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Abstract

Phase retrieval, i.e., the reconstruction of phase information from intensity information, is a central 

problem in many optical systems. Imaging the emission from a point source such as a single 

molecule is one example. Here, we demonstrate that a deep residual neural net is able to quickly 

and accurately extract the hidden phase for general point spread functions (PSFs) formed by 

Zernike-type phase modulations. Five slices of the 3D PSF at different focal positions within a two 

micrometer range around the focus are sufficient to retrieve the first six orders of Zernike 

coefficients.

Wavefronts carry two fundamental types of information: (i) intensity information, i.e., 

photon flux, and (ii) optical phase information. Detectors typically used in optical 

measurements rely on the conversion of the incoming fields to electrons. Due to the physics 

of the detection process, without interferometry, only the intensity information of the 

incoming wavefront can be recorded, whereas the phase information is lost. However, it is 

possible to extract useful phase details to some extent from the recorded intensity 

information. This task has been coined the phase problem, an issue of fundamental 

importance not only in optical microscopy but also in many other areas of physics, e.g., x-

ray crystallography, transmission electron microscopy, and astronomy.1-3

The process of solving or approximating the phase problem is generally termed phase 

retrieval (PR), and numerous PR algorithms have been developed. Typically, they involve 

iterative optimization for the phase information under the constraints of the known source 

and target intensities as well as the propagating function.4-9 For example, a set of images of 

a known point source at various axial positions has been used to estimate the pupil phase. A 

recent application of this approach has used PR for the design of tailored phase masks for 

3D super-resolution imaging.10 While these approaches are useful, they are computationally 

demanding and, as a result, relatively slow. Moreover, they require oversampling of the 

feature space, i.e., a small increase in extracted phase information requires a large amount of 

additional intensity information.11,12

Deep neural nets (NNs) have recently been demonstrated to be useful tools in optics and 

specifically in single-molecule microscopy.13,14 In these approaches, a learning process 
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based on known image inputs trains the coefficients and weights of the NN, and the NN then 

processes unlearned images to extract position information or other variables. In general, 

aberrations can arise if the phase distortions from the microscope are not characterized. It 

has been shown that a residual neural net (ResNet)15 is capable of extracting wavefront 

distortions from biplane point spread functions (PSFs), which could be efficiently used to 

correct for aberrations with adaptive optics.16,17 Also, deep learning can be used to recover 

images at low-light conditions18 and to accelerate wavefront sensing.19-21 These findings led 

us to consider whether an approach based on a carefully chosen NN architecture might be 

able to tackle the fundamental and more general problem of PR of general PSFs, i.e., those 

generated from random superpositions of Zernike polynomials. In our design, after learning, 

the NN performs PR using a small set of measurements at a range of axial positions and 

directly returns the phase information as Zernike coefficients, as schematically depicted in 

Fig. 1.

A cornerstone of any approach involving NNs is a sufficiently large dataset for training of 

the NN and an independent validation dataset to assess performance. To provide our NN 

with training and validation data, we turned to accurate PSF simulations. Images of a point 

emitter were simulated by means of vectorial diffraction theory22,23 at focal positions of −1, 

−0.5, 0, 0.5, and 1 μm. The simulated emitter was positioned directly at a glass coverslip, as 

would be typical for a phase retrieval experiment. The emitter is placed in index-matched 

media in this study, but this choice is not fundamental, and index mismatch is 

straightforward to include in the PSF simulation if so desired.24 Phase information was 

introduced by multiplying the Fourier plane fields from the point emitter by a Zernike phase 

factor with random Zernike coefficients of order 1–6 (Noll indices 2–28) with values 

between −λ and λ8—these coefficients define the shape of the final PSF. This choice of 

number of Zernike polynomials usually covers the dominant aberrations in an imaging 

system. Moreover, the higher-order Zernike coefficients tend toward zero in experimental 

settings, but as it was our goal to sample the parameter space equally, we did not impose any 

such limitation. The zero-order Zernike coefficient does not transport phase information, nor 

modify the detected image, and was hence not considered. Furthermore, we included camera 

properties typically encountered with electron multiplying charge-coupled device detectors 

(with the exception of excess noise, which arises from uncertainty in the gain resulting from 

the electron multiplication process), signal and background photons, and Poisson noise.25 

The relevant parameters are summarized in Table S1. Naturally, the chosen parameters are 

specific for a typical high NA experimental situation and can be changed according to the 

requirements of a specific problem.26

Figure 2(a) depicts three representative PSFs at the five simulated focal positions. The 

resulting PSFs display complex shapes and rapid changes in their appearance when the focal 

position is altered, an expected behavior given the variations as large as 2λ in the Zernike 

coefficients up to high-order as visible in Fig. 2(b).

With realistic PSF simulations in hand, the challenge is to define the NN architecture and 

training. We focus on two key aspects identified during our optimizations: (i) training set 

size. The ability of the net to extract the Zernike coefficients sharply decreases when the 

training set is too small. For example, at a training set size of 200 000 PSFs, training was not 
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successful. We used 2 000 000 training PSFs. (ii) Choice of architecture. Simple 

convolutional nets (ConvNets) were not able to return the Zernike coefficients. Presumably, 

a ConvNet with just few layers does not provide enough parameters to learn the complex 

phase information. However, a ConvNet deep enough to exhibit a sufficiently large 

parameter space likely suffers from the so-called degradation or vanishing gradient problem.
15 In short, one might naively assume that for more complex problems, a deeper NN (i.e., a 

NN featuring more layers) offers the parameter space required. However, in praxis, one 

observes a saturation effect, that is, additional layers do not improve the performance. 

Frequently, deeper NNs even perform worse at some point. The reason lies in the 

backpropagation of the gradient from the later to earlier layers: during backpropagation, 

essentially many multiplications are performed. If the gradient is small at the beginning, 

repeated multiplications may yield an almost infinitely small result, which is not helpful in 

directing the net.

These issues are addressed by a simple ResNet architecture.15 The key features of ResNets 

are residual blocks that feature skip connections between earlier and deeper layers, allowing 

for residual mapping. The skipped connection provides a deeper layer with the output x of 

an earlier layer (i.e., an identity mapping of the earlier layer). The layers in between process 

the output, yielding F(x). These two outputs are added, giving the result H(x) = F(x) + x. If 

we consider a single residual block, then F(x) adjusts the input x during training to reduce 

the residual between prediction and ground truth. Importantly, if the NN already performs 

optimally, F(x) will go to 0, which is easy as the identity mapping of x to a later layer 

already provided the later layer with the output from the earlier layer. Without the skipped 

connection, i.e., in a normal ConvNet where each layer is only connected to the layer before, 

this task is much harder, which explains why ResNet architectures provide a solution to the 

vanishing gradient problem.

Our architecture is compact and, as a result, fast (analysis of the validation set with 100 000 

PSFs took about eight minutes, i.e., about 5ms per PSF, on a standard desktop PC, equipped 

with an i7–6700 processor and 16 GB RAM, not using a GPU). We note that with 

conventional PR algorithms, the analysis of 100 000 PSFs would take significantly longer. 

How long exactly depends on the chosen algorithm, the code implementation, stopping 

conditions, and so on, but even a very optimistic assumption of several seconds per PSF 

results in processing time of many days to weeks. Our approach is significantly faster, even 

if the initial NN training time of approximately 12 h is included in the calculation as a 

baseline. Moreover, starting conditions prominently contribute to the performance of 

conventional PR algorithms, and it was recently demonstrated that the convergence and 

speed of conventional PR algorithms benefit from NN-based parameter initialization.20,27 

Therefore, the rapid PR performed by the NN we developed could also be advantageous to 

initialize parameters if further optimization is desired. Finally, such fast analysis lends itself 

to difficult problems like calculation of phase aberrations varying throughout the field of 

view.28,29

The network architecture is diagrammed in Fig. 2(c). The PSFs are supplied to the NN as 

five-channel images, corresponding to the five focal positions. After an initial 2D 

convolution, three residual blocks with batch normalization, ReLU activation, and 2D 
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convolution follow with two maxpooling (MP) steps and one averagepooling step 

afterwards, respectively. As the term “residual” indicates, the output x of a layer n is stored 

before being passed on to the next layer. Later, the earlier output x is added to the output y of 

a deeper layer m. The joint outputs x + y are then passed as input to the next layer m + 1. 

Finally, two fully connected layers are implemented before the final output layer, which 

returns the 27 Zernike coefficients of order 1–6. After each of the two fully connected 

layers, dropout at a rate of 0.1 is implemented to avoid overfitting.30 For a detailed 

description of the relevant concepts, see the supplementary material.

The NN was implemented in Keras with Tensorflow backend and trained on a standard 

desktop PC equipped with 64 GB RAM, an Intel Xeon E5–1650 processor, and an Nvidia 

GeForce GTX Titan GPU. The training parameters are summarized in Table S2. 

Convergence was reached after training for approximately 12 h and 77 epochs. This training 

time is reasonable for deep learning approaches16 and could be strongly reduced if a setup 

with tailored hardware is used. Furthermore, it should be noted that retraining is not 

necessary unless fundamental parameters of the experiment are changed, such as the 

numerical aperture, magnification, or a major realignment. As discussed above, the trained 

NN can perform hundreds of phase retrievals per second on a standard PC.

We now assess the performance of the NN on blind validation images not present in the 

training set, created as above with random Zernike coefficients. Figure 3(a) depicts the 

overall deviation in wavelength units between the predicted Zernike coefficients and their 

ground truth value for the validation dataset (all 27 values for the 100 000 PSFs are pooled). 

The deviations are symmetric and centered at zero, indicating that the NN does not exhibit a 

bias toward over- or underestimating. Also, the relatively small width of the histogram 

(standard deviation of approximately 0.24) indicates reasonably precise predictions.

In agreement with the overall small deviations between prediction and ground truth, the NN 

was able to predict the Zernike coefficients corresponding to single PSFs accurately. This is 

shown for three representative random phase cases in Fig. 3(b) (see Fig. S1 for more 

details).

The predicted Zernike coefficients are close to the ground truth values, but they are not 

perfect. Thus, we wanted to investigate if prediction and ground truth agree on the level of 

the PSFs as well. For this, we performed PR on PSFs using the NN and then calculated the 

shape of the PSFs with the predicted Zernike coefficients. The results are depicted in Figs. 

3(c) and 3(d). Figure 3(c) shows the histogram of mean squared errors (MSEs) between 

input and retrieved PSFs, calculated pixelwise for each slice of all PSFs (orange). As is 

clearly visible, the MSE is low, indicating good agreement between input and retrieved PSFs 

at the level of the individual pixels. Notably, a significant part of the error is to be attributed 

to the Poisson noise in the input PSFs: we calculated the MSE between the input PSFs with 

Poisson noise and the same input PSFs, just without Poisson noise, which would obviously 

be the perfect result for phase retrieval. The MSE between these two sets of PSFs is depicted 

by the gray histogram, which shows large overlap with the orange histogram, i.e., with the 

MSE between retrieved and input PSFs. Figure 3(d) shows the retrieved PSFs corresponding 

to the plots in Fig. 3(b). Evidently, the retrieved PSFs agree very well with the input PSFs. 
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As expected from the MSE analysis, there are minor differences, but not only the overall 

shape but also the intricate details of the complex PSFs are recovered at a high level of detail 

without the need to perform additional refinement using conventional PR algorithms.

To explore the utility of our PR approach, we asked whether the NN is able to perform PR 

on PSFs already used in praxis. One of the useful PSFs for extracting the 3D position is the 

Tetrapod PSF with the 6 μm range (Tetra6).31,32 Here, we generated input PSFs under no-

noise conditions to focus on the performance of the PR alone. The results are depicted in 

Fig. 3(e). Clearly, the Tetra6 PSF is well retrieved. In this context, it should be mentioned 

that some Zernike coefficients were accurately predicted to values well outside the training 

range of −λ to λ to retrieve the PSF, underscoring the robustness of the NN. Also, we note 

that including noise in training is not ideal when the NN is used for phase mask design given 

a desired PSF. In this case, it is more reasonable to train the NN in noise-free conditions to 

just concentrate the information on the effect of the phase mask: if a phase mask is to be 

designed, one provides the desired, ideal PSF without noise to our NN. Then, the calculation 

yields the Zernike coefficients that will return the desired PSF, which can subsequently be 

used for the phase mask. The validity of this approach was confirmed by retrieving the 

Tetra6 PSF with a NN that was trained on noise-free PSFs, which yielded an improved result 

[labeled “no noise” in Fig. 3(e)]. Nevertheless, as the figure shows, the NN that was trained 

on PSFs with noise still performs well for the Tetrapod. Thus, our approach also allows one 

to design a target PSF and then use the NN to develop a phase mask yielding this PSF, 

possibly in combination with other approaches for phase mask design developed recently.10 

For a detailed analysis of different Zernike coefficient ranges, see Fig. S1.

In conclusion, we have developed a deep residual neural net that performs fast and accurate 

phase retrieval on complex PSFs from only five axial sample images of a point source. We 

investigated the net architecture and the training data parameters and verified the capability 

of our approach on realistic simulations of complex PSFs carrying Zernike-like phase 

information. We also demonstrated that the NN is able to perform accurate PR on the 

experimentally relevant Tetra6 PSF. From this, it will be straightforward to expand this 

approach to PR of non-Zernike-like phase information using different basis sets and to 

transfer the residual net concept to more applied tasks such as phase mask design. 

Fundamentally, we envision that this approach will be relevant not only for optics but also 

for any field where phase information needs to be extracted from intensity information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Workflow. A stack with a few images of the PSF at different focal positions f is supplied to a 

deep residual neural net, which processes the images and directly returns the Zernike 

coefficients of order 1–6 (Noll indices 2–28) that correspond to the phase information 

encoded in the PSF images.
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FIG. 2. 
(a) Three representative PSFs (A, B, and C) at focal positions from −1 to 1 μm. (b) Zernike 

coefficients for the three representative PSFs shown in (a). For clarity, only Noll indices that 

correspond to a change in the order of the Zernike coefficients are marked along the x-axis. 

(c) Schematic NN architecture. The PSF stack is supplied to the NN as a 25 × 25 pixel 

image with five channels, corresponding to the five focal positions. After 3 × 3 2D 

convolution with 64 filters, three residual blocks follow, each consisting of two stacks of 

batch normalizations, ReLU activation, and 3 × 3 2D convolution with 64 filters. After each 

residual block, the output of the residual block and its respective input are added. Then, 2 × 

2 pooling is performed (MaxPooling, MP, after the first two residual blocks and average 

pooling, AP, after the third). Finally, two fully connected layers with 512 filters follow, each 

with ReLU activation and a dropout layer (dropout rate=0.1). The last layer returns the 

predicted Zernike coefficients.

Möckl et al. Page 9

Appl Phys Lett. Author manuscript; available in PMC 2020 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 3. 
(a) Histogram of the differences in wavelength units between the retrieved and the ground 

truth values for all Zernike coefficients in the validation dataset. (b) Representative examples 

for the agreement between retrieved and ground truth Zernike coefficients for three PSFs. 

Notably, the prediction is accurate over the whole range of Zernike coefficients, up to the 

highest order. (c) Histogram of mean squared errors between input and retrieved PSFs, 

calculated pixelwise for each PSF slice of the 100 000 validation PSFs (orange). Input and 

retrieved PSFs are normalized. The high agreement between the retrieved and true Zernike 

coefficients translates to low MSEs. A significant fraction of the error stems from Poisson 

noise in the input PSFs, evident from the MSE between input PSFs without noise and input 

PSFs that include noise (gray histogram—“noise only” refers to the influence of Poisson 

noise in the input PSFs). (d) Comparison between the input PSFs at the five simulated focal 

positions and the PSFs generated from the retrieved Zernike coefficients, corresponding to 

the data plotted in (b). The agreement is very good. Note that the retrieved PSFs do not 

include background or Poisson noise, whereas the input PSFs to be retrieved do. (e) PR of 

the Tetrapod PSF with the 6 μm range (Tetra6). Retrieval results from an additional NN are 

included, which was trained on PSFs not including noise (no noise). Note in this case, the 

input PSFs do not include noise as would typically be the case for a specific phase mask 

design. The retrieved PSF approaches the ground truth well. As expected, the NN that was 

trained on PSFs without noise performs slightly better.
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