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1. Introduction

Accurately measuring pain in humans and rodents is essential to unravel the neurobiology of 

pain and discover effective pain therapeutics. However, given its inherently subjective 

nature, pain is nearly impossible to objectively assess. In the clinic, patients can articulate 

their pain experience using questionnaires and pain scales [8, 13, 20], but self-reporting can 

be unreliable due to various psychological and social influences or difficulties for some 

patients to verbalize their experience (e.g., infants, toddlers, those with neurodevelopmental 

disorders) [7] [25]. At the bench, these challenges are even more daunting as researchers 

rely on the behaviors of rodents to measure pain or pain relief. Given this, there is a growing 

realization among pain researchers, clinicians, and funding entities, that these traditional 

approaches of assessing pain in rodents may be flawed. Importantly, these flaws may have 

contributed to several failed drugs that initially showed promise as analgesics and point 

towards inconsistencies in our understanding of basic pain neurobiology [5, 17, 28].

This has prompted the field to seek new and more reliable ways to measure pain in rodents. 

In concert with these efforts, behavioral neuroscientists across several fields are developing 

new tools to improve their own behavioral assays. In this review, we describe some of these 

efforts and provide background for the wide adoption of these new tools by the pain research 

field to speed the translation of basic science findings to the clinic.
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2. Sub-second analysis of acute pain assays aids in quantifying the 

sensory experience

The predominant measurement for pain sensation in rodents is the paw withdrawal from a 

noxious thermal, chemical, or mechanical stimulus. Features of the withdrawal response 

such as latency or frequency occur over the span of a few seconds and can be easily scored 

by novice experimenters. However, meaningful features that occur on a millisecond 

timescale go unnoticed with the unaided eye. To circumvent this, researchers have turned 

towards high-speed video imaging, revealing that millisecond behavioral features can be 

resolved and that these features contain meaningful information about the animals’ internal 

pain state.

In one study, two of us (I.A-S, N.T.F) imaged the behavior of freely moving mice in small 

enclosures at 500–1,000 fps to identify the differences between sub-second movements 

induced by noxious versus innocuous stimulation of the hind paw [1]. Through statistical 

analysis and machine learning, we found that three features (paw height, paw velocity, and a 

combinatorial score of pain-related behaviors including orbital tightening, paw shaking, paw 

guarding, and jumping) could reliably distinguish withdrawals induced by noxious versus 

innocuous stimuli. This opened the possibility of creating a “mouse pain scale” which used a 

principle component analysis to combine the three features into a single number (similar to 

the clinically used zero-to-ten scale). We further demonstrated the utility of this pain scale 

by determining the sensation evoked by three von Frey hair (VFH) filaments (0.6 g, 1.4 g, 

and 4.0 g) and found that only the 4.0 g induced a pain-like withdrawal, while the 0.6 g and 

1.4 g filaments induced a withdrawal more similar to that seen with innocuous stimuli. 

Finally, we examined where along this pain scale optogenetic activation of two different 

nociceptor populations, Trpv1Cre and MrgprdCre, would fall. Predictably, activation of 

Trpv1-lineage neurons induced a withdrawal within the pain domain. However, activation of 

the non-peptidergic Mrgprd nociceptors led to a withdrawal within the non-pain domain. 

Although historically considered a nociceptor population, data from other reports also 

suggest these neurons are not sufficient to transmit pain signals at baseline [4; 10; 15; 26].

Other groups have also extracted meaningful information from sub-second behaviors. One 

group identified that the latency of response to noxious stimuli was shorter (50–180 ms) than 

to innocuous stimuli (220–320 ms) [6]. Another group resolved sub-second movement of 

whisker vibrissae, body, tail, and hind paw movement to identify that an animal’s posture 

can impact the latency of noxious-related movements, suggesting circuit-level inhibitory 

control of the behavior [9]. One study demonstrated that even using a lower frame rate (240 

fps) with an Apple iPhone6 camera could resolve sub-second paw withdrawal, paw 

guarding, and jumping [3]. Collectively, these studies reveal that meaningful data can be 

extracted from enhanced temporal resolution of stimulus-evoked pain assays, allowing for a 

better approximation of an animal’s pain state.
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3. Considerations for using high-speed videography to capture sub-

second pain behaviors

Moving from webcams, camcorders, or smartphones to dedicated high-speed cameras to 

study pain requires some additional considerations. Although financial considerations rank 

high on the list, the costs for cameras that can record around 1k fps are dropping. Another 

consideration is the lighting used to capture the videos. Most newer cameras can be activated 

with infrared lighting that will not overtly perturb the animal’s behavior. Newer high-speed 

cameras also produce minimal sound, as to not disturb the animal. However, we still 

recommend habituating animals to any sounds a camera generates. Lastly, an important 

consideration is the hard drive space available on the camera itself, since high-speed videos 

can be several GB and most high-speed cameras must first save a video on internal space 

before transferring to external hard drives. We have found that at least 4–8 GB of internal 

memory on a high-speed monochrome camera is necessary for 5–10 seconds of high 

resolution recording (1024 × 1024 pixels) of behavior – which allows sufficient temporal 

resolution to capture sub-second and multi-second pain behaviors. With these improvements 

and reductions in costs, high-speed imaging is accessible enough that more labs in the field 

should consider incorporating high-speed imaging when evaluating paw withdrawal as an 

endpoint since such recordings can be used to better define the animal’s behavioral state 

when the paw withdrawal occurs.

4. Supervised automated tracking and pose estimation with machine 

learning and deep neural networks to increase pain assessment workflow

High-speed imaging with manual tracking allows researchers to record behavior at 

millisecond resolution timescales, but the process of manually scoring and tracking these 

movements of multiple body areas across potentially thousands of frames or hours of data 

can be laborious and influenced by experimenter bias or methodological inconsistencies. 

Several research groups are developing new ways of automatically tracking animal posture 

(pose estimation) and the movements of body regions of interest (bROI) in animals ranging 

from invertebrates to vertebrates [11].

One new platform, DeepLabCut, has already been widely adopted across the behavioral 

neuroscience community [22] (Table 1). This open source system uses deep neural networks 

to perform pose estimation without the need of placing reflective markers on the animals. 

DeepLabCut was built from an earlier pose estimation algorithm called DeeperCut, which 

used thousands of labeled datasets to accurately track body parts of humans engaged in 

diverse tasks from rowing to throwing a baseball [16]. The goal of DeepLabCut was to 

modify the existing DeeperCut algorithm to achieve human-level tracking accuracy in 

animals while also reducing the amount of computer training. The use case of this software 

relies on an experimenter manually identifying all bROI in as few as 200 frames. The 

software then uses those frames to train itself to identify the same bROI throughout the 

entire video or other videos with similar camera angles that contain one or more animals. 

Thus, after the initial 200 frames of training, the software can track animal movement in all 

future experiments.

Fried et al. Page 3

Pain. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Another deep-learning pose estimation program, LEAP [23], is also gaining traction in the 

behavioral neuroscience community (Table 1). Initially developed for Drosophila, LEAP 

moves beyond DeepLabCut by introducing a graphical user interphase (GUI) to label body 

features. Similar to DeepLabCut, LEAP uses a convolutional neural network capable of 

making predictions of bROI in a given image. With LEAP, users only need to label the first 

10 images of a dataset for training, which can be done in one hour. The authors demonstrate 

that LEAP can faithfully track bROI in both flies or freely behaving mice. Similar to 

DeepLabCut, LEAP is also free and open source with online instructions. At the time of this 

publication, a new version of LEAP, SLEAP (Social LEAP Estimates Animal Poses), has 

been announced but not yet published and will include the ability to track multiple animals 

in a single video.

Importantly, automated tracking of behavioral features can also be applied to the detection of 

spontaneous pain in rodents. The Mogil lab previously developed a mouse grimace scale 

(MGS) based on changes in facial expressions induced by noxious stimuli of moderate 

duration (10 min – 4 h) [18]. However, the MGS relies on humans scoring a small number of 

frames in videos, making the MGS labor intensive and subject to variability across research 

groups. To overcome this, the Mogil and Zylka labs built a new platform for automated 

scoring of the MGS (aMGS), using a convolutional neural network [24] (Table 1). The 

aMGS was trained with nearly 6,000 facial images of albino mice either in pain or not in 

pain for testing and validation. Using a post-operative pain assay, the aMGS was able to 

accurately predict pain, and relief of pain, with an accuracy equal to that of a human scorer. 

As automation of the MGS platform continues to develop, this technology should become a 

mainstay platform used in preclinical pain and analgesic assessment.

5. Unsupervised identification and measurement of novel pain-related 

behavioral features

DeepLabCut and LEAP markerless tracking software allow a researcher to easily track bROI 

and then perform analysis on the subsequent data. However, these software platforms rely on 

the user identifying movement features of bROI. In some cases, there may be rich 

information not easily recognizable to humans. Thus, some groups are working to develop 

deep learning technologies that can automatically identify important features an 

experimenter should focus on. In these instances, instead of a user identifying a movement 

feature, deep learning software can identify previously unrecognized movement features that 

contain important information to distinguish between experimental groups.

The Datta lab has applied this approach to the development of a platform, MoSeq, to decode 

spontaneous mouse behaviors within an open field using three-dimensional (3D) depth 

imaging and three separate cameras (Table 1). Using this, they revealed that normal mouse 

behavior is structured into 60 different movement blocks (e.g., darting, freezing, low/high 

rearing, etc) of roughly 350 ms in length with mice frequently transitioning between these 

blocks [27]. They coined these movement blocks “behavioral syllables”, similar to the 

syllables used to create words in language. Importantly, these syllables were not identified or 

defined by the experimenter. Instead, they were classified automatically by deep neural 
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networks. As a proof of principle, researchers in the Datta lab re-evaluated the walking 

phenotype of mouse mutants for a gene important for fluid locomotion. Although previous 

kinematic assessment identified abnormal motor movement patterns, this new platform 

uncovered a so-called ‘waddle’ walking phenotype in both homozygous and heterozygous 

mutant mice – a phenotype missed by other scoring techniques[2; 12; 19; 21].

While powerful, MoSeq is not a turn-key solution and requires substantial code 

customization and a fulltime computer scientist. To make unsupervised behavioral analysis 

more accessible, the new software suite, B-SOID, developed by the Yttri lab, was created in 

which the automated tracking capabilities of DeepLabCut were combined with feature 

extraction similar to MoSeq [14] (Table 1). The current iteration of B-SOID tracks six body 

parts and categorizes those positions into seven behaviors that have been manually defined 

in the software: pause, rear, groom, sniff, locomote, orient left, orient right. Although fairly 

general, these behaviors enable researchers to easily and automatically identify trends and 

sequences in the behaviors associated with whatever stimulus or condition is applied. 

Alternatively, B-SOID also offers the ability to segment statistically different behaviors 

based entirely on the data without any manual definition from the user. This feature of the 

software is perhaps most promising, as it will enable pain researchers to discover novel, non-

obvious behaviors that can provide insight into the rich experience of pain. One current 

limitation is that B-SOID only accepts video recorded from beneath the animal. Many 

behaviors that pain researchers care about, like itching or scratching, are best captured either 

from above, the side, or a combination of multiple views demonstrating the need for B-

SOID to expand to include multi-angle analysis. Nevertheless, B-SOID represents a 

significant advance in terms of ease of use and should enable pain researchers with minimal 

programming skills to take advantage of unsupervised behavioral analysis.

6. Future Directions

It should be noted that machine learning-based tools for pain research are still in their 

infancy. We need a greater understanding of accuracy, how well different tools predict 

analgesic efficacy across a broad range of drugs and pain models, concordance between 

tools and labs, and ease of adoption for pain researchers. Major barriers still exist despite 

open source sharing of new analytic pipelines. Most pain research labs lack the personnel to 

install, troubleshoot, and operate these somewhat finicky software packages. Efforts must be 

expanded to simplify the user interface and operability to facilitate broader use. Still, the 

combination of markerless tracking for automated pose estimation and deep learning 

networks for feature extraction will undoubtedly help the field identify new pain-related 

behaviors at both sub-second and multi-minute time scales while making already established 

behaviors easier and more reliable to measure. It is possible that researchers may identify 

nuances to rodent pain-behavior by tracking an eye, ear, paw, or even a single digit, vastly 

improving upon our ability to use rodents in pain research.

While the technologies detailed here will undoubtedly increase an experimenter’s accuracy 

at measuring acute pain, it remains uncertain how well each of these technologies will 

perform in measuring chronic states, such as neuropathic pain. Since animals in chronic pain 

states often guard their injured limbs or show reductions in mounting robust motor outputs, 
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this may be a rate-limiting factor since some of the platforms described above rely on 

animals performing quick and intense movements (Figure 1). Therefore, it is possible that an 

advanced version of aMGS, and the unsupervised learning platforms with the capacity to 

detect spontaneous pain behaviors such as MoSeq or B-SOID, may be the most reliable in 

detecting subtle phenotypes that define the pain states during neuropathic or inflammatory 

pain.

To end where we began, a very small number of basic science findings in preclinical pain 

models are translated into the clinic as novel pain therapeutics. Therefore, another future 

direction could be for labs to perform pain behavior testing in rodents with some of the 

technologies described here, and test both known analgesics and drugs that showed 

painkilling promise in rodents but failed subsequently in clinical trials [29]. What if 

increased resolution in pain measurement in rodents could save us valuable time and energy 

by not pursuing the wrong targets? Only time will tell the true value in using these newer 

tools to study pain in mice and rats, but if our predictions are correct, the field has reason to 

be optimistic.
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Figure 1. High-speed videography reveals differences in paw movements to innocuous versus 
noxious stimuli.
Red paw trajectory patterns display path of stimulated paw from lift to return using 

automated paw tracking approaches. Orbital (eye) tightening, a MGS action unit indicative 

of pain, is also visible following pinprick (B), but not in response to an innocuous stimulus 

(A).
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Table 1.

Software for markerless tracking and feature extraction of animal behavior.

Software 
Name Application

Reference 
PMID

Open 
source?

Training 
Tutorials? Software Link Notes

DeepLabCut Markerless 
Tracking of 
bROI

30127430, 
31227823

Yes Yes https://github.com/
AlexEMG/
DeepLabCut

Markerless tracking removes 
need for reflective markers, 
minimal training of deep 
neural networks, multi-animal 
pose tracking integration. 
With lack of GUI, coding can 
be challenging for novice user.

LEAP Markerless 
Tracking of 
bROI

30573820 Yes Yes https://github.com/
talmo/leap

Markerless tracking removes 
need for reflective markers, 
minimal training of deep 
neural networks, GUI 
available. However, not able 
to track multiple animals in 
single video.

SLEAP Markerless 
Tracking of 
bROI

Unpublished na na na Markerless tracking removes 
need for reflective markers, 
minimal training of deep 
neural networks, GUI 
available, multi-animal pose 
tracking integration 
announced.

aMGS Automated 
Measurement of 
Mouse Grimace 
Scale

29546805 Yes Yes https://github.com/
BenjaminCorvera/
MGS-pipeline-
distribution

Automated tracking of MGS 
increases workflow and 
decreases variability of 
scoring, fast detection of 
spontaneous behavior. 
Currently only works with 
albino mice.

MoSeq Feature 
Extraction

26687221 Yes No Need an MTA to 
access software

Unsupervised extraction of 
important behavioral features. 
However, requires advanced 
computing ability.

B-SOID Pose Estimation 
& Feature 
Extraction

Preprint: https://
doi.org/
10.1101/770271

Yes Yes https://github.com/
YttriLab/B-SOID

Unsupervised extraction of 
important behavioral features, 
automated markerless 
tracking. However, current 
version only uses video from 
below, and users can not 
define unique behaviors to 
track.
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