is that it is reproducible and not 

dependent on the expertise of the reader.

To evaluate the impact of different diffusion maps on segmentation performance, we kept the 

CNN architecture constant throughout all experiments. In addition to changing the 

combinations of inputs, we chose to build an ensemble from several CNNs, as ensemble 

learning is known to boost performances of single classifier algorithms.8, 25 DeepMedic 

samples randomly from the training cohort, i.e. both the selected subjects and extracted 

samples differ in each training epoch. Although DeepMedic is very robust in its 

performance, the variation in sampling inherently results in slightly different models, even 

when trained with the same architecture. Merging the segmentations of several models 

reduces false positives, thus improving overall performance. Although strong single 

networks are desired and necessary to create a high performing ensemble, our CNNs may 

come with bias specific to DeepMedic. Building an ensemble of different CNN architectures 

might further enhance the performance. Future investigation will need to analyze the 

benefits of merging more diverse networks to cancel out each other’s inherent biases8. This 

diversity of models could be achieved by changing the hyperparameters of DeepMedic, 

using completely different architectures, or training on a different data set.

In summary, ensembles of CNNs trained on multi-parametric diffusion MRI improved 

automated segmentation of acute infarcts in comparison to individual CNNs trained on solo 

diffusion maps, producing results that are comparable with manual lesions drawn by experts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

ALV automatically segmented lesion volume

CNN convolutional neural network

E2 ensemble of CNN using DWI and ADC

E3 ensemble of CNN using DWI, ADC and LOWB

FN false negatives

FP false positive

LKW last known to be well
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LOWB low b-value diffusion-weighted image (b0)

MLV manually segmented lesion volume

TP true positives
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Figure 1. 
Median [interquartile range] Dice (80.2% [56.6%-88.9%]), Precision (82.9% 

[59.7%-92.2%]) and Sensitivity (86.2% [71.1%-92.3%]) Scores of DWI+ADC+LOWB 

Ensemble on Evaluation Cohort. The white bar within the violin plot shows the IQR, mean 

is represented as diamond, median is marked as cross. LOWB=Low b-value diffusion-

weighted image.
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Figure 2: 
Example Segmentation Results of Ensemble of DWI+ADC+LOWB (blue regions) on 

Sample Subjects along with manual outlines (red outlines). (a) Small lesion example from a 

70-year-old man, with admission NIHSS score of 1, imaged approximately 9 h from LKW: 

MLV = 0.96 cm3, ALV=1.07 cm3, Dice = 89.4%. (b) Medium lesion example from a 38-

year-old woman with admission NIHSS score of 4, imaged approximately 10 h from LKW: 

MLV = 54.3 cm3, ALV=57.9 cm3, Dice = 95.7%. (c) Large lesion from a 62-year-old man, 

undocumented admission NIHSS score, imaged approximately 10 h from LKW: MLV = 

229.0 cm3, ALV=208.7 cm3, Dice = 94.0%. ALV=Automated Lesion Volume, LKW=Last 

known to be well, LOWB=Low b-value diffusion-weighted image, MLV=Manual lesion 

volume
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Table 1:

Demographics for Training and Evaluation Subjects. Differences as a factor of training cohort are shown.

Characteristic Training
(N=116)

Evaluation
(N=151)

P-value

Age, years 67.9±17.2 65.2±15.5 0.11

Sex, male 57 (49.1%) 104 (68.9%) 0.0016

NIHSS Score 7 [3-15.75]
a

6 [3-13]
b 0.53

Time-to-MRI, h 5.0 [2.9-6.8] 6.2 [3.8-8.3] 0.002

Manual Lesion Volumes, cm3 9.0 [1.5-28.4] 10.6 [2.0-32.4] 0.60

Data are shown as median [Interquartile Range] or mean±Standard Deviation or N (%).

a
N=112

b
N=115
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Table 2:

Comparison of Performance Metrics of Segmentations for Different CNN Models. Of the non-ensemble 

models, significant differences in Dice, precision and sensitivity were found (p<0.0001). The ensemble 

models, E2 and E3, were superior to all other models (p<0.0001).

Model Dice Precision Sensitivity

LOWB 6.5 [0.3-20.9] 5.7 [0.3-32.7] 8.5 [0.3-28.5]

ADC
† 56.4 [27.1-75.4] 59.4 [22.3-78.4] 58.2 [32.7-78.9]

DWI 72.3 [46.2-82.5] 73.0 [38.3-88.1] 84.0 [62.4-90.8]

ADC+LOWB 76.5 [51.9-86.1] 78.1 [47.2-88.8] 79.2 [66.6-89.7]

DWI+LOWB 76.7 [58.4-85.4] 79.4 [52.0-89.8] 83.0 [64.8-90.6]

DWI+ADC 79.0 [57.1-86.4] 79.0 [62.1-90.5] 82.6 [68.4-91.4]

DWI+ADC+LOWB 78.9 [56.2-86.2] 77.4 [55.0-89.8] 83.4 [71.3-91.8]

E2 (DWI+ADC) 82.0 [62.9-88.1]
82.0 [65.1-92.6] 

† 84.1 [71.0-92.6]

E3 (DWI+ADC+LOWB) 82.2 [64.9-88.9] 83.2 [67.7-93.3] 83.9 [71.9-92.4]

All metrics denoted in % as median [Interquartile Range]. CNN=Convolutional Neural Network, E2=Ensemble of 5 CNNs trained on DWI+ADC, 
E3=Ensemble of 5 CNNs trained on DWI+ADC+LOWB, LOWB=Low b-value diffusion-weighted image.

†
Excludes one subject with automatically segmented lesion volume of zero since precision is undefined in this circumstance.
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Table 3:

Dependency of Automated Segmentation Performance on Measured Lesion Volume (MLV). Results of E3 

(Ensemble of 5 CNNs trained on DWI+LOWB+ADC) applied to the evaluation cohort are shown as a function 

of different volume thresholds.

Group Thresholds Dice Precision
† Sensitivity Correlation

I-A
MLV < 1 cm3 31.0 29.6 57.5 ρ=0.09,

(n=22) [0-50.0] [3.4-54.9] [0-90.0] p=0.68

I-B
MLV≥1 cm3 83.5* 84.9* 87.6** ρ=0.90,

(n=129) [71.2-89.3] [70.3-92.9] [75.8-92.9] p<0.0001

II-A
MLV≥21 cm3 71.2 71.6 81.3 ρ=0.79,

(n=100) [45.8-84.8] [38.7-84.9] [59.8-92.5] p<0.0001

II-B
MLV≥21 cm3 89.4* 92.3* 89.3*** ρ=0.97,

(n=51) [85.4-92.5] [85.6-96.1] [83.0-92.2] p<0.0001

III-A
MLV <31 cm3 73.6 77.2 82.5 ρ=0.83,

(n=113) [48.0-85.8] [46.3-85.7] [62.8-92.1] p<0.0001

III-B
MLV >31 cm3 90.6* 94.7* 89.4*** ρ=0.96,

(n=38) [87.3-93.2] [88.4-96.8] [82.8-93.6] p<0.0001

IV-A
MLV < 51 cm3 75.0 78.1 83.3 チ=0.87,

(n=124) [48.9-86.8] [49.2-86.5] [65.2-92.5] p<0.0001

IV-B
MLV ≥ 51cm3 91.5* 95.9* 89.2 ρ=0.92,

(n=27) [89.1-93.6] [92.2-97.5] [83.5-92.2] p<0.0001

V-A
MLV < 70 cm3 77.2 79.9 84.0 ρ=0.88,

(n=131) [51.5-87.0] [54.2-87.0] [67.8-92.6] p<0.0001

V-B
MLV ≥ 70 cm3 91.8* 96.0* 89.6 ρ=0.83,

(n=20) [89.4-93.9] [93.0-96.9] [85.0-92.0] p<0.0001

Performance metrics in median [Interquartile Range]%. CNN=Convolutional Neural Network, E3=Ensemble of 5 CNNs trained on DWI+ADC
+LOWB; LOWB=Low b-value diffusion-weighted image. MLV=Measured Lesion Volume.

*
p<0.0001

**
p<0.01

***
p<0.05 Group A versus Group B

†
Excludes two subjects in Group A with automatically segmented lesion volumes of zero since precision is undefined in this circumstance.

AJNR Am J Neuroradiol. Author manuscript; available in PMC 2019 December 01.


	Abstract
	INTRODUCTION
	METHODS
	Subjects
	MRI
	Image Preprocessing
	CNN Training
	Performance Evaluation
	Statistical Analysis:

	RESULTS
	Effect of selection of diffusion parametric maps on CNN performance
	Individual Diffusion Maps
	Combinations of Two Diffusion Maps
	Combination of 3 diffusion maps
	Ensemble of CNNs

	Validation on Independent Cohort

	DISCUSSION
	References
	Figure 1.
	Figure 2:
	Table 1:
	Table 2:
	Table 3:

