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Abstract

Background: Chronic Lung Allograft Dysfunction (CLAD) is the main limitation to long- term 

survival after lung transplantation. Since effective therapies are lacking, the early identification 

and mitigation of risk factors is a pragmatic approach to improve outcomes. Acute cellular 

rejection (ACR) is the most pervasive risk factor for CLAD, but diagnosis requires transbronchial 

biopsy, which carries risks. We hypothesized that gene expression in the bronchoalveolar lavage 

cell pellet (BAL CP) could replace biopsy and inform on mechanisms of CLAD.

Methods: We performed RNASeq on BAL CP from 219 lung transplant recipients with A-grade 

ACR (n=61), lymphocytic bronchiolitis (n=58), infection (n=41), or no rejection/infection (n=59). 

Differential gene expression was based on absolute fold difference >2.0 and Benjamini adjusted p-

value ≤0.05. We used DAVID Bioinformatics Resource for pathway analyses. For classifier 

modeling, samples were randomly split into training (n=154) and testing sets (n=65). A logistic 

regression model using recursive feature elimination and 5-fold cross-validation was trained to 

optimize AUC.
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Results: Differential gene expression identified 72 genes. Enriched pathways included “T-cell 

receptor signaling”, “natural killer cell mediated cytotoxicity”, and “cytokine- cytokine receptor 

interaction”. A 4-gene model (AUC 0.72) and classification threshold defined in the training set 

exhibited fair performance in the testing set; accuracy was 76%, specificity 82%, and sensitivity 

60%. Importantly, classification as ACR was associated with worse CLAD-free survival (HR 2.42, 

95% CI 1.29–4.53).

Conclusions: BAL CP gene expression during ACR is enriched for immune response pathways 

and shows promise as a diagnostic tool for ACR, especially ACR that is a precursor of CLAD.

Lung transplant remains a viable treatment option for select patients with advanced lung 

diseases, but long-term outcomes remain disappointing. The main limitation to better long-

term survival is chronic lung allograft dysfunction (CLAD), which affects more than half of 

lung recipients by 5 years post-transplant.[1] Currently, there are no proven effective 

treatments. Therefore, preventative strategies are key, including risk factor identification and 

mitigation. The principal risk factor for CLAD is acute rejection, or more precisely A-grade 

acute cellular rejection (ACR) which is diagnosed by trans bronchial biopsy (TBBX) 

exhibiting perivascular mononuclear cell infiltrates than can extend into the interstitium.[2] 

Although definitive data are lacking, it is widely accepted that treatment of A-grade ACR 

with augmented immune suppression is an important strategy for reducing the risk of 

CLAD. However, unnecessary treatment increases the risk of opportunistic infections and 

malignancy, which makes an accurate diagnosis important. Airway inflammation, also 

known as lymphocytic bronchiolitis (LB), is variably also termed B-grade ACR.[2] 

However, the frequent co-existence with airway infection, as well as reported refractoriness 

to corticosteroid treatment,[3] are sources of controversy for inclusion of LB as ACR.

While considered the current gold standard, the utility of TBBX to diagnose A- grade ACR 

is limited by several factors. First, TBBX has been associated with a 4% incidence of 

pneumothorax and 3% incidence of major bleeding.[4] In lung transplant recipients 

specifically, the incidence of a major complication of bronchoscopy was 2.3%, with TBBX 

being the major risk factor.[5] Besides patient safety, TBBX is associated with a relatively 

high rate of sampling error. In a recent multicenter study, approximately 8% of TBBX’s 

yield an inadequate sample unable to be graded for A-grade ACR, andanother 26% are 

assessed as suboptimal (less than five pieces of well-expanded alveolated lung).[6] Even 

when alveolated tissue is obtained, affected areas may be missed by the relatively small 

volume of tissue sampled by TBBX. Finally, there is well described variability in 

interobserver interpretation of TBBX for A-grade ACR, with κ values ranging from 0.183 to 

0.479.[6–8] Not surprisingly, the interobserver agreement for B-grade ACR, or LB, was even 

worse, with κ values ranging from −0.042 to 0.465.[6–8] This limited ability to safely and 

reliably diagnose ACR may affect clinicians ability to mitigate risk and prevent CLAD.

Bronchoalveolar lavage (BAL) is routinely done concurrent with TBBX in order to rule out 

infection. As compared with TBBX, BAL is safer and samples a relatively large area of the 

lung. We hypothesized that gene expression in the BAL cell pellet (BAL CP) could replace 

TBBX for the diagnosis of ACR and improve risk stratification for progression to CLAD. 

Participants in this study provided written informed consent for enrollment in the UCLA 
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lung transplant outcomes registry and biorepository approved by the UCLA institutional 

review board. This study was sponsored by a Clinical Trials in Organ Transplant (CTOT) 

ancillary studies grant.

Methods

We have enrolled lung transplant recipients into the UCLA lung transplant outcomes registry 

and biorepository study since 2001. Lung recipients at UCLA undergo surveillance 

bronchoscopy at 1, 3, 6, and 12 months post-transplant and when clinically indicated. We 

collected and banked any leftover BAL fluid from all surveillance and “for cause” 

bronchoscopies.

The BAL procedure was done according to a standardized protocol using three 60- ml 

aliquots of isotonic saline instilled into a sub segmental bronchus of either the right middle 

lobe or left lingula. Retrieved BAL fluid was pooled and then split into a 15 ml clinical 

specimen and a research specimen with the remaining volume. The research samples were 

immediately placed on ice for transport to the lab and were processed within 6 hours of 

collection. BAL fluid was filtered through sterile gauze and cells were separated from fluid 

by centrifugation. Cells were washed twice with phosphate-buffered saline and lysed in 

TRIzol (Invitrogen, Carlsbad, CA).

TBBX specimens were graded for ACR by experienced thoracic pathologists according to 

standard International Society for Heart and Lung Transplantation (ISHLT) criteria.[2,9,10] 

Briefly, perivascular (A-grade) infiltrates were scored 0 to 4. However, prior to 2008, our 

pathologists only graded peri-airway infiltrates (LB or B-grade) as absent (B0) or present 

(B1). In 2008, our center adopted the revised nomenclature for B-grade rejection (B0, B1R, 

B2R). Because the specimens used in this study span this change in nomenclature, we could 

only consider LB as present or absent. Biopsy results were based upon chart review of 

clinical read only. Slides were not re-reviewed. A- grade ACR episodes were also 

categorized as either spirometrically significant (SSAR) or non-SSAR based on a ≥10% 

decline in FEV1 from the prior baseline, defined as the highest of the 2 preceding FEV1 

measurements, as described by Davis et al.[11] A- grade ACR episodes without a paired 

FEV1 measurement between 0 and 14 days prior to the biopsy could not be classified as 

SSAR or non-SSAR. CLAD was defined as a sustained drop in FEV1 by at least 20% from 

the average of the two best post-transplant measurements, consistent with published criteria.

[12] For each potential CLAD case, we reviewed available clinical data to exclude 

alternative causes of FEV1 decline other than CLAD.

We searched our biorepository for BAL CP samples, collected prior to a diagnosis of CLAD 

or from patients that never developed CLAD, that were paired with a TBBX graded for both 

A and B-grade rejection scores. Out of 1548 pre-CLAD samples in our repository, 660 did 

not have a paired transbronchial biopsy and were excluded. An additional 178 samples were 

excluded because the paired biopsy was not gradable for A-grade (AX=12) or B-grade 

(BX=166) rejection. We identified a total of 710 eligible BAL samples from 310 patients. 

Samples were then categorized into the following groups: 1) healthy (n=286) without A-

grade ACR, LB, or infection; 2) A-grade ACR (n=114) defined as A-grade of A1 or greater, 

Weigt et al. Page 3

J Heart Lung Transplant. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with or without concurrent LB, and without infection; 3) LB (n=100) defined as the presence 

of small airway inflammation without concurrent A-grade ACR or infection; 4) Infection 

(n=210) defined as a positive culture for a potential pathogen. Blinded to CLAD and 

mortality outcomes, we then selected 65 samples each from the healthy, A-grade ACR, and 

LB categories and 45 additional samples from the infection group for RNA isolation. In 

addition, samples were selected in order to achieve relative balance across the following 

post-transplant time-frame windows; 1-month (16–60 days post-transplant), 3-month (61 to 

135 days post- transplant), 6-month (136 to 270 days post-transplant), and 1-year or later 

(>271 days post-transplant). No more than 1 sample per patient was included.

Total RNA was isolated using TRIzol/chloroform extraction, re-suspended in RNase-free 

water and purified using the miRNeasy Mini kit (Qiagen Inc, Valencia, CA). RNA samples 

were then bioanalyzed with the Agilent 2100 Bio Analyzer (Agilent Technologies, Palo 

Alto, CA), and samples were excluded if RNA quantity was too low (<100 ηg) or if the 

RNA integrity number (RIN) indicated severe degradation (<3.0). This excluded 21 samples 

(6 healthy, 4 infection, 7 LB, and 4 A-grade ACR) for insufficient quantity (n=16) or for 

degraded RNA (n=5).

RNASeq libraries were prepared with Clonetech SMARTer Stranded Total RNASeq (Pico) 

Kit. The key steps include first-strand synthesis, template switching, adaptor ligation, 

cleavage of ribosomal cDNA and PCR amplification. The library qualities were evaluated by 

using Agilent 2100 bioanalyzer and then sequenced using Illumina Hiseq3000 (SR 1X50 

run). After demultiplexing with Illumina Bcl2fastq2 v 2.17 and initial data quality check 

with Illumina SAV, the raw reads were mapped to the latest UCSC transcript set using 

Bowtie2 version 2.1.0 and the gene expression level was estimated using RSEM v1.2.15.

Statistical methods

Bioconductor package LIMMA (linear models for microarray data)[13,14] was used for 

differential gene expression analysis for normalized log2-transformed counts of RNASeq 

data. To avoid over-interpretation, we only include genes with at least one read per million 

mapped reads in at least 30 samples. LIMMA was used in conjunction with voom, which 

weighs the mean-variance relationship of the log-counts, needed for accurate generalized 

linear modeling. A candidate list of differential expressed genes were identified based on an 

absolute fold change >2.0 and Benjamini-Hochberg adjusted p-value of LIMMA’s 

moderated t-test (p<0.05). For functional annotation and pathway enrichment analysis, the 

candidate probes were analyzed in Database for Annotation, Visualization and Integrated 

Discovery (DAVID)[15] and processes and pathways were selected based on Benjamini-

Hochberg adjusted p-values smaller than 0.05.[16] Principal component analysis (PCA)[17] 

was used to visualize the separation of the two groups. Further unsupervised hierarchical 

clustering of differentially expressed probes was done by applying the Ward’s minimum 

variance criterion linkage method[18] with Euclidean distance and presented in a heat map.

For the construction of a classification model, we first split the 219 subjects randomly into a 

training set and a testing set with a ratio of 70:30. We summarized subject characteristics as 

means with standard deviation (SD), medians with intraquartile ranges (IQR), or 

proportions. Characteristics were compared between training and testing sets using students 
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t-test, Mann Whitney, Fisher’s exact or chi- squared testing as appropriate. A logistic 

regression model was fit using recursive feature elimination (RFE) with 5 fold cross 

validation to reduce the number of predictors and thus achieve a parsimonious model.[19] In 

the model fitting process, a receiver operator characteristic (ROC) area under the curve 

(AUC) was the metric used for selecting the optimal model. Threshold selection was based 

on model performance metrics in the training set. We then validated the threshold in the 

testing set. In addition, Cox proportional hazard models and Kaplan-Meier curves were fit 

for CLAD-free survival and compared between groups diagnosed with A-grade ACR on 

biopsy versus all other clinical conditions, and between predicted ACR versus no predicted 

ACR using the genomic classifier model.

Most statistical analyses were conducted using Bioconductor suite of packages,[20] and 

Package ‘caret’[21] in the R statistical software environment version 3.3.1.[22] Kaplan-

Meier analyses for CLAD-free survival were performed using GraphPad prism version 6.05 

for windows (Graph Pad Software, La Jolla California USA, www.graphpad.com).

The data discussed in this publication are available in Mendeley Data open research data 

repository.

Results

Patient characteristics

Of the 310 lung transplant recipients with eligible BAL samples, the final study cohort 

included 219 unique subjects with one BAL sample each (Figure 1). The clinical 

characteristics of the 91 eligible patients from whom we did not include a sample were 

similar to the final study cohort (Supplemental Table 1). By design, selected samples were 

enriched for later time points post-transplant, were more likely to have histopathology 

positive for LB and A-grade ACR and less likely to have infection diagnosed or be healthy 

(Supplemental Table 2). In addition, the characteristics of samples excluded for RNA 

quantity or quality were similar to the final study cohort, except for measures of RNA 

quantity and quality (Supplemental Table 2). Among the samples included in the final study 

cohort, the characteristics of those with histopathologic A-grade ACR were similar to those 

without A-grade ACR on biopsy (Table 1). Training and testing sets were also similar 

(Supplemental Table 3).

Differential Gene Expression Analyses

16081 out of 25343 transcripts remained after removing transcripts with low read count 

across samples. Differential gene expression analysis identified 72 genes, all of which were 

upregulated with A-grade ACR (Figure 2, Table 2).

In order to get a visual impression gene expression by patient group, we performed Principal 

Component Analysis (PCA) using the 72 differentially expressed genes. The PCA 

demonstrated considerable overlap between A-grade ACR from other sample categories 

(Supplemental Figure 1A), which improved modestly by focusing on A2 or greater ACR and 

healthy groups (Supplemental Figure 1B). Likewise, in unsupervised hierarchical cluster 
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analyses, A-grade ACR samples tended to cluster together, but there was still considerable 

misclassification (Supplemental Figure 1C).

Functional Annotation and Pathway Enrichment Analyses

To test for and validate biologic relevance of the 72 differentially expressed genes, we 

compared functional annotation and pathway mapping using DAVID Bioinformatics 

Resources. Comparison of the biological process category of gene ontology (GO) 

classification indicated that the predominant processes associated with A-grade ACR 

included “immune response”, “adaptive immune response”, “T-cell receptor signaling 

pathway”, and “inflammatory response” (Table 3). Similarly, Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathways significantly enriched in this gene list included “T-cell 

receptor signaling pathway”, “natural killer cell mediated cytotoxicity”, “cytokine-cytokine 

receptor interactions”, and “allograft rejection”, among others (Table 4).

Acute Cellular Rejection Classifier Development and Performance

We sought to develop a stable and economic classification model for acute rejection based 

on our candidate list of differentially expressed target genes (Table 2). Subjects were 

randomly split 70:30 into training set and testing set. After elimination of redundant/

correlated genes by RFE, we developed a final logistic regression model in the training set 

that maximized AUC and required only 4 genes: Thymocyte Selection- Associated High 

Mobility Group Box Protein (TOX), Sterile Alpha Motif Domain Containing 3 (SAMD3), 

Interleukin 32 (IL-32), and Killer Cell Lectin Like Receptor K1 (KLRK1). This 4-gene 

model achieved AUC of 0.72 in the training set (Figure 3A). We then defined a classification 

threshold that favored specificity (76%) over sensitivity (54%), which yielded 70% 

classification accuracy (Figure 3B). In the independent test set of 54 samples, the model 

exhibited similar performance with an AUC of 0.72 (Figure 3C). The performance of the 

classification threshold was also similar to the training set, with specificity of 82%, 

sensitivity of 60%, and accuracy of 76% (Figure 3D).

In the total cohort (training and testing sets combined), the proportion of TBBX A- grade 

ACR classified as ACR by our genomic analysis model increases with increasing A-grade 

(Figure 4). Similarly, 100% (6/6) of SSAR cases were classified as ACR in our model, 

compared to 56.2% (18/32) of A-grade ACR cases that were not spirometrically significant 

(p=0.067).

Importantly, classification as ACR by genomic analysis was also associated with worse 

CLAD-free survival over the 1 year follow-up after biopsy (HR 2.42 for CLAD or Death, 

95% CI 1.29, 4.53) (Figure 5). When follow-up was extended to 5 years post- biopsy, 

CLAD-free survival remained worse in subjects classified as ACR by genomic analysis 

(Supplemental Figure 2a). By comparison, A-grade ACR diagnosed by TBBX was not 

associated with a significant difference in 1-year CLAD-free survival (HR 1.17 for CLAD or 

Death, 95% CI 0.59, 2.30) (Figure 5), nor when follow-up was extended to 5 years post-

biopsy (Supplemental Figure 2b). Interestingly, the effect of genomic classification as ACR 

on CLAD-free survival was greatest in the subset of patients where TBBX was negative for 

A-grade ACR (HR 2.88 for CLAD or Death, 95% CI 1.32, 6.14) (Supplemental Figure 2c).
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Discussion

Given the importance of ACR as a modifiable risk factor for CLAD, the accurate diagnosis 

remains a priority in lung transplantation. However, the current gold standard requires 

TBBX, which has drawbacks including the small volume of tissues sampled, leading to high 

rates of suboptimal tissues and sampling error. Further, even when biopsy samples are 

considered adequate, interpretation is fraught with high inter observer disagreement.[6–8] 

Finally, TBBX is associated with a small risk of major complication which may lead to 

morbidity and even mortality in rare cases.[5] We hypothesized that gene expression in the 

BAL CP could be used to diagnose ACR without the need for TBBX. Furthermore, BAL CP 

gene expression might improve upon TBBX because BAL samples a larger volume of lung 

and a genomic classifier would remove the subjectivity of pathology interpretation. The 

current study demonstrates the proof of concept that gene expression informs about ACR 

pathogenesis, while also suggesting potential utility to diagnose ACR and risk stratify for the 

development of CLAD better than TBBX.

Our primary finding is that A-grade ACR on TBBX is associated with a characteristic gene 

expression profile in BAL cells. The list of differentially expressed genes is enriched for 

biologic processes and pathways integral to allograft rejection. For instance, the KEGG T-

cell receptor signaling pathway was enriched 21.5 fold during A- grade ACR, including 

genes for CD8a, CD8b, LCK, and CD3e. CD8 acts to stabilize binding of the T-cell receptor 

(TCR) to the peptide-MHC complex, while also localizing LCK to the TCR/CD3 complex to 

facilitate early signaling events during T-cell activation.[23] We have also previously shown 

BAL CP gene expression of CD8 and LCK is associated with the development of CLAD.

[24] In addition, the cytokine-cytokine receptor interaction pathway was enriched 6.5 fold, 

and included CXCR3 and IFNγ. This finding is corroborated by previous work showing 

protein concentrations of the IFNγ- inducible CXCR3-binding chemokines in the BAL fluid 

are associated with A-grade ACR and other lung injury patterns, as well as with CLAD. 

[25–27] Finally, enrichment for pathways related to cell adhesion, NK cell mediated 

cytotoxicity, and allograft rejection add additional support of the biologic relevance of BAL 

CP gene expression during A- grade ACR.

This expression profile may be efficiently simplified to an economical 4-gene classifier 

model which exhibits fair performance as a diagnostic biomarker for histopathologic A-

grade ACR. We chose a threshold for the model that prioritized specificity over sensitivity. 

Our rationale was aimed at better identifying clinically significant ACR, at high risk of 

progression to CLAD. Recognizing the well described short-comings of TBBX, it is not 

surprising that our model reclassifies cases of histopathologic A-grade ACR as no ACR and 

other cases of no histopathologic A-grade ACR as positive for ACR. Importantly, the 

performance of this genomic classifier improved with increasing histopathologic A-grade, 

for which there is reported greater observer agreement and therefore confidence in the ACR 

diagnosis.[6–8] In addition, our classifier model indicated ACR for all cases of SSAR, 

which is a strong risk factor for CLAD.[11] Given the importance of ACR as a potentially 

modifiable CLAD risk factor, our most intriguing finding is that classification indicating 

ACR also discriminated risk of CLAD-free survival, especially in the year following biopsy, 

while a histopathologic diagnosis of A-grade ACR did not. Finally, the highest incidence of 

Weigt et al. Page 7

J Heart Lung Transplant. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CLAD or death in the year after biopsy was seen in the 37 cases where histopathology was 

negative for A- grade ACR, but where the genomic classifier predicted ACR. None of these 

cases were treated for rejection at the time. We can hypothesize that corticosteroid treatment 

could have reduced the risk of CLAD in this group, but this hypothesis requires prospective 

evaluation in a clinical trial.

Our study corroborates prior smaller observational studies of gene expression during ACR.

[28,29] Although each study used different methods and the specific genes associated with 

ACR differ somewhat, the functional relevance of the differentially expressed genes were 

remarkably similar across studies. Specifically, increased gene expression related to T-cell 

activation and cytotoxicity was common to each of these studies.[28,29] These similar 

conclusions are interesting, especially because our study relied on a different platform to 

measure gene expression: our current study used RNASeq while the prior studies used 

microarray. In studies of T-cell activation, there has been a high correlation of gene 

expression profiles between RNASeq and microarray platforms using the same set of 

samples.[30] However, RNASeq was superior in detecting low abundance transcripts and 

demonstrated a broader dynamic range than microarray, therefore allowing the detection of 

more differentially expressed genes. Furthermore, performing RNASeq allows for the 

avoidance of technical issues found using microarray probes (eg, cross-hybridization, non-

specific hybridization and limited detection range of individual probes). Additionally, 

RNASeq does not rely on a pre-designed detection probes, thus there are no issues 

associated with probe redundancy and annotation, which simplifies the interpretation of the 

data.

Our final genomic classifier model included 4 genes: TOX, SAMD3, IL-32, and KLRK1. 

TOX has been shown to be up-regulated by calcineurin-mediated TCR signaling during CD4 

T-cell lineage development, including CD1d-dependent natural killer T (NKT) and T 

regulatory (T reg) CD4 T-cell sublineages, and has been shown to also effect CD8 T-cell 

development.[31] The biologic relevance of SAMD3 with allograft rejection is not known at 

this time, although the Human Protein Atlas (http://www.proteinatlas.org)[32] predicts that 

SAMD3 is an intracellular protein that is broadly expressed in lymphoid tissues, especially 

spleen and lymph nodes. IL-32 is expressed by IL-2 activated T-cells and NK cells, and 

plays a role in acute GVHD after hematopoietic cell transplantation.[33] KLRK1 is a 

receptor expressed by natural killer (NK) cells and cytotoxic T lymphocytes, and mediates 

activation in NK cells and costimulation in T-cells.[34] Collectively, this 4-gene model is 

consistent with the paradigm of ACR and CLAD pathobiology. Specifically, ACR is 

characterized by activated immune cells including CD4 T-cells, CD8 T-cells, NK cells, and 

natural killer T (NKT) cells, which drive the cytotoxicity responsible for allograft injury that 

eventually leads to CLAD. Future prospective studies should test whether this genomic 

classifier leads to earlier or more appropriate treatment of ACR, an intervention that might 

reduce CLAD.

There are limitations inherent to the design of this study. We examined a cross sectional 

selection of samples from lung transplant recipients at a single center. It would be valuable 

to include longitudinal sampling to characterize the evolution of gene expression before and 

after ACR and through the development of CLAD. Our study cannot determine the effect of 
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treatment on gene expression and therefore we do not know whether knowledge of gene 

expression can impact outcomes. Although, our study included independent training and 

testing cohorts, all patients were from a single center and future studies would benefit from 

inclusion of an external validation cohort. We are reassured by the fact that the biologic 

processes and pathways enriched in our gene list are consistent with expectations. We also 

acknowledge that 9% of samples selected for inclusion were inadequate for RNASeq, either 

due to degraded RNA or low RNA concentrations. This is similar to the 8% rate of 

inadequate TBBX reported in lung transplant recipients.[6] However, the proportion of 

inadequate BAL samples for RNASeq could probably be reduced to nearly 0% with the use 

of RNA stabilization solutions and RNASeq library construction kits designed for low input. 

Finally, although a BAL CP genomic classifier test could reduce the complications 

associated with TBBX, it does not eliminate the need for invasive bronchoscopy. It is 

unclear whether the findings in the BAL CP would also be seen in peripheral blood.

In summary, we showed that BAL CP gene expression during histopathologic A-grade ACR 

is enriched for immune responses including T-cell receptor signaling, cytokine signaling, 

cell adhesion, and cytotoxicity. Gene expression to diagnose ACR could be a less invasive 

alternative to TBBX. In fact, we find that differential gene expression can be simplified to a 

4-gene signature with fair performance as surrogate for TBBX, but with potentially greater 

clinical implications. This study demonstrates proof of concept that BAL CP gene 

expression informs about the pathogenesis of ACR and risk of CLAD. A multicenter study is 

required to establish whether BAL CP gene expression could reduce or eliminate the need 

for TBBX to diagnose ACR.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A. Sample selection flow diagram. B. Distribution of included samples over time relative to 

total eligible samples in biorepository.
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Figure 2. 
Volcano plot demonstrating gene expression in BAL CP from lung transplant recipients with 

A-grade ACR compared with other non A-grade ACR clinical conditions. Each dot on the 

graph corresponds to a gene. The fold difference in expression between A-grade ACR and 

Others is graphed on the X-axis (logarithm to the base 2 fold-changes). The p-values for 

each gene are graphed on the Y-axis (negative logarithm to the base 10 of the t-test 

Benjamini-Hochberg adjusted p-values). The vertical dashed lines correspond to absolute 

fold difference of −2.0 and 2.0. The horizontal dashed line corresponds to a Benjamini 

adjusted p-value of 0.05. Differentially expressed genes (n=72) are labeled red (selected 

interesting genes are labeled with official gene symbol as well). Additional black dots in the 

significance range (n=5) represent chimera transcripts removed from the gene list. No genes 

were expressed at significantly lower levels during A-grade ACR.
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Figure 3. 
Acute cellular rejection (ACR) classification of BAL CP gene expression by classifier 

model. (A) Receiver operator characteristic (ROC) curve of classifier performance on 165 

subject training set. (B) Classification scores (the predicted probability of ACR divided by 

0.261) are plotted on the y-axis each subject. In the training set the dashed line (score 1.0) 

denotes the classification threshold between ACR and no-ACR classification. TBBX 

histopathology or infection diagnoses are provided for each subject on the x-axis. Black 

closed circles represent CLAD free survivors. Gray triangles pointed up represent subjects 

developing CLAD within 1 year of sample. Gray triangles pointed down represent subjects 

who died within 1 year of sample. (C) ROC curve of classifier performance on the 54 

subject testing set. (D) Classification scores in the 54 subject testing set.
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Figure 4. 
The proportion of subjects in each clinical category classified as ACR by the genomic 

classifier model.
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Figure 5. 
Kaplan-Meier estimates of CLAD free survival in the 1 year following biopsy. A) 

Comparison of CLAD free survival following the bronchoscopy procedure for patients with 

or without ACR histopathology. B) Comparison of CLAD free survival following the 

bronchoscopy procedure for patients Classified as ACR or no ACR by the genomic classifier 

model.

Weigt et al. Page 16

J Heart Lung Transplant. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Weigt et al. Page 17

Table 1.

Characteristics of subjects with A-grade ACR and Other histopathology

Total cohort Training Set Test Set

A-grade ACR Other p-value A-grade ACR Other p-value A-grade ACR Other p-value

Sex, n (%) 0.54 0.86 0.55

 Male 40 (66%) 96 (61%) 30 (65%) 74 (62%) 10 (67%) 22 (56%)

 Female 21 (34%) 62 (39%) 16 (35%) 45 (38%) 4 (33%) 17 (44%)

Age, mean (SD) 58.7 (11.0) 60.1 (11.3) 0.41 59.3 (11.1) 59.7 (11.4) 0.85 56.9 (10.9) 61.4 (10.8) 0.17

Pre-transplant disease, n (%) 0.80 0.93 0.28

 Restrictive 38 (62%) 92 (58%) 27 (59%) 74 (62%) 11 (73%) 18 (46%)

 Obstructive 15 (25%) 43 (27%) 12 (26%) 30 (25%) 3 (20%) 13 (33%)

 CF/Bronchiectasis 2 (3%) 10 (6%) 2 (4%) 5 (4%) 0 (0%) 5 (13%)

 Other 6 (10%) 13 (8%) 5 (11%) 10 (8%) 1 (7%) 3 (8%)

Transplant Type 0.76 0.73 1.00

 Bilateral 34 (56%) 84 (53%) 25 (54%) 61 (51%) 9 (60%) 23 (59%)

 Single 27 (44%) 74 (47%) 21 (46%) 58 (49%) 6 (40%) 16 (41%)

CMV serostatus 0.41 0.55 0.78

 R+/D+ 32 (52%) 70 (44%) 24 (52%) 50 (42%) 8 (53%) 20 (51%)

 R+/D− 14 (23%) 32 (20%) 10 (22%) 24 (20%) 4 (27%) 8 (21%)

 R−/D+ 8 (13%) 36 (23%) 7 (15%) 29 (24%) 1 (7%) 7 (18%)

 R−/D− 7 (12%) 20 (13%) 5 (11%) 16 (13%) 2 (13%) 4 (10%)

Days to Biopsy, mean (SD) 170 (207) 230 (253) 0.10 157 (212) 235 (264) 0.07 213 (194) 216 (219) 0.96

Indication for biopsy, n (%) 0.85 1.00 1.00

 Surveillance 49 (80%) 124 (78%) 38 (83%) 97 (82%) 11 (73%) 27 (69%)

 For cause 12 (20%) 34 (22%) 8(17%) 22 (18%) 4 (27%) 12 (31%)

Induction, n (%) 1.00 0.61 0.37

 ATG 32 (52%) 82 (52%) 23 (50%) 65 (55%) 9 (60%) 17 (44%)

 Basiliximab 29 (48%) 76 (48%) 23 (50%) 54 (45%) 6 (40%) 22 (56%)

Tacrolimus trough, mean 
(SD) 10.6 (5.4) 9.9 (3.9) 0.32 10.7 (5.6) 10.1 (4.1) 0.46 10.5 (4.9) 9.5 (3.3) 0.45

FEV1 Percent of baseline, 
Median (IQR) 100 (93–100) 99 (90–100) 0.06 100 (92–100) 99 (90–100) 0.13 100 (95–100) 99 (88–100) 0.23

TBBX histopathology · · ·

 A1 38 (62%) · 29 (63%) · 9 (60%) ·

 A2 17 (28%) · 12 (26%) · 5 (33%) ·

 A3 6 (10%) · 5 (11%) · 1 (7%) ·

 Lymphocytic Bronchiolitis 27 (44%) 70 (44%) 22 (48%) 52 (44%) 5 (33%) 18 (46%)

Infection · 41 (26%) · · 34 (29%) · · 7 (18%)

 Respiratory virus* · 10 (6%) · 8 (7%) · 2 (5%)

 Bacterial** · 19 (12%) · 18 (15%) · 1 (3%)
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Total cohort Training Set Test Set

A-grade ACR Other p-value A-grade ACR Other p-value A-grade ACR Other p-value

 Fungal*** · 12 (8%) · 8 (7%) · 4 (10%)

*
3 Coronavirus, 3 parainfluenza, 2 rhinovirus, 1 Respiratory syncytial virus, 1 Influenza A.

**
13 P. aeruginosa, 3 E. coli, 2 H. influenzae, 1 K. pneumonia

***
8 A. fumigatus, 3 A. niger, 1 A. nidulans
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Table 2.

Differentially expressed genes during ACR

Gene Symbol FC P-value Adjusted P-value Gene Symbol FC p value Adjusted p-value

GZMK 2.99 0.0000 0.0030 TRAT1 2.30 0.0000 0.0035

KLRK1 2.98 0.0000 0.0020 TOX 2.30 0.0000 0.0040

IFNG 2.90 0.0000 0.0035 LINC00861 2.29 0.0000 0.0020

CXCL13 2.81 0.0004 0.0292 CD3E 2.29 0.0000 0.0082

GZMH 2.81 0.0000 0.0065 ITM2A 2.28 0.0001 0.0166

EOMES 2.77 0.0000 0.0030 TBX21 2.27 0.0002 0.0222

GZMA 2.76 0.0000 0.0035 ATP1A3 2.27 0.0000 0.0036

ZNF831 2.74 0.0000 0.0020 ITK 2.24 0.0000 0.0031

TIGIT 2.73 0.0000 0.0032 ZNF683 2.23 0.0004 0.0277

CXCR6 2.70 0.0000 0.0076 MS4A1 2.22 0.0007 0.0388

SIRPG 2.68 0.0000 0.0035 ETS1 2.22 0.0000 0.0042

CD8A 2.64 0.0000 0.0031 PRF1 2.21 0.0002 0.0224

MIAT 2.62 0.0000 0.0029 RASGRP1 2.20 0.0000 0.0030

FCRL3 2.56 0.0000 0.0030 GZMM 2.19 0.0001 0.0160

P2RY10 2.55 0.0000 0.0035 IL2RB 2.18 0.0001 0.0166

CD8B 2.55 0.0000 0.0038 UBASH3A 2.18 0.0001 0.0097

KLRC4 2.55 0.0000 0.0031 B3GAT1 2.16 0.0002 0.0183

FASLG 2.54 0.0000 0.0054 PDCD1 2.16 0.0009 0.0470

KLRC2 2.52 0.0000 0.0040 NKG7 2.15 0.0002 0.0224

SH2D2A 2.52 0.0000 0.0054 SAMD3 2.15 0.0002 0.0220

CTLA4 2.52 0.0000 0.0080 IL32 2.13 0.0001 0.0124

CXCR3 2.51 0.0000 0.0042 THEMIS 2.10 0.0000 0.0067

LAG3 2.50 0.0000 0.0042 NELL2 2.10 0.0003 0.0257

VCAM1 2.48 0.0001 0.0154 TSPAN5 2.10 0.0003 0.0250

GZMB 2.47 0.0003 0.0234 CPNE7 2.09 0.0001 0.0089

SH2D1A 2.46 0.0000 0.0043 APBA2 2.09 0.0003 0.0233

CD27 2.44 0.0000 0.0038 SLA2 2.09 0.0000 0.0054

GPR171 2.42 0.0000 0.0031 TMEM204 2.09 0.0001 0.0166

ZAP70 2.40 0.0000 0.0038 TTC24 2.07 0.0001 0.0130

LEF1 2.39 0.0000 0.0030 JAKMIP1 2.07 0.0008 0.0433

GPR174 2.38 0.0000 0.0041 GRAP2 2.07 0.0002 0.0179

CD96 2.37 0.0000 0.0040 AFAP1L2 2.06 0.0006 0.0355

LCK 2.37 0.0000 0.0060 TOX2 2.05 0.0007 0.0393

CD247 2.34 0.0000 0.0053 PYHIN1 2.03 0.0000 0.0047

BCL11B 2.33 0.0000 0.0059 GPR18 2.03 0.0001 0.0101

ABCD2 2.31 0.0000 0.0054 KIAA0125 2.02 0.0001 0.0132
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Table 3.

Gene ontology (GO): Top biologic processes enriched with ACR

Term Fold Enrichment Genes p Value FDR

Immune response 9.8 CXCL12, CD27, FASLG, CTLA4, GZMB, GZMH 0.00028 0.0037

Adaptive immune response 24.1 SH2D1A, CTLA4, IFNG, KLRK1 0.00055 0.0071

T-cell receptor signaling pathway 44.3 CD27, CD3E, IFNG 0.00190 0.0250

inflammatory response 8.7 CXCL13, CXCR3, CXCR6, CD27, AFAP1L2 0.00220 0.0290
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Table 4.

KEGG pathways enriched with ACR

Term Fold Enrichment Genes p Value FDR

T-cell receptor signaling pathway 21.5 CD247, CD3e, CD8a, CD8b, GRAP2, ITK, LCK, 
CTLA4, IFNG, PDCD1, ZAP70 2.70E-11 2.90 E-10

Natural killer cell mediated cytotoxicity 17.2 CD247, FASLG, LCK, SH2D1A, GZMB, IFNG, 
KLRK1, PRF1, ZAP70 2.40E-08 2.60E-07

Primary immunodeficiency 27.9 CD3E, CD8A, CD8B, LCK, ZAP70 2.40E-05 2.60E-04

Cell adhesion molecules 8.7 CD8a, CD8b, TIGIT, CTLA4, PDCD1, VCAM1 4.90E-04 0.0052

Cytokine-cytokine receptor interaction 6.5 CXCL13, CXCR3, CXCR6, FASLG, IFNG, IL2RB 4.90E-04 0.0052

Graft-versus-host disease 24.3 FASLG, GZMB, IFNG, PRF1 5.10E-04 0.0055

Allograft rejection 22.4 FASLG, GZMB, IFNG, PRF1 6.60E-04 0.0070
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