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Abstract

Uveal melanoma is the most common primary malignancy of the eye, and a number of discoveries 

in the last decade have led to a more thorough molecular characterization of this cancer. However, 

the prognosis remains dismal for patients with metastases, and there is an urgent need to identify 

treatments that are effective for this stage of disease. Animal models are important tools for 

preclinical studies of uveal melanoma. A variety of models exist, and they have specific 

advantages, disadvantages, and applications. In this review article, these differences are explored 

in detail, and ideas for new models that might overcome current challenges are proposed.
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1 | INTRODUCTION

Uveal melanoma is a rare (estimated incidence of 6 cases per million) and unique subtype of 

melanoma that arises in the uveal tract of the eye, most commonly in the choroid (Damato & 

Damato, 2012; McLaughlin et al., 2005). Local interventions, such as radiation therapy and 

enucleation, are effective at treating the primary tumor (Krantz, Dave, Komatsubara, Marr, 

& Carvajal, 2017). However, up to half of the patients will develop metastatic disease, 

predominantly to the liver (Rietschel et al., 2005). For these patients, liver-directed therapy 

and participation in clinical trials are recommended, but most die from their disease, and 

median survival is only 10.2 months (Khoja et al., 2019; Kujala, Makitie, & Kivela, 2003; 

National Comprehensive Cancer Network).
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Despite this, great strides have been made in understanding the molecular features of uveal 

melanoma. In the past decade, the collective work from several groups has led to the 

identification of important recurrent mutations and overactive signaling pathways in this 

cancer. Early oncogenic driver mutations occur in a nearly mutually exclusive pattern in the 

guanine nucleotide-binding protein subunit alpha-q/11 signaling pathway (Field et al., 2018; 

Moore et al., 2016; Robertson et al., 2017). This includes constitutively active variants of 

GNAQ and GNA11, which are found in over 90% of cases (Van Raamsdonk et al., 2009, 

2010). A smaller subset of tumors harbor activating mutations in the G protein-coupled 

receptor cysteinyl leukotriene receptor 2 (CYSLTR2) or phospholipase C beta 4 (PLCB4) 

(Johansson et al., 2016; Moore et al., 2016). There is a second node of nearly mutually 

exclusive mutations that classifies uveal melanomas and affects prognosis. Inactivating 

mutations are found in BRCA1-associated protein 1 (BAP1), while recurrent point mutations 

are observed in the eukaryotic translation initiation factor 1A X-linked (EIF1AX) or a 

splicing factor such as SF3B1 (Field et al., 2018; Harbour et al., 2010, 2013; Martin et al., 

2013).

The molecular makeup of a particular uveal melanoma has significant implications for 

predicting metastasis. Most importantly, tumors with loss-of-function BAP1 mutations carry 

the worst prognosis, as approximately 84% of metastatic uveal melanomas are of this 

subtype (Harbour et al., 2010; Shain et al., 2019). Specific cytogenetic alterations have also 

been well described in this cancer (Aalto, Eriksson, Seregard, Larsson, & Knuutila, 2001; 

Anbunathan, Verstraten, Singh, Harbour, & Bowcock, 2019). Monosomy 3 co-occurs with 

BAP1 mutation, thereby eliminating both functional alleles (Field et al., 2018; Robertson et 

al., 2017). 6q loss, 1q gain, and 8q gain are also significantly enriched in uveal melanoma 

metastases (Ehlers, Worley, Onken, & Harbour, 2005; Hammond et al., 2015; Shain et al., 

2019).

These discoveries were largely enabled by the analysis of patient tumor specimens and have 

greatly advanced our understanding of the molecular underpinnings of uveal melanoma 

tumorigenesis and their prognostic significance. Various animal models have likewise been 

indispensable in elucidating the biology and potential therapeutic vulnerabilities of this 

cancer (Cao & Jager, 2015; Stei, Loeffler, Holz, & Herwig, 2016; Yang, Cao, & 

Grossniklaus, 2015). In the past several years, there have been many promising preclinical 

studies that have used these models to identify novel treatment strategies, several of which 

are now in the early stages of clinical trials (Vivet-Noguer, Tarin, Roman-Roman, & 

Alsafadi, 2019; Yang, Manson, Marr, & Carvajal, 2018).

In this review article, we discuss the strengths and weaknesses of existing animal models of 

uveal melanoma, with an emphasis on mouse models. We also identify unmet needs that will 

require future model development and refinement. The goal of any animal model of uveal 

melanoma should be to faithfully recapitulate the processes of tumor initiation, growth, 

metastasis, and response to therapy as observed in patients with this disease.
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2 | ANIMAL MODELS OF UVEAL MELANOMA

Though the focus of this review is mouse models of uveal melanoma, other species certainly 

have their advantages. Rabbits (Oryctolagus cuniculus), for example, have large eyes that 

facilitate the implantation of tumor cells and subsequent monitoring using techniques such 

as fundoscopy, ultrasound, and magnetic resonance imaging (Bontzos & Detorakis, 2017; 

Gao, Tang, Liu, Yang, & Liu, 2018). The zebrafish (Danio rerio) is a model organism that 

has been used more widely in many scientific fields in recent years (Meyers, 2018). Both 

xenograft (Fornabaio et al., 2018; van der Ent et al., 2014) and transgenic (Mouti, Dee, 

Coupland, & Hurlstone, 2016; Perez, Henle, Amsterdam, Hagen, & Lees, 2018) zebrafish 

models of uveal melanoma have been developed. These models are excellent for high-

throughput pharmacologic screening and in vivo microscopy. The genetic models have 

yielded valuable insights into uveal melanoma signaling, such as the establishment of the 

importance of YAP activation in the initiation of this cancer. However, tumorigenesis in 

these models required mutation of p53, and metastasis was difficult to assess because of the 

induction of multiple primary tumors (Mouti et al., 2016; Perez et al., 2018).

Mice (Mus musculus) are the most widely used laboratory animal in the study of uveal 

melanoma (Cao & Jager, 2015). Their fecundity, gestation time, and size make them the 

most cost-effective mammalian model (Zuberi & Lutz, 2016). Furthermore, genetic 

manipulation of mice has produced various strains that are used in many uveal melanoma 

models. The primary goals of this review are to compare the different types of mouse models 

of uveal melanoma and propose directions for further development.

3 | INOCULATION SITES

The majority of murine models of uveal melanoma require the inoculation of cells or tumors 

into mice. Some uveal melanoma cell lines can be grown subcutaneously, which is 

convenient for measuring growth and response to therapy. However, others grow poorly 

subcutaneously but flourish in the tissue from which they were derived (Ozaki et al., 2016). 

In these cases, orthotopic models are preferable and may better model the human disease. 

Models of primary uveal melanoma in which the route of inoculation results in growth in the 

iris, ciliary body, or choroid are considered orthotopic (Figure 1). Inoculation of cells into 

the anterior chamber of the eye was one of the first techniques developed and reliably 

produces tumors in the iris that are capable of metastasis (Niederkorn, 1984). In 2000, a 

suprachoroidal injection technique was described in which cells are deposited into the 

posterior compartment (not to be confused with posterior chamber) of the eye (Dithmar, 

Rusciano, & Grossniklaus, 2000). In this approach, the needle is inserted through the limbus 

and into the choroid. Injected cells occupy the suprachoroidal space and likely spill into the 

subretinal space and vitreous. This technique is advantageous because it rapidly produces 

tumors in the choroid and ciliary body, the sites at which uveal melanoma most commonly 

occurs in patients. Furthermore, it reduces extraocular growth as compared to 

transconjunctival inoculations and consistently produces distant metastases (Tables 1 and 

2a,b). A third type of orthotopic model is intravitreal injection. Although uveal melanoma 

does not arise in the vitreous humor, this environment is supportive of tumor growth and 

injected cells mimic human disease by invading and involving the uveal tract (Kilian et al., 
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2016; Yoo et al., 2016). All three of the above inoculation methods are amenable to 

combination with enucleation, which allows for longer follow-up and the study of metastatic 

outgrowth.

The eye is bypassed in some models in order to more quickly and reliably produce large 

tumors in visceral organs, especially the liver. Intravenous injection into either the retro-

orbital sinus or tail vein mimics the latter part of the metastatic cascade—hematogenous 

dissemination, arrest and extravasation in distant sites, and metastatic colony formation and 

growth. The liver and lungs are the most frequently reported sites of experimental metastasis 

with these routes of injection (Tables 1 and 2a,b). Others have developed the intrasplenic 

inoculation, which consistently produces tumors in the liver (Barisione et al., 2015; 

Gangemi et al., 2014, 2012; Jin et al., 2018). Finally, direct implantation of cells or tumors 

into the liver also results in florid growth in an orthotopic model of metastatic uveal 

melanoma (Kageyama et al., 2017; Ozaki et al., 2016).

Irrespective of the location of injection, disease progression (e.g., tumor growth and/or 

metastatic dissemination) can be studied in real time using non-invasive imaging methods 

such as bioluminescence imaging (Barisione et al., 2015; Surriga et al., 2013). For this 

technique, the injected cells have been transduced to stably express a luciferase reporter. 

When the graft-bearing mice are injected with luciferin, the tumor cells emit light that can 

be detected by an optical imaging instrument such as Perkin Elmer’s In Vivo Imaging 

System (IVIS). The intensity of the signal has been demonstrated to be a suitable surrogate 

for tumor size and thus enables dynamic evaluation of the effects of different experimental 

conditions on tumor progression (Cosette et al., 2016; Poeschinger, Renner, Weber, & 

Scheuer, 2013).

4 | SYNGENEIC CUTANEOUS MELANOMA MOUSE MODELS FOR 

SIMULATING UVEAL MELANOMA

The syngeneic cutaneous melanoma mouse model has been used for decades in uveal 

melanoma research. In this system, cutaneous melanoma cells are implanted in mice of the 

same genetic background as the mice from which the line was derived. Although the cell 

lines used are not uveal in origin, this system allows for the investigation of intraocular 

growth and metastasis of melanoma cells, as many of these lines metastasize to the liver 

(Table 1). This mimics the behavior of uveal melanoma in humans and allows for the study 

of the full metastatic process, including local invasion, intravasation, survival in the blood, 

extravasation, and growth in distant organs. The ability to examine the interaction between 

tumor and host cells as the cancer progresses in an immunocompetent animal is arguably the 

greatest strength of this model. Additionally, recipient mice may be genetically altered in 

order to study specific contributions of the host in melanoma progression (Lattier, Yang, 

Crawford, & Grossniklaus, 2013; Stei, Loeffler, Kurts, et al., 2016).

The most widely used syngeneic model is the inoculation of C57BL/6 mice with the 

B16LS9 cell line, a derivative of the B16 cutaneous melanoma line that was enriched for 

hepatic metastatic propensity through serial in vivo passaging (Rusciano, Lorenzoni, & 

Burger, 1994). This cell line metastasizes to the liver from the eye, and its use has led to 
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valuable insights into the behavior of metastatic melanoma. For instance, this model was 

used to show that natural killer cells and pigment-derived epithelial factor play distinct roles 

in counteracting intrahepatic growth of melanoma cells (Jones, Yang, Zhang, Morales-

Tirado, & Grossniklaus, 2019). Although B16LS9 cutaneous melanoma cells were used, the 

histological growth patterns of the hepatic metastases in the mouse model were similar to 

those observed in the livers of patients with metastatic uveal melanoma (Grossniklaus et al., 

2016).

The primary disadvantage of the syngeneic model is that available mouse melanoma cell 

lines are of cutaneous origin, so the mutations and other molecular drivers of these cells 

differ from those found in human uveal melanoma. Therefore, their behavior, especially their 

response to therapy, may differ from what is observed in patients. Interestingly, there are a 

few syngeneic models that do carry canonical uveal melanoma mutations. Immortalized 

mouse melanocytes transduced with driver mutations found in patients undergo oncogenic 

transformation and are capable of producing tumors and even metastases (Moore et al., 

2016; Van Raamsdonk et al., 2010). Additionally, the HCmel12 mouse cutaneous melanoma 

cell line has been reported to carry a GNA11Q209L variant (Schrage et al., 2015). Further 

details on other mutations in this cell line would allow for a more complete assessment of its 

suitability as a model for uveal melanoma. In the future, if mouse uveal melanoma cell lines 

could be derived from the genetically engineered mouse models discussed below, they would 

be powerful tools for syngeneic models. This strategy would allow for the controlled 

manipulation and study of bona fide uveal melanoma in an immunocompetent host.

5 | XENOGRAFT MOUSE MODELS OF UVEAL MELANOMA

Xenograft models are another widely used approach. As the name implies, cells or tumors 

from a foreign source are grafted into mice. Most commonly, human uveal melanoma cell 

lines are used. The primary advantage of these models is that the cells are derived from 

patients. As such, they largely retain molecular features of the original tumor (Amirouchene-

Angelozzi et al., 2014; Griewank et al., 2012; Jager, Magner, Ksander, & Dubovy, 2016). 

This technique is therefore well-suited for studying tumor signaling and response to 

treatment. Many recent publications detailing new potential treatments for uveal melanoma 

utilize xenograft models (Table 2a,b). Another advantage of xenografts is reproducibility 

from mouse to mouse (Gould, Junttila, & de Sauvage, 2015). Many human uveal melanoma 

cell lines have been described, although some are not commercially available. Frequently 

used cell lines with validated uveal melanoma mutations are included in Table 2a,b. Many of 

these xenograft models are useful for studying metastasis, as they produce tumors in organs 

such as the liver and lungs. It is also worth noting that some cell lines were derived from 

human uveal melanoma metastases. These are especially applicable for studying tumor 

growth in visceral organs such as the liver.

Authentication of uveal melanoma cell lines for use in xenograft models is critical. Some 

lines historically thought to be uveal melanoma have been found to harbor BRAFV600E 

mutations and are now recognized as being of cutaneous origin (Griewank et al., 2012; Yu et 

al., 2015). Furthermore, several of these were found by short tandem repeat (STR) analysis 

to be the same cell line (Folberg et al., 2008; Yu et al., 2015). Validation of uveal melanoma 
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cell lines (including species confirmation, STR analysis, and pathogen detection) by 

individual laboratories is strongly encouraged. However, even after careful molecular 

characterization of any cancer cell line, the ability of the cells to faithfully recapitulate the 

behavior of their parental tumors has been questioned due to changes in molecular features 

that can result from culturing them in vitro (Ben-David et al., 2018; Gillet, Varma, & 

Gottesman, 2013; Goodspeed, Heiser, Gray, & Costello, 2016). An example of this is that 

the karyotypes, including the status of chromosome 3, of several of the older cell lines differ 

from those of the patients’ original tumors (Jager et al., 2016). Additionally, it has been 

demonstrated that the gene expression profiles of uveal melanoma cell lines in culture 

diverge from their source tumors even after short-term passaging (Mouriaux et al., 2016). 

One way to avoid these problems is to implant human tumor specimens directly into mice; 

this is the basis of patient-derived xenografts.

Patient-derived xenograft (PDX) models are relatively new in the uveal melanoma field but 

have demonstrated considerable translational potential. The research group led by Didier 

Decaudin has been the most successful and prolific in generating PDX models of uveal 

melanoma (Table 3). They implant fresh primary and metastatic tumor specimens in the 

interscapular fat pad of severe combined immunodeficient (SCID) mice and achieve an 

engraftment rate of 28% (Némati et al., 2010). Importantly, the tumors that grow in these 

mice maintain mutations, chromosomal imbalances, and histopathological features of the 

tumors from which they were derived (Carita, Nemati, & Decaudin, 2015). These PDX 

models have also been used for the derivation of new cell lines with clinically relevant 

features such as loss of BAP1 expression (Amirouchene-Angelozzi et al., 2014). They have 

also been effective for assessing the efficacy of novel combination therapies to treat uveal 

melanoma (Amirouchene-Angelozzi et al., 2016; Carita et al., 2016).

Another exciting recent development has been the generation of PDX models from hepatic 

uveal melanoma metastases (Kageyama et al., 2017). In these models, tumor specimens 

obtained after surgery or biopsy were surgically implanted into the livers of NOD SCID 

gamma mice. The authors achieved an 83% engraftment rate and found that the histology, 

genetics, and proteomics of the implanted tumors resembled corresponding features of 

patient metastases. Tumors could also be monitored by CT imaging. PDX models such as 

these hold promise for preclinical evaluation of experimental therapeutic compounds and the 

realization of personalized medicine.

Like all models, xenografts have disadvantages. The chief among these is the necessity of 

using immunocompromised mice. This can partially be avoided by taking advantage of the 

immune-privileged nature of the anterior chamber of the eye (Niederkorn, 2012). However, 

this approach can only be used to study the primary tumor, and the majority of grafts 

spontaneously regress (Sutmuller et al., 2000). In this new era of immunotherapy, the 

inability to study the interplay between the tumor and host immune system, especially in 

sites of metastasis, is a major limitation. In uveal melanoma, this is somewhat tempered by 

the low response rate of patients to PD-1 and/or CTLA4 inhibition (Algazi et al., 2016; 

Carvajal et al., 2017). However, other immunomodulatory pathways and cell types have 

been implicated in this cancer and are being actively investigated (Dougall, Kurtulus, Smyth, 

& Anderson, 2017; Robertson et al., 2017; Yang et al., 2016). Mice with humanized immune 
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systems would be ideal recipients for xenograft models of all tumor types. Efforts to create 

such mice are ongoing but are complicated by, among other issues, graft-versus-host disease 

and interspecies differences in cytokine specificity (Allen et al., 2019; Wege, 2018). Other 

criticisms of xenografts, particularly PDX models, include their high cost, low engraftment 

rate, and low throughput (Siolas & Hannon, 2013). These are valid concerns, and the actual 

utility of these models in informing the treatment of patients with uveal melanoma will 

become more apparent in coming years.

Another approach to avoiding artifacts induced by two-dimensional cell culturing is the use 

of three-dimensional (3D) culture systems. Such “tumor organoid” models now exist for 

several cancers, including those arising in the colon, breast, and pancreas (Drost & Clevers, 

2018; Yang, Sun, Liu, & Mao, 2018). 3D cultures derived from patient tumor specimens can 

be grafted into mice (patient-derived organoid xenografts) and faithfully match the 

molecular phenotypes and even treatment responses of the source tumors (Sachs et al., 2018; 

Vlachogiannis et al., 2018). Some even allow for the study of the tumor microenvironment, 

as they incorporate stromal cells such as cancer-associated fibroblasts and lymphocytes 

(Neal et al., 2018). In the uveal melanoma literature, there have been a few reports of 3D 

cultures in which cells form tumorspheres (Angi, Versluis, & Kalirai, 2015; Lapadula et al., 

2019; Valyi-Nagy et al., 2018). Further work is needed to determine the feasibility of 

generating such cultures from patient tumors and whether these 3D cell models better reflect 

the biology of their parental tumors. If so, they may serve as superior tools for both in vitro 

assays and xenograft models.

6 | GENETICALLY ENGINEERED MOUSE MODELS (GEMMS) OF UVEAL 

MELANOMA

The third class of mouse models of uveal melanoma encompasses mice that have been 

genetically engineered to produce tumors. The primary advantage of these models is that 

they make it possible to study autochthonous tumorigenesis in an immunocompetent host. In 

particular, the contribution of specific genetic alterations to oncogenic signaling and disease 

progression can be assessed (Kersten, de Visser, van Miltenburg, & Jonkers, 2017; Zitvogel, 

Pitt, Daillere, Smyth, & Kroemer, 2016).

Older models include transgenic mice in which pigment cell-specific promoters of genes 

such as Tyrosinase drive expression of the SV40 large T antigen or HRAS, although some of 

these tumors originate from the retinal pigment epithelium rather than the uvea (Kramer, 

Powell, Wilson, Salvatore, & Grossniklaus, 1998; Syed et al., 1998; Tolleson et al., 2005). In 

the Tg(Grm1) model, the Dopachrome tautomerase (Dct) promoter controls expression of 

the metabotropic glutamate receptor to produce both uveal melanoma and cutaneous 

melanoma (Schiffner et al., 2014). RET-driven GEMMs develop melanocytic neoplasms 

throughout the body, including in the uveal tract (Eyles et al., 2010; Kato et al., 1998). The 

major weakness of all of these models is that they are driven by molecular changes not 

observed in patients with uveal melanoma; this limits their clinical applicability.

In the years since the discovery of GNAQ and GNA11 as the main oncogenic drivers of 

uveal melanoma, three genetically engineered mouse models using these genes have been 
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published (Table 4). In the first, a Tet-on system was used to induce GNAQQ209L expression 

in mice deficient for p16Ink4a and p19Ink4b (Feng et al., 2014). Although over half of the 

mice developed melanocytic cutaneous lesions by 9 months, there was no report of uveal 

melanoma. Despite this, cutaneous tumors in this model demonstrated YAP activation 

downstream of oncogenic GNAQ. Another seminal paper published simultaneously reached 

the same conclusion and demonstrated in vivo efficacy of a YAP inhibitor using a xenograft 

model of uveal melanoma (Yu et al., 2014).

In a different model, the expression of GNAQQ209L in a lox–stop–lox conditional knock-in 

allele inserted at the Rosa26 locus produced uveal melanoma in 3 months with 100% 

penetrance (Huang, Urtatiz, & Van Raamsdonk, 2015). Furthermore, it appears that cells 

from these tumors intravasate into blood vessels and metastasize to the lungs. Mice also 

developed dermal melanomas and melanocytic neoplasms at other sites, including the 

leptomeninges and inner ear. This model uses Mitf-cre to initiate oncogene expression. 

Lastly, another model in which a similar conditional knock-in allele encoding GNA11Q209L 

is activated by the inducible Tyrosinase-creERT2 produced a comparable phenotype, albeit at 

a later timepoint (Moore et al., 2018). When Bap1 deletion was combined with 

GNA11Q209L expression, uveal melanomas were unexpectedly smaller. However, skin 

melanoma burden increased, as did cellular proliferation of these tumors. Comparative 

genomics from this model identified RasGRP3 as a critical signaling node upstream of 

MAPK pathway activation, a finding that had been independently reported by another group 

that used orthogonal methods (Chen et al., 2017).

These models have shed light on key features of uveal melanomagenesis. First, they 

demonstrate that GNAQ and GNA11 are potent oncogenes. The deletion of tumor 

suppressors was not required to form uveal melanoma; indeed, in the second model, the 

expression of the human GNAQ transgene was only 3.3% of that of the murine wild-type 

allele as measured by RT-PCR of primary melanocyte cultures from the affected mice 

(Huang et al., 2015). Second, they illuminate differences between the pigment cell-specific 

promoters used in induction. The constitutive expression of Mitf-cre beginning at E15.5 

likely explains the earlier onset of tumor formation in the GNAQQ209L model as compared 

to the GNA11Q209L model in which Tyr-creERT2 is induced in 4-week-old mice (Huang et 

al., 2015; Moore et al., 2018). Interestingly, induction of Tyr-creER in 8-week-old mice in 

the GNAQQ209L model did not produce overt uveal melanoma. Whether this is simply due to 

the differences in induction (mouse age and type of inducible Cre recombinase) or the result 

of differing potencies of the oncogenic drivers remains to be explored. Finally, these 

GEMMs illustrate which populations of melanocytes are susceptible to oncogenic 

transformation by these mutations and downstream activated pathways.

Like other models, these GEMMs are not without their disadvantages. Disease progression 

is considerably slower than in syngeneic or xenograft models due to the time required for 

tumor initiation. A problem specific to the GNAQQ209L model is the microphthalmia caused 

by the Mitf-cre allele (Alizadeh, Fitch, Niswender, McKnight, & Barsh, 2008). Additionally, 

inserting the oncogenes in the Rosa26 locus is somewhat artificial. A model in which an 

activatable allele is targeted to the endogenous mouse Gnaq or Gna11 locus might better 

model physiologic expression of these genes. This approach has been successful in 
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generating valuable BrafV600E GEMMs of cutaneous melanoma (Dankort et al., 2007; 

Mercer et al., 2005).

A serious obstacle encountered in the above uveal melanoma GEMMs is the induction of 

transgene expression in melanocytes throughout the entire body. This complicates the 

models in numerous ways. First, melanocytic neoplasms in other organs may cause 

pathology, such as the ataxic phenotype caused by melanocytosis of the vestibular system. 

Second, mice sometimes have to be euthanized before the ocular tumor can be fully studied 

because of rapid growth of melanomas arising from the dermis. Third, the study of 

metastasis is difficult because of the number of primary tumors, including some that develop 

in vital organs such as the heart (Huang et al., 2015; Moore et al., 2018).

An exciting recent publication describes a new method to overcome these issues by utilizing 

adeno-associated viral delivery of Cre recombinase to the uveal tract (Li et al., 2019). In this 

model, the suprachoroidal injection of an AAV5-CMV-Cre vector produced ocular 

melanocytic tumors in adult mice carrying conditional null alleles of the Hippo kinases 

Lats1 and Lats2, which normally function to suppress YAP/TAZ signaling. Furthermore, a 

similar vector in which Cre expression is under the control of the pigment cell-specific 

tyrosinase-related protein 2 (Trp2) promoter produced a comparable phenotype. Importantly, 

cells of these tumors were positive for melanoma markers Melan-A/Mart1 and HMB45 but 

negative for RPE65. This indicates that they arose from uveal melanocytes and not cells of 

the retinal pigment epithelium. Remarkably, the authors found that activation of the YAP 

pathway alone was both necessary and sufficient for initiation of uveal melanoma. 

Activation of the MAPK pathway using an inducible KrasG12D allele was not sufficient for 

tumor formation but did accelerate tumor growth and mortality in the Lats double knockout 

mice. They explored this intriguing synergy between MAPK and Hippo signaling and 

discovered an interactive transcriptional network in which AP1 factors amplify the 

oncogenic output of YAP/TEAD in uveal melanoma. The use of this AAV-Cre system 

represents a significant improvement upon the aforementioned Cre driver mouse strains in 

that it limits oncogenic transformation to melanocytes within the uveal tract of adult mice. 

This is a powerful new tool that could be used in conjunction with both existing and new 

alleles to generate genetic mouse models that would enable the study of the entire disease 

process of uveal melanoma in vivo.

In addition to this AAV approach, the RCAS-TVA system might achieve similar results. This 

method has been used to generate numerous GEMMs of cutaneous melanoma (Cho et al., 

2015; Kircher et al., 2019; VanBrocklin, Robinson, Lastwika, Khoury, & Holmen, 2010). 

RCAS subgroup A is an avian retrovirus capable of infecting cells that express the TVA 

receptor. Dopachrome tautomerase-TVA transgenic mice express this receptor in pigment-

producing cells, and this strain could be crossed with one of the conditional knock-in alleles 

described above. Intraocular injection of RCAS virus that encodes for Cre would then 

activate oncogene expression in melanocytes of the eye. An advantage of this model over the 

AAV approach is targeted delivery to cells of interest such that there is no requirement for 

inclusion of a pigment cell-specific promoter within the virus. This provides more room for 

genes of interest, which can be linked with Cre within the same viral vector to enable 

delivery to the same cells. Additionally, high titers of RCAS are easily produced in vitro 
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using the chicken fibroblast DF-1 cell line (Fisher et al., 1999), and there is no need for 

helper virus in these cells. Retroviruses also permit long-term expression of genes due to 

genome integration, though this requires that the cells are dividing.

Despite these advancements in genetic models of uveal melanoma, the inherent differences 

in tumor biology between mice and humans cannot be ignored. Putative metastases that have 

been observed in published genetic models occur in the lungs, not the liver (Huang et al., 

2015; Moore et al., 2018). Additionally, the loss of Bap1 did not enhance the aggressiveness 

of uveal melanomas; in fact, the ocular phenotype was weaker, and there was no increase in 

size or incidence of lung lesions compared with mice expressing GNA11Q209L alone (Moore 

et al., 2018). The basis for these differences is not understood and merits further 

investigation. It must also be acknowledged that the chromosomal abnormalities and 

epigenetic modifications observed in patients with uveal melanoma are nearly impossible to 

model in a mouse. Thus, while these GEMMs, as well as improved models, will continue to 

provide valuable insights into the progression of uveal melanoma in vivo, it is unlikely that 

any one model will fully recapitulate the human disease in all of its intricacies.

7 | CONCLUSIONS

In summary, although there is no perfect mouse model of uveal melanoma, currently 

available models have been instrumental in elucidating critical signaling pathways and 

testing new therapeutic strategies for this cancer. Each type of model has distinctive 

strengths and weaknesses. Syngeneic models are excellent for the investigation of tumor 

progression in an immunocompetent host but use cutaneous melanoma cell lines. Xenograft 

models allow for the study of human uveal melanoma cells and tumors in a living organism, 

but this does not include the immune response because recipient mice must be severely 

immunocompromised. Genetically engineered models allow for studies of autochthonous 

uveal melanoma formation and dissemination, yet tumors in these mice differ from those in 

patients in terms of molecular complexity and metastatic behavior. Investigators should 

leverage the models best suited to address their specific scientific questions. Future model 

development should aim to overcome current limitations and further enable efforts to 

investigate uveal melanoma biology and develop therapies most likely to succeed in patients 

afflicted with this cancer.
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FIGURE 1. 
Routes of injection for orthotopic models of primary uveal melanoma. The needle 

trajectories for the three most commonly used types of injections are depicted (anterior 

chamber in orange, suprachoroidal in green, and intravitreal in blue). All three result in 

growth of cells in the uveal tract and therefore produce orthotopic models of uveal 

melanoma
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