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Abstract

Background and Purpose: Working memory impairment is one of the most troubling and 

persistent symptoms after mild traumatic brain injury (MTBI). Here we investigate how working 

memory deficits relate to detectable WM microstructural injuries in order to discover robust 

biomarkers that allow for early identification of MTBI patients at highest risk of working memory 

impairments.

Materials and Methods: Diffusion MRI was performed on a 3T scanner with 5 b-values. 

Diffusion metrics of fractional anisotropy (FA), diffusivity and kurtosis (mean, radial, axial) as 

well as WM tract integrity (WMTI) were calculated. Auditory-verbal working memory was 

assessed using WAIS-IV subtests: 1) Digit Span (DS) including Forward (DSF), Backward (DSB) 

and Sequencing (DSS), and 2) Letter-Number Sequencing (LNS). We studied 19 MTBI patients 

within 4 weeks of injury and 20 normal controls (NC). Tract-based spatial statistics (TBSS) and 

ROI analyses were performed to reveal possible correlations between diffusion metrics and 

working memory performance with age and sex as covariates.

Results: ROI analysis found a significant positive correlation between axial kurtosis (AK) and 

DSB in MTBI (Pearson’s r=0.69, corrected p=0.04), mainly present in the right superior 

longitudinal fasciculus that was not observed in NC. MTBI patients also appear to lose the normal 

associations typically seen in FA and axonal water fraction (AWF) with LNS. TBSS results also 

support our findings.
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Conclusion: Differences between MTBI and NC with regard to relationship between 

microstructure measures and working memory performance may relate to known axon 

perturbations occurring after injury.

INTRODUCTION

Mild traumatic brain injury (MTBI) is a significant public health problem with many serious 

consequences.1, 2 While the majority of MTBI patients recover symptomatically within 2–3 

weeks after injury, at least 15% of patients report persistent cognitive complaints that are an 

important source of distress and disability after injury.3–5 Now an important body of work 

reveals MTBI-related WM injury using DTI6–8 and diffusion kurtosis imaging (DKI).9, 10 

More recently, WM tract integrity (WMTI) metrics derived from an advanced 

compartmental diffusion WM model11 have been proposed to describe microstructural 

characteristics in the intra- and extra-axonal environments of WM, including axonal water 

fraction (AWF), intra-axonal diffusivity (Daxon), extra-axonal axial (De,‖|) and radial (De,⊥) 

diffusivities.

One of major barriers to applying such findings to clinical cohorts is that the disorder is 

extremely heterogenous and most current studies group clinically heterogenous cohorts of 

MTBI patients together representing a broad spectrum of clinical symptoms. Thus, there is a 

specific need to understand domain-specific symptoms as they relate to detectable 

microstructural injuries, in order to better understand patient specific injury and recovery.

One of the most common and clinically significant complaints in MTBI patients is deficits in 

working memory,3, 4, 12–15 which often negatively affect quality of life.16 This comes as no 

surprise as working memory, which involves the capacity to temporarily store and 

manipulate information in pursuit of a goal, is at the core of critical cognitive functions such 

as comprehension, learning, reasoning, and decision making.17 Working memory is 

conceptualized as comprising three main components: the central executive, responsible for 

manipulation of information and allocation of attention and processing resources, and two 

maintenance systems, the phonological loop (verbal and auditory information) and the 

visuospatial sketchpad (visual and spatial information).18–20 There have been a few studies 

showing associations of working memory performance with measures of WM 

microstructure such as fractional anisotropy (FA)21 and AWF22–24 in healthy individuals, 

believed to relate to differences in axon volume and myelination. However, such associations 

have not yet been investigated in MTBI patients.

Here, we hypothesize that WM injury in MTBI patients can affect the relationship between 

microstructural changes to the WM and working memory performance. To test this 

hypothesis, we investigate the relationship between WM microstructural changes assessed 

by using diffusion MRI (DTI, DKI, WMTI) and a set of Wechsler Adult Intelligence Scale-

Fourth Edition (WAIS-IV)25 subtests tapping auditory-verbal working memory functions in 

MTBI patients, comparing them against healthy controls. We also perform subgroup 

analyses based on working memory performance and time-since-injury.
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MATERIALS AND METHODS

Study Population

This study has been approved by our Institutional Review Board. All experiments were 

performed in accordance with relevant guidelines and regulation, and written informed 

consents were provided by all subjects before the procedure. We prospectively recruited 

subjects who were seen for clinical care in the Emergency Department or Institutional 

Concussion Center. Inclusion criteria are: 1) adult individuals in the age range of 18 – 65 

years, 2) diagnostic MTBI criteria defined by the American Congress of Rehabilitation 

Medicine (ACRM)26 including either loss of consciousness of < 30 minutes or altered 

consciousness at time of accident and a Glasgow Coma Scale (GSC) of 13 – 15, and 3) 

injury within 4 weeks. We excluded patients with: 1) previous history of TBI, neurological 

illness or psychiatric disorder, 2) history of participation in organized contact sports, and 3) 

any contraindication to MRI. We also further excluded non-native English speakers and non-

right-handed individuals in order to avoid any potential confounding effects of language and 

handedness. We studied 19 patients with MTBI (mean age, 30 ± 7, age range, 22 – 45 years 

old; average time since injury, 16 days; 9 male) and 20 normal controls (NC) (mean age, 33 

± 10, age range, 19 – 65 years old; 9 male). For all subjects, formal neurocognitive tests 

including WAIS-IV working memory subtests were performed and MR images were 

acquired within 1 day of neurocognitive tests. Additionally, to characterize subjects, Wide 

Range Achievement Test-4th Edition Word Reading subtest (WRAT-4) was performed and 

the scores were converted to IQ scores as a brief measure of intelligence. Subgroups of the 

subjects in this study were previously included in two works with non-overlapping 

hypotheses.24, 27

MRI Protocol

MRI was performed using a 3T MR scanner (Skyra, Siemens Medical Solutions, Erlangen, 

Germany). Diffusion imaging was performed with 5 b-values (250, 1000, 1500, 2000, 2500 

s/mm2) using 5 diffusion encoding direction scheme (6, 20, 20, 30, 60, respectively). Three 

images with b = 0 s/mm2 were also acquired. Multiband (factor of 2)28 EPI was used for 

accelerated acquisitions with anterior-posterior (AP) phase encoding direction. Other 

parameters included: field of view = 220 mm × 220 mm, acquisition matrix = 88 × 88, 

number of slices = 56, image resolution = 2.5 × 2.5 × 2.5 mm3, TR/TE = 4900/95 ms, 

bandwidth = 2104 Hz/pixel, a generalized autocalibrating partially parallel acquisitions 

(GRAPPA) factor of 2. An additional image with b = 0 s/mm2 with reversed phase encoding 

direction was acquired for geometric artifact correction. The total scan time was 12 minutes.

Working Memory Assessment

Working memory was assessed with age-appropriate WAIS-IV subtests,25 which included 

Digit Span (DS) and Letter-Number Sequencing (LNS). In the DS Forward (DSF) task, 

examinees repeat a sequence of numbers read to them. In the DS Backward (DSB), the same 

procedure is followed, except that examinees repeat the numbers in reverse order, and in the 

DS Sequencing (DSS), examinees repeat the numbers in ascending order. In the Letter-

Number Sequencing (LNS) task, examinees separate numbers from letters and state in 

ascending/alphabetical order a mixed sequence of numbers and letters read to them. Raw 
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scores were converted into standardized age-corrected z-scores with a zero mean and a 

unitary variation25 with higher scores indicating better performance.

Image Analyses

Diffusion Image Processing—The diffusion images underwent the pre-processing steps 

including Marchenko-Pastur principal component analysis (MP-PCA) denoising,29 Gibbs 

correction,30 distortion correction with FSL’s topup command, eddy current distortion and 

motion correction with FSL’s eddy command, and outlier detection.31 Total 11 diffusion 

metrics including DTI (FA, mean diffusivity [MD], axial diffusivity [AD], radial diffusivity 

[RD]), DKI (mean kurtosis [MK], axial kurtosis [AK], radial kurtosis [RK]) and WMTI 

(AWF, Daxon, De,‖, De,⊥) metrics were calculated by using in-house software developed in 

MATLAB R2017a (The Mathworks, Inc., Natick, MA).

Tract-Based Spatial Statistics (TBSS)—We used the standard tract-based spatial 

statistics (TBSS)32 to reveal possible correlations between working memory test z-scores 

and diffusion metrics. Briefly, subject FA maps were normalized to the FA template through 

a nonlinear co-registration, and voxel-wise statistical analysis was performed on FA values 

projected onto the FA skeleton by looking for local maximum values perpendicular to the 

skeleton using a permutation-based nonparametric testing (FSL’s randomize command) with 

the threshold free cluster enhancement (TFCE) option. All other parametric maps underwent 

the same transformations and processes. The tract skeleton was thresholded at FA of 0.2 for 

DTI and DKI metrics. For WMTI metrics, analysis was restricted to WM regions consisting 

of single-fiber orientations (FA threshold of 0.4), as recommended.11, 33 Age and sex were 

included as covariates. The number of permutations was set to 5000.

ROI Analysis—ROI analysis was performed on 18 major WM tracts, including genu/body/

splenium of corpus callosum (gCC/bCC/sCC), right and left anterior/posterior limb of 

internal capsule (LIC), right and left anterior/superior/posterior corona radiata (aCR/sCR/

pCR), right and left cingulum, right and left superior longitudinal fasciculus (SLF), and 

whole WM. ROI regions were generated based on the John Hopkins University (JHU) 

ICBM-DTI-81 WM labels atlas.34 Briefly, all subjects FA maps were nonlinearly registered 

to the FA template and then a ‘reversed warping’ procedure was performed to assign the 

atlas labels to each subject’s space. The ROIs in each subject space were manually corrected 

if necessary. For each ROI, mean value was obtained only in voxels with FA ≥ 0.2 for DTI 

and DKI metrics and with FA ≥ 0.4 for WMTI metrics, in order to restrict analysis to WM 

regions, as recommended.11, 33

Statistical Analysis

MANCOVA was used to test group differences of length of education and WRAT-4 IQ 

scores, with age and sex as covariates, by using SPSS Statistics software version 25.0 (SPSS 

Inc, Chicago, Illinois). Results were considered significant for p < 0.05.

For TBSS, statistical threshold level of p < 0.05 was applied after family-wise error (FWE) 

correction for multiple comparisons.
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For ROI analysis, both Pearson’s partial correlation and Spearman rank correlation were 

performed to measure the associations between diffusion metrics and WAIS-IV subtest 

scores in each ROI, using SPSS. Age and sex were included as covariates. All p-values were 

corrected for multiple comparisons using Benjamini-Hochberg correction. Statistical 

threshold level of corrected p < 0.05 was used. Correlation coefficients (R) were calculated. 

We also used Fisher’s R-to-Z transformation35 to test for differences in between-group 

correlations.

Based on the ROI analysis results, specific regions demonstrating significant correlations 

with working memory performance were further interrogated by dividing subjects into 

subgroups based on their working memory test z-score (< 1, ≥ 1) and time-since-injury (< 2 

weeks, 2–4 weeks). Subgroup comparisons were done using MANCOVA with age as 

covariate. Results were considered significant for p < 0.05.

RESULTS

Average length of education for MTBI patients was 15.5 ± 1.7 years, not statistically 

different from healthy controls (16.3 ± 1.8 years). Also, WRAT-4 IQ scores were not 

statistically different between MTBI (108.5 ± 12.0) and NC (113.6 ± 14.3) groups. WAIS-IV 

subtests were not significantly correlated with age and length of education for MTBI and NC 

groups, except positive correlations between length of education and DSS in NC (p = 0.03).

From TBSS analysis, in the MTBI group, we found a significant positive correlation 

between AK and DSB primarily in the right SLF (Fig. 1(a)), that was not present in the NC 

group (Fig. 1(b)). Interestingly, we found complete loss of relationships between FA and 

LNS in the MTBI group (Fig. 2(a)), while a significant correlation was shown in the NC 

group (Fig. 2(b)), most notably in parietal WM, sCR/pCR, bCC/sCC, and SLF. We also 

found no significant correlation between AWF and LNS in the MTBI group (Fig. 3(a)), 

while there were multiple areas showing a statistically significant positive correlation 

between AWF and LNS, involving parietal WM, sCR/pCR and bCC/sCC (Fig. 3(b)). No 

other diffusion metrics showed area of significant correlation surviving correction for 

multiple comparisons.

ROI analysis also found a significant correlation between AK and DSB in the right SLF in 

the MTBI group (Pearson’s R = 0.69, p = 0.002; Spearman’s Rho = 0.75, p = 0.0005), that 

was not present in the NC group. The correlation coefficients observed in the MTBI and NC 

groups were significantly different (Fisher R-to-Z transformation, p = 0.01). On the other 

hand, we also observed loss of relationships between FA and LNS in the MTBI group, but 

found a significant positive correlation in the right pCR in the NC group (Pearson’s R = 

0.67, p = 0.002; Spearman’s Rho = 0.57, p = 0.014). The correlation coefficients observed in 

the MTBI and NC groups were not significantly different, but there was a trend towards 

significance (Fisher R-to-Z transformation, p = 0.06). No other significant correlations were 

found after correction for multiple comparisons. These results are summarized in Table 1.

Based on the results of the ROI analysis, subjects were further divided into subgroups 

according to their working memory test z-scores (< 1 or ≥ 1) and time-since-injury (< 2 
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weeks or 2 – 4 weeks). Details of the subgroup characteristics are given in Table 2. With 

regard to subgroup analysis, we found a significant difference in AK between the MTBI 

subgroup of 2–4 weeks of injury with DSB < 1 and the MTBI subgroup of 2–4 weeks of 

injury with DSB ≥ 1 within the right SLF (Fig. 4(a)). Significant differences in FA were 

shown between the MTBI subgroup of < 2 weeks of injury with LNS < 1 and the NC 

subgroup with LNS < 1, and between the NC subgroup with LNS < 1 and the NC subgroup 

with LNS ≥ 1, within the right pCR (Fig. 4(b)).

DISCUSSION

This study shows significant differences in the relationships between specific WM 

microstructural markers and auditory-verbal working memory performance between MTBI 

patients and healthy controls. Specifically, in the MTBI group, a significant correlation 

between AK and DSB was present in the right SLF, while the NC group demonstrated no 

such relationship (Fig. 1), a finding observed using both TBSS and ROI analyses. MTBI 

patients also appear to lose the normal associations seen in controls between diffusion 

metrics (FA, AWF) and LNS (Figs. 2, 3). Furthermore, subgroup analyses also showed a 

significant difference of AK between the MTBI subgroup of 2–4 weeks of injury with DSB 

< 1 and the MTBI subgroup of 2–4 weeks of injury with DSB ≥ 1. A significant difference 

was also found between the MTBI subgroup of < 2 weeks of injury and the NC subgroup, 

both having LNS < 1.

Notably, the relationship between AK and DSB in MTBI subjects is mainly present in the 

right SLF (Fig. 1), a structure critical for attention, memory, emotion and language,36, 37 

linking fronto-parietal WM regions critical to working memory.38–40 In particular, the right 

SLF is critical for attention,41 visuospatial function,42 and short-term memory.43 Previously, 

similar results were reported showing relations between the SLF and working memory 

deficits assessed by FA and visual 2-back d-prime index in severe and diffuse TBI patients.
44 In this study, we found decreased AK in the right SLF, reflecting decreased tissue 

complexity along the long axis of the axon45 in MTBI patients with poorer performance on 

DSB. AK is known from animal validation studies to be affected by axon injury46 as well as 

secondary reactive astrogliosis.47

Also differentiating MTBI from NC groups, in TBSS analysis, was a loss of diffusely 

present normal associations that we have seen in healthy controls (Figs. 2, 3); in controls, it 

has been shown that FA and AWF directly correlate with performance on LNS, a complex 

working memory task.24 However, in MTBI patients we found a disruption in this normal 

relationship, presumed to relate to WM injuries known to occur after MTBI,14 as AWF is a 

measure that reflects axon density and/or myelination.

ROI analyses (Table 1) showed related statistically significant correlations focused in the 

right SLF in MTBI patients as well as in the right pCR in healthy controls, compared with 

the more diffuse TBSS results. TBSS uses maximum values projected onto the WM 

skeleton, making it more sensitive to maximal deviations in diffusion metrics. Both TBSS 

and ROI analyses reveal positive correlations in the right SLF and right pCR, suggesting 

these regions to be strong, potential anatomical landmarks important to working memory 
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performance, and possibly impairment. Along with the SLF, a structure critical to working 

memory,38–40 the CR is also a complex bundle of fibers related to working memory since it 

consists of several separate pathways connecting cerebral cortex to subcortical 

structures24, 48, 49 including fiber tracts in the pCR which connect to the precuneus, a part of 

the default-mode network implicating in working memory performance.50, 51

With regard to the subgroup analysis, within the same time-since-injury period of 2–4 

weeks, there was a significant difference in AK between the MTBI subgroups with higher 

and lower working memory performance in the right SLF (Fig. 4(a)). Decreased AK, 

believed to relate to axonal injury46 and/or secondary reactive astrogliosis47, may 

specifically be more a useful indicator in the MTBI subgroup with lower working memory 

performance. Also, within the lower LNS range, significantly elevated FA was observed in 

the MTBI subgroup within 2 weeks of injury compared to corresponding the NC subgroup 

with the same lower LNS range (Fig. 4(b)). Elevated FA reported frequently within 2 weeks 

of injury, believed to reflect injury-related cytotoxic edema52 or reactive astrogliosis53. We 

only found a significant difference in FA between the MTBI subgroup within 2 weeks of 

injury and the NC subgroup, only in the lower LNS range, not in the higher LNS range, 

suggesting that understanding the relationships between domain-specific symptoms, such as 

working memory deficits, and underlying microstructural injuries is important for patient 

management (e.g., pharmacological intervention to inhibit inflammation and reduce the 

neurotoxic effects of reactive gliosis).

There are several limitations in the presented study. First, there is a wide age ranges from 19 

– 65 years. Any age effects were minimized by using age-corrected WAIS-IV subtest z-

scores derived from the published normative sample (n = 2200) divided into 13 age bands, 

spanning ages 16 to 90.25 Moreover, age is included as a covariate in all statistical analyses. 

Second, subgroups were defined based on a somewhat arbitrary statistical threshold value 

for LNS and DSB (Fig. 4). Further work could be done to study various performance groups. 

Third, this study includes a relatively small number of total subjects and point toward the 

need for larger studies of working memory dysfunction and brain injury in patients with 

MTBI. Fourth, this study did not examine the underlying processes that contribute to 

working memory tasks such as DS and LNS. Further work could be done to focus on 

component processes such as attention and maintenance of information. Furthermore, as 

mentioned previously, TBSS uses maximum values projected onto the WM skeleton along 

an orthogonal line, making it more sensitive to maximal deviations in diffusion metrics, but 

also reducing the need for image smoothing and alleviating any residual misalignment.54 In 

this study, we use both TBSS and ROI approaches to rigorously assess both diffuse and 

regional WM.

CONCLUSIONS

There are differences between MTBI patients within 4 weeks of injury and healthy controls 

in terms of the relationships between brain microstructure and working memory 

performance. These findings may relate to known WM injury and changes in functional 

organization occurring after MTBI. Further study on the effect of time-since-injury on 
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working memory performance may provide insight into the temporal dynamics of working 

memory deficits in MTBI patients.
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ABBREVIATIONS

AD axial diffusivity

AK axial kurtosis

AWF axonal water fraction

CR corona radiata

Daxon intra-axonal diffusivity

De,‖ extra-axonal axial diffusivity

De,⊥ extra-axonal radial diffusivity

DSF digit span forward

DSB digit span backward

DSS digit span sequencing

FA fractional anisotropy

LNS letter-number sequencing

MD mean diffusivity

MK mean kurtosis

MTBI mild traumatic brain injury

NC normal control

RD radial diffusivity

RK radial kurtosis

SLF superior longitudinal fasciculus

TBSS tract-based spatial statistics

WMTI white matter tract integrity
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Figure 1. 
TBSS results show a significant positive correlation between AK and DSB. Mean FA 

skeleton (green) overlaid on the mean FA map. Significantly correlated voxels (corrected p < 

0.05) are shown in heat map overlay in the right SLF in (a) the MTBI group, but not seen in 

(b) the NC group.
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Figure 2. 
TBSS results show a significant positive correlation between FA and LNS. Mean FA 

skeleton (green) overlaid on the mean FA map. Significantly correlated voxels (corrected p < 

0.05) are shown in heat map overlay. (a) In the MTBI group, no correlation was found. (b) In 

the NC group, significantly correlated voxels involve parietal WM, sCR/pCR, bCC/sCC and 

SLF.
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Figure 3. 
TBSS results show a significant positive correlation between AWF and LNS. Mean FA 

skeleton (green) overlaid on the mean FA map. Significantly correlated voxels (corrected p < 

0.05) are shown in heat map overlay. (a) In the MTBI group, no correlation was found. (b) In 

the NC group, significantly correlated voxels involve parietal WM, sCR/pCR and bCC/sCC.
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Figure 4. 
Results of subgroup analysis. (a) Boxplots of AK show a significant difference between the 

MTBI subgroup of 2–4 weeks of injury with DSB < 1 and the MTBI subgroup of 2–4 weeks 

of injury with DSB ≥ 1. (b) Boxplots of FA show significant differences between the MTBI 

subgroup of < 2 weeks of injury with LNS < 1 and the NC subgroup with LNS < 1; and 

between the NC subgroup with LNS < 1 and the NC subgroup with LNS ≥ 1. *p < 0.05.
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Table 1.

Results of the ROI analysis showing significant positive correlations between AK and DSB in the MTBI 

group, and between FA and LNS in the NC group. Corrected p-values (p*) after Benjamini-Hochberg 

correction for multiple comparison are presented. Significant results are highlighted in bold.

Diffusion Metrics vs Working Memory ROI MTBI NC Fisher’s R-to-Z

Pearson Spearman Pearson Spearman

R p* Rho p* R p* Rho p* Z[p]

AK vs DSB right SLF 0.69 0.04 0.75 0.01 0.04 1.20 0.11 1.48 2.32 [0.01]

FA vs LNS right pCR 0.25 2.29 0.24 0.8 0.67 0.04 0.57 0.09 −1.59 [0.06]
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Table 2.

Subgroup characteristics defined by their working memory test z-scores (LNS, DSB < 1 or ≥ 1) and time since 

injury (< 2 weeks or 2–4 weeks).

LNS < 1 LNS ≥ 1

MTBI < 2 weeks MTBI 2–4 weeks NC MTBI < 2 weeks MTBI 2–4 weeks NC

N 5 10 9 3 1 11

age 31 ± 6 31 ± 9 31 ± 8 25 ± 3 31 35 ± 12

LNS −0.13 ± 0.51 0.07 ± 0.41 0.07 ± 0.32 1.55 ± 0.39 2 1.82 ± 0.62

DSB < 1 DSB ≥ 1

MTBI < 2 weeks MTBI 2–4 weeks NC MTBI < 2 weeks MTBI 2–4 weeks NC

N 4 7 12 4 4 8

age 30 ± 6 29 ± 8 31 ± 7 37 ± 8 26 ± 4 37 ± 14

DSB −0.67 ± 0.27 −0.24 ± 0.25 0.08 ± 0.38 1.42 ± 0.5 1.58 ± 0.32 1.79 ± 0.71
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