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Abstract

Uveal melanoma is the most common primary malignancy of the eye, and a number of discoveries
in the last decade have led to a more thorough molecular characterization of this cancer. However,
the prognosis remains dismal for patients with metastases, and there is an urgent need to identify
treatments that are effective for this stage of disease. Animal models are important tools for
preclinical studies of uveal melanoma. A variety of models exist, and they have specific
advantages, disadvantages, and applications. In this review article, these differences are explored
in detail, and ideas for new models that might overcome current challenges are proposed.
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1| INTRODUCTION

Uveal melanoma is a rare (estimated incidence of 6 cases per million) and unique subtype of
melanoma that arises in the uveal tract of the eye, most commonly in the choroid (Damato &
Damato, 2012; McLaughlin et al., 2005). Local interventions, such as radiation therapy and
enucleation, are effective at treating the primary tumor (Krantz, Dave, Komatsubara, Mart,
& Carvajal, 2017). However, up to half of the patients will develop metastatic disease,
predominantly to the liver (Rietschel et al., 2005). For these patients, liver-directed therapy
and participation in clinical trials are recommended, but most die from their disease, and
median survival is only 10.2 months (Khoja et al., 2019; Kujala, Makitie, & Kivela, 2003;
National Comprehensive Cancer Network).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.

Correspondence: Shannon J. Odelberg, Building 533 Room 4110B, 15 North 2030 East, Salt Lake City, UT 84112, USA.
sodelber@genetics.utah.edu.

CONFLICT OF INTERESTS

The authors declare no conflicts of interest.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Richards et al.

Page 2

Despite this, great strides have been made in understanding the molecular features of uveal
melanoma. In the past decade, the collective work from several groups has led to the
identification of important recurrent mutations and overactive signaling pathways in this
cancer. Early oncogenic driver mutations occur in a nearly mutually exclusive pattern in the
guanine nucleotide-binding protein subunit alpha-g/11 signaling pathway (Field et al., 2018;
Moore et al., 2016; Robertson et al., 2017). This includes constitutively active variants of
GNAQ and GNA11, which are found in over 90% of cases (Van Raamsdonk et al., 2009,
2010). A smaller subset of tumors harbor activating mutations in the G protein-coupled
receptor cysteinyl leukotriene receptor 2 (CYSLTR2) or phospholipase C beta 4 (PLCB4)
(Johansson et al., 2016; Moore et al., 2016). There is a second node of nearly mutually
exclusive mutations that classifies uveal melanomas and affects prognosis. Inactivating
mutations are found in BRCA1-associated protein 1 (BAPI), while recurrent point mutations
are observed in the eukaryotic translation initiation factor 1A X-linked (E/F1AX) or a
splicing factor such as SF3B1 (Field et al., 2018; Harbour et al., 2010, 2013; Martin et al.,
2013).

The molecular makeup of a particular uveal melanoma has significant implications for
predicting metastasis. Most importantly, tumors with loss-of-function BAPI mutations carry
the worst prognosis, as approximately 84% of metastatic uveal melanomas are of this
subtype (Harbour et al., 2010; Shain et al., 2019). Specific cytogenetic alterations have also
been well described in this cancer (Aalto, Eriksson, Seregard, Larsson, & Knuutila, 2001;
Anbunathan, Verstraten, Singh, Harbour, & Bowcock, 2019). Monosomy 3 co-occurs with
BAPI mutation, thereby eliminating both functional alleles (Field et al., 2018; Robertson et
al., 2017). 6q loss, 1q gain, and 8q gain are also significantly enriched in uveal melanoma
metastases (Ehlers, Worley, Onken, & Harbour, 2005; Hammond et al., 2015; Shain et al.,
2019).

These discoveries were largely enabled by the analysis of patient tumor specimens and have
greatly advanced our understanding of the molecular underpinnings of uveal melanoma
tumorigenesis and their prognostic significance. Various animal models have likewise been
indispensable in elucidating the biology and potential therapeutic vulnerabilities of this
cancer (Cao & Jager, 2015; Stei, Loeffler, Holz, & Herwig, 2016; Yang, Cao, &
Grossniklaus, 2015). In the past several years, there have been many promising preclinical
studies that have used these models to identify novel treatment strategies, several of which
are now in the early stages of clinical trials (Vivet-Noguer, Tarin, Roman-Roman, &
Alsafadi, 2019; Yang, Manson, Marr, & Carvajal, 2018).

In this review article, we discuss the strengths and weaknesses of existing animal models of
uveal melanoma, with an emphasis on mouse models. We also identify unmet needs that will
require future model development and refinement. The goal of any animal model of uveal
melanoma should be to faithfully recapitulate the processes of tumor initiation, growth,
metastasis, and response to therapy as observed in patients with this disease.
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ANIMAL MODELS OF UVEAL MELANOMA

Though the focus of this review is mouse models of uveal melanoma, other species certainly
have their advantages. Rabbits (Oryctolagus cuniculus), for example, have large eyes that
facilitate the implantation of tumor cells and subsequent monitoring using techniques such
as fundoscopy, ultrasound, and magnetic resonance imaging (Bontzos & Detorakis, 2017;
Gao, Tang, Liu, Yang, & Liu, 2018). The zebrafish (Danio rerio) is a model organism that
has been used more widely in many scientific fields in recent years (Meyers, 2018). Both
xenograft (Fornabaio et al., 2018; van der Ent et al., 2014) and transgenic (Mouti, Dee,
Coupland, & Hurlstone, 2016; Perez, Henle, Amsterdam, Hagen, & Lees, 2018) zebrafish
models of uveal melanoma have been developed. These models are excellent for high-
throughput pharmacologic screening and in vivo microscopy. The genetic models have
yielded valuable insights into uveal melanoma signaling, such as the establishment of the
importance of YAP activation in the initiation of this cancer. However, tumorigenesis in
these models required mutation of p53, and metastasis was difficult to assess because of the
induction of multiple primary tumors (Mouti et al., 2016; Perez et al., 2018).

Mice (Mus musculus) are the most widely used laboratory animal in the study of uveal
melanoma (Cao & Jager, 2015). Their fecundity, gestation time, and size make them the
most cost-effective mammalian model (Zuberi & Lutz, 2016). Furthermore, genetic
manipulation of mice has produced various strains that are used in many uveal melanoma
models. The primary goals of this review are to compare the different types of mouse models
of uveal melanoma and propose directions for further development.

INOCULATION SITES

The majority of murine models of uveal melanoma require the inoculation of cells or tumors
into mice. Some uveal melanoma cell lines can be grown subcutaneously, which is
convenient for measuring growth and response to therapy. However, others grow poorly
subcutaneously but flourish in the tissue from which they were derived (Ozaki et al., 2016).
In these cases, orthotopic models are preferable and may better model the human disease.
Models of primary uveal melanoma in which the route of inoculation results in growth in the
iris, ciliary body, or choroid are considered orthotopic (Figure 1). Inoculation of cells into
the anterior chamber of the eye was one of the first techniques developed and reliably
produces tumors in the iris that are capable of metastasis (Niederkorn, 1984). In 2000, a
suprachoroidal injection technique was described in which cells are deposited into the
posterior compartment (not to be confused with posterior chamber) of the eye (Dithmar,
Rusciano, & Grossniklaus, 2000). In this approach, the needle is inserted through the limbus
and into the choroid. Injected cells occupy the suprachoroidal space and likely spill into the
subretinal space and vitreous. This technique is advantageous because it rapidly produces
tumors in the choroid and ciliary body, the sites at which uveal melanoma most commonly
occurs in patients. Furthermore, it reduces extraocular growth as compared to
transconjunctival inoculations and consistently produces distant metastases (Tables 1 and
2a,b). A third type of orthotopic model is intravitreal injection. Although uveal melanoma
does not arise in the vitreous humor, this environment is supportive of tumor growth and
injected cells mimic human disease by invading and involving the uveal tract (Kilian et al.,
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2016; Yoo et al., 2016). All three of the above inoculation methods are amenable to
combination with enucleation, which allows for longer follow-up and the study of metastatic
outgrowth.

The eye is bypassed in some models in order to more quickly and reliably produce large
tumors in visceral organs, especially the liver. Intravenous injection into either the retro-
orbital sinus or tail vein mimics the latter part of the metastatic cascade—hematogenous
dissemination, arrest and extravasation in distant sites, and metastatic colony formation and
growth. The liver and lungs are the most frequently reported sites of experimental metastasis
with these routes of injection (Tables 1 and 2a,b). Others have developed the intrasplenic
inoculation, which consistently produces tumors in the liver (Barisione et al., 2015;
Gangemi et al., 2014, 2012; Jin et al., 2018). Finally, direct implantation of cells or tumors
into the liver also results in florid growth in an orthotopic model of metastatic uveal
melanoma (Kageyama et al., 2017; Ozaki et al., 2016).

Irrespective of the location of injection, disease progression (e.g., tumor growth and/or
metastatic dissemination) can be studied in real time using non-invasive imaging methods
such as bioluminescence imaging (Barisione et al., 2015; Surriga et al., 2013). For this
technique, the injected cells have been transduced to stably express a luciferase reporter.
When the graft-bearing mice are injected with luciferin, the tumor cells emit light that can
be detected by an optical imaging instrument such as Perkin EImer’s In Vivo Imaging
System (IVI1S). The intensity of the signal has been demonstrated to be a suitable surrogate
for tumor size and thus enables dynamic evaluation of the effects of different experimental
conditions on tumor progression (Cosette et al., 2016; Poeschinger, Renner, Weber, &
Scheuer, 2013).

4| SYNGENEIC CUTANEOUS MELANOMA MOUSE MODELS FOR
SIMULATING UVEAL MELANOMA

The syngeneic cutaneous melanoma mouse model has been used for decades in uveal
melanoma research. In this system, cutaneous melanoma cells are implanted in mice of the
same genetic background as the mice from which the line was derived. Although the cell
lines used are not uveal in origin, this system allows for the investigation of intraocular
growth and metastasis of melanoma cells, as many of these lines metastasize to the liver
(Table 1). This mimics the behavior of uveal melanoma in humans and allows for the study
of the full metastatic process, including local invasion, intravasation, survival in the blood,
extravasation, and growth in distant organs. The ability to examine the interaction between
tumor and host cells as the cancer progresses in an immunocompetent animal is arguably the
greatest strength of this model. Additionally, recipient mice may be genetically altered in
order to study specific contributions of the host in melanoma progression (Lattier, Yang,
Crawford, & Grossniklaus, 2013; Stei, Loeffler, Kurts, et al., 2016).

The most widely used syngeneic model is the inoculation of C57BL/6 mice with the
B16LS9 cell line, a derivative of the B16 cutaneous melanoma line that was enriched for
hepatic metastatic propensity through serial in vivo passaging (Rusciano, Lorenzoni, &
Burger, 1994). This cell line metastasizes to the liver from the eye, and its use has led to
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valuable insights into the behavior of metastatic melanoma. For instance, this model was
used to show that natural Killer cells and pigment-derived epithelial factor play distinct roles
in counteracting intrahepatic growth of melanoma cells (Jones, Yang, Zhang, Morales-
Tirado, & Grossniklaus, 2019). Although B16LS9 cutaneous melanoma cells were used, the
histological growth patterns of the hepatic metastases in the mouse model were similar to
those observed in the livers of patients with metastatic uveal melanoma (Grossniklaus et al.,
2016).

The primary disadvantage of the syngeneic model is that available mouse melanoma cell
lines are of cutaneous origin, so the mutations and other molecular drivers of these cells
differ from those found in human uveal melanoma. Therefore, their behavior, especially their
response to therapy, may differ from what is observed in patients. Interestingly, there are a
few syngeneic models that do carry canonical uveal melanoma mutations. Immortalized
mouse melanocytes transduced with driver mutations found in patients undergo oncogenic
transformation and are capable of producing tumors and even metastases (Moore et al.,
2016; Van Raamsdonk et al., 2010). Additionally, the HCmel12 mouse cutaneous melanoma
cell line has been reported to carry a GNA11Q209L variant (Schrage et al., 2015). Further
details on other mutations in this cell line would allow for a more complete assessment of its
suitability as a model for uveal melanoma. In the future, if mouse uveal melanoma cell lines
could be derived from the genetically engineered mouse models discussed below, they would
be powerful tools for syngeneic models. This strategy would allow for the controlled
manipulation and study of bona fide uveal melanoma in an immunocompetent host.

5| XENOGRAFT MOUSE MODELS OF UVEAL MELANOMA

Xenograft models are another widely used approach. As the name implies, cells or tumors
from a foreign source are grafted into mice. Most commonly, human uveal melanoma cell
lines are used. The primary advantage of these models is that the cells are derived from
patients. As such, they largely retain molecular features of the original tumor (Amirouchene-
Angelozzi et al., 2014; Griewank et al., 2012; Jager, Magner, Ksander, & Dubovy, 2016).
This technique is therefore well-suited for studying tumor signaling and response to
treatment. Many recent publications detailing new potential treatments for uveal melanoma
utilize xenograft models (Table 2a,b). Another advantage of xenografts is reproducibility
from mouse to mouse (Gould, Junttila, & de Sauvage, 2015). Many human uveal melanoma
cell lines have been described, although some are not commercially available. Frequently
used cell lines with validated uveal melanoma mutations are included in Table 2a,b. Many of
these xenograft models are useful for studying metastasis, as they produce tumors in organs
such as the liver and lungs. It is also worth noting that some cell lines were derived from
human uveal melanoma metastases. These are especially applicable for studying tumor
growth in visceral organs such as the liver.

Authentication of uveal melanoma cell lines for use in xenograft models is critical. Some
lines historically thought to be uveal melanoma have been found to harbor BRAFV600F
mutations and are now recognized as being of cutaneous origin (Griewank et al., 2012; Yu et
al., 2015). Furthermore, several of these were found by short tandem repeat (STR) analysis
to be the same cell line (Folberg et al., 2008; Yu et al., 2015). Validation of uveal melanoma
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cell lines (including species confirmation, STR analysis, and pathogen detection) by
individual laboratories is strongly encouraged. However, even after careful molecular
characterization of any cancer cell line, the ability of the cells to faithfully recapitulate the
behavior of their parental tumors has been questioned due to changes in molecular features
that can result from culturing them in vitro (Ben-David et al., 2018; Gillet, Varma, &
Gottesman, 2013; Goodspeed, Heiser, Gray, & Costello, 2016). An example of this is that
the karyotypes, including the status of chromosome 3, of several of the older cell lines differ
from those of the patients’ original tumors (Jager et al., 2016). Additionally, it has been
demonstrated that the gene expression profiles of uveal melanoma cell lines in culture
diverge from their source tumors even after short-term passaging (Mouriaux et al., 2016).
One way to avoid these problems is to implant human tumor specimens directly into mice;
this is the basis of patient-derived xenografts.

Patient-derived xenograft (PDX) models are relatively new in the uveal melanoma field but
have demonstrated considerable translational potential. The research group led by Didier
Decaudin has been the most successful and prolific in generating PDX models of uveal
melanoma (Table 3). They implant fresh primary and metastatic tumor specimens in the
interscapular fat pad of severe combined immunodeficient (SCID) mice and achieve an
engraftment rate of 28% (Némati et al., 2010). Importantly, the tumors that grow in these
mice maintain mutations, chromosomal imbalances, and histopathological features of the
tumors from which they were derived (Carita, Nemati, & Decaudin, 2015). These PDX
models have also been used for the derivation of new cell lines with clinically relevant
features such as loss of BAP1 expression (Amirouchene-Angelozzi et al., 2014). They have
also been effective for assessing the efficacy of novel combination therapies to treat uveal
melanoma (Amirouchene-Angelozzi et al., 2016; Carita et al., 2016).

Another exciting recent development has been the generation of PDX models from hepatic
uveal melanoma metastases (Kageyama et al., 2017). In these models, tumor specimens
obtained after surgery or biopsy were surgically implanted into the livers of NOD SCID
gamma mice. The authors achieved an 83% engraftment rate and found that the histology,
genetics, and proteomics of the implanted tumors resembled corresponding features of
patient metastases. Tumors could also be monitored by CT imaging. PDX models such as
these hold promise for preclinical evaluation of experimental therapeutic compounds and the
realization of personalized medicine.

Like all models, xenografts have disadvantages. The chief among these is the necessity of
using immunocompromised mice. This can partially be avoided by taking advantage of the
immune-privileged nature of the anterior chamber of the eye (Niederkorn, 2012). However,
this approach can only be used to study the primary tumor, and the majority of grafts
spontaneously regress (Sutmuller et al., 2000). In this new era of immunotherapy, the
inability to study the interplay between the tumor and host immune system, especially in
sites of metastasis, is a major limitation. In uveal melanoma, this is somewhat tempered by
the low response rate of patients to PD-1 and/or CTLAA4 inhibition (Algazi et al., 2016;
Carvajal et al., 2017). However, other immunomodulatory pathways and cell types have
been implicated in this cancer and are being actively investigated (Dougall, Kurtulus, Smyth,
& Anderson, 2017; Robertson et al., 2017; Yang et al., 2016). Mice with humanized immune
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systems would be ideal recipients for xenograft models of all tumor types. Efforts to create
such mice are ongoing but are complicated by, among other issues, graft-versus-host disease
and interspecies differences in cytokine specificity (Allen et al., 2019; Wege, 2018). Other
criticisms of xenografts, particularly PDX models, include their high cost, low engraftment
rate, and low throughput (Siolas & Hannon, 2013). These are valid concerns, and the actual
utility of these models in informing the treatment of patients with uveal melanoma will
become more apparent in coming years.

Another approach to avoiding artifacts induced by two-dimensional cell culturing is the use
of three-dimensional (3D) culture systems. Such “tumor organoid” models now exist for
several cancers, including those arising in the colon, breast, and pancreas (Drost & Clevers,
2018; Yang, Sun, Liu, & Mao, 2018). 3D cultures derived from patient tumor specimens can
be grafted into mice (patient-derived organoid xenografts) and faithfully match the
molecular phenotypes and even treatment responses of the source tumors (Sachs et al., 2018;
Vlachogiannis et al., 2018). Some even allow for the study of the tumor microenvironment,
as they incorporate stromal cells such as cancer-associated fibroblasts and lymphocytes
(Neal et al., 2018). In the uveal melanoma literature, there have been a few reports of 3D
cultures in which cells form tumorspheres (Angi, Versluis, & Kalirai, 2015; Lapadula et al.,
2019; Valyi-Nagy et al., 2018). Further work is needed to determine the feasibility of
generating such cultures from patient tumors and whether these 3D cell models better reflect
the biology of their parental tumors. If so, they may serve as superior tools for both in vitro
assays and xenograft models.

6| GENETICALLY ENGINEERED MOUSE MODELS (GEMMS) OF UVEAL
MELANOMA

The third class of mouse models of uveal melanoma encompasses mice that have been
genetically engineered to produce tumors. The primary advantage of these models is that
they make it possible to study autochthonous tumorigenesis in an immunocompetent host. In
particular, the contribution of specific genetic alterations to oncogenic signaling and disease
progression can be assessed (Kersten, de Visser, van Miltenburg, & Jonkers, 2017; Zitvogel,
Pitt, Daillere, Smyth, & Kroemer, 2016).

Older models include transgenic mice in which pigment cell-specific promoters of genes
such as 7yrosinase drive expression of the SV40 large T antigen or HRAS, although some of
these tumors originate from the retinal pigment epithelium rather than the uvea (Kramer,
Powell, Wilson, Salvatore, & Grossniklaus, 1998; Syed et al., 1998; Tolleson et al., 2005). In
the Tg(Grm1) model, the Dopachrome tautomerase (Dc?) promoter controls expression of
the metabotropic glutamate receptor to produce both uveal melanoma and cutaneous
melanoma (Schiffner et al., 2014). RET-driven GEMMs develop melanocytic neoplasms
throughout the body, including in the uveal tract (Eyles et al., 2010; Kato et al., 1998). The
major weakness of all of these models is that they are driven by molecular changes not
observed in patients with uveal melanoma; this limits their clinical applicability.

In the years since the discovery of GNAQ and GNA11 as the main oncogenic drivers of
uveal melanoma, three genetically engineered mouse models using these genes have been
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published (Table 4). In the first, a Tet-on system was used to induce GNAQR20L expression
in mice deficient for p16'"™4a and p19!"k4b (Feng et al., 2014). Although over half of the
mice developed melanocytic cutaneous lesions by 9 months, there was no report of uveal
melanoma. Despite this, cutaneous tumors in this model demonstrated YAP activation
downstream of oncogenic GNAQ. Another seminal paper published simultaneously reached
the same conclusion and demonstrated in vivo efficacy of a YAP inhibitor using a xenograft
model of uveal melanoma (Yu et al., 2014).

In a different model, the expression of GNAQR209L in a lox-stop—lox conditional knock-in
allele inserted at the Rosa26 locus produced uveal melanoma in 3 months with 100%
penetrance (Huang, Urtatiz, & Van Raamsdonk, 2015). Furthermore, it appears that cells
from these tumors intravasate into blood vessels and metastasize to the lungs. Mice also
developed dermal melanomas and melanocytic neoplasms at other sites, including the
leptomeninges and inner ear. This model uses Mitf-creto initiate oncogene expression.
Lastly, another model in which a similar conditional knock-in allele encoding GNA11Q209L
is activated by the inducible 7yrosinase-creERZ produced a comparable phenotype, albeit at
a later timepoint (Moore et al., 2018). When Bap1 deletion was combined with
GNA11Q209L expression, uveal melanomas were unexpectedly smaller. However, skin
melanoma burden increased, as did cellular proliferation of these tumors. Comparative
genomics from this model identified RasGRP3 as a critical signaling node upstream of
MAPK pathway activation, a finding that had been independently reported by another group
that used orthogonal methods (Chen et al., 2017).

These models have shed light on key features of uveal melanomagenesis. First, they
demonstrate that GMAQ and GNA11 are potent oncogenes. The deletion of tumor
suppressors was not required to form uveal melanoma; indeed, in the second model, the
expression of the human GNAQ transgene was only 3.3% of that of the murine wild-type
allele as measured by RT-PCR of primary melanocyte cultures from the affected mice
(Huang et al., 2015). Second, they illuminate differences between the pigment cell-specific
promoters used in induction. The constitutive expression of Mitf-cre beginning at E15.5
likely explains the earlier onset of tumor formation in the GNAQR2%9L model as compared
to the GNA11Q209L model in which 7yr-creER?is induced in 4-week-old mice (Huang et
al., 2015; Moore et al., 2018). Interestingly, induction of 7yr-creER in 8-week-old mice in
the GNAQR209L model did not produce overt uveal melanoma. Whether this is simply due to
the differences in induction (mouse age and type of inducible Cre recombinase) or the result
of differing potencies of the oncogenic drivers remains to be explored. Finally, these
GEMMs illustrate which populations of melanocytes are susceptible to oncogenic
transformation by these mutations and downstream activated pathways.

Like other models, these GEMMs are not without their disadvantages. Disease progression
is considerably slower than in syngeneic or xenograft models due to the time required for
tumor initiation. A problem specific to the GNAQR2%9L model is the microphthalmia caused
by the Mitf-creallele (Alizadeh, Fitch, Niswender, McKnight, & Barsh, 2008). Additionally,
inserting the oncogenes in the Rosa26 locus is somewhat artificial. A model in which an
activatable allele is targeted to the endogenous mouse Gnag or Gnalllocus might better
model physiologic expression of these genes. This approach has been successful in
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generating valuable Braf’%0%E GEMMs of cutaneous melanoma (Dankort et al., 2007;
Mercer et al., 2005).

A serious obstacle encountered in the above uveal melanoma GEMMs is the induction of
transgene expression in melanocytes throughout the entire body. This complicates the
models in numerous ways. First, melanocytic neoplasms in other organs may cause
pathology, such as the ataxic phenotype caused by melanocytosis of the vestibular system.
Second, mice sometimes have to be euthanized before the ocular tumor can be fully studied
because of rapid growth of melanomas arising from the dermis. Third, the study of
metastasis is difficult because of the number of primary tumors, including some that develop
in vital organs such as the heart (Huang et al., 2015; Moore et al., 2018).

An exciting recent publication describes a new method to overcome these issues by utilizing
adeno-associated viral delivery of Cre recombinase to the uveal tract (Li et al., 2019). In this
model, the suprachoroidal injection of an AAV5-CMV-Cre vector produced ocular
melanocytic tumors in adult mice carrying conditional null alleles of the Hippo kinases
Lats1and Lats2, which normally function to suppress YAP/TAZ signaling. Furthermore, a
similar vector in which Cre expression is under the control of the pigment cell-specific
tyrosinase-related protein 2 ( Trp2) promoter produced a comparable phenotype. Importantly,
cells of these tumors were positive for melanoma markers Melan-A/Mart1 and HMB45 but
negative for RPE65. This indicates that they arose from uveal melanocytes and not cells of
the retinal pigment epithelium. Remarkably, the authors found that activation of the YAP
pathway alone was both necessary and sufficient for initiation of uveal melanoma.
Activation of the MAPK pathway using an inducible K7asc12D allele was not sufficient for
tumor formation but did accelerate tumor growth and mortality in the Lats double knockout
mice. They explored this intriguing synergy between MAPK and Hippo signaling and
discovered an interactive transcriptional network in which AP1 factors amplify the
oncogenic output of YAP/TEAD in uveal melanoma. The use of this AAV-Cre system
represents a significant improvement upon the aforementioned Cre driver mouse strains in
that it limits oncogenic transformation to melanocytes within the uveal tract of adult mice.
This is a powerful new tool that could be used in conjunction with both existing and new
alleles to generate genetic mouse models that would enable the study of the entire disease
process of uveal melanoma in vivo.

In addition to this AAV approach, the RCAS-TVA system might achieve similar results. This
method has been used to generate numerous GEMMs of cutaneous melanoma (Cho et al.,
2015; Kircher et al., 2019; VanBrocklin, Robinson, Lastwika, Khoury, & Holmen, 2010).
RCAS subgroup A is an avian retrovirus capable of infecting cells that express the TVA
receptor. Dopachrome tautomerase-TVA transgenic mice express this receptor in pigment-
producing cells, and this strain could be crossed with one of the conditional knock-in alleles
described above. Intraocular injection of RCAS virus that encodes for Cre would then
activate oncogene expression in melanocytes of the eye. An advantage of this model over the
AAV approach is targeted delivery to cells of interest such that there is no requirement for
inclusion of a pigment cell-specific promoter within the virus. This provides more room for
genes of interest, which can be linked with Cre within the same viral vector to enable
delivery to the same cells. Additionally, high titers of RCAS are easily produced in vitro
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using the chicken fibroblast DF-1 cell line (Fisher et al., 1999), and there is no need for
helper virus in these cells. Retroviruses also permit long-term expression of genes due to
genome integration, though this requires that the cells are dividing.

Despite these advancements in genetic models of uveal melanoma, the inherent differences
in tumor biology between mice and humans cannot be ignored. Putative metastases that have
been observed in published genetic models occur in the lungs, not the liver (Huang et al.,
2015; Moore et al., 2018). Additionally, the loss of Bap1 did not enhance the aggressiveness
of uveal melanomas; in fact, the ocular phenotype was weaker, and there was no increase in
size or incidence of lung lesions compared with mice expressing GNA11920%L alone (Moore
et al., 2018). The basis for these differences is not understood and merits further
investigation. It must also be acknowledged that the chromosomal abnormalities and
epigenetic modifications observed in patients with uveal melanoma are nearly impossible to
model in a mouse. Thus, while these GEMMs, as well as improved models, will continue to
provide valuable insights into the progression of uveal melanoma in vivo, it is unlikely that
any one model will fully recapitulate the human disease in all of its intricacies.

7| CONCLUSIONS

In summary, although there is no perfect mouse model of uveal melanoma, currently
available models have been instrumental in elucidating critical signaling pathways and
testing new therapeutic strategies for this cancer. Each type of model has distinctive
strengths and weaknesses. Syngeneic models are excellent for the investigation of tumor
progression in an immunocompetent host but use cutaneous melanoma cell lines. Xenograft
models allow for the study of human uveal melanoma cells and tumors in a living organism,
but this does not include the immune response because recipient mice must be severely
immunocompromised. Genetically engineered models allow for studies of autochthonous
uveal melanoma formation and dissemination, yet tumors in these mice differ from those in
patients in terms of molecular complexity and metastatic behavior. Investigators should
leverage the models best suited to address their specific scientific questions. Future model
development should aim to overcome current limitations and further enable efforts to
investigate uveal melanoma biology and develop therapies most likely to succeed in patients
afflicted with this cancer.
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FIGURE 1.
Routes of injection for orthotopic models of primary uveal melanoma. The needle

trajectories for the three most commonly used types of injections are depicted (anterior
chamber in orange, suprachoroidal in green, and intravitreal in blue). All three result in
growth of cells in the uveal tract and therefore produce orthotopic models of uveal
melanoma

Pigment Cell Melanoma Res. Author manuscript; available in PMC 2020 March 31.



Page 22

Richards et al.

“JaqUieyd JOLIBIUE “JagUIEYD Uy :UOIBIABIGGY

(0T02) T2 19 juopswieey UeA
(9702) "|e 18 8100\

(9102) "2 30 UBIIIM (9T02) "2 30 'SUNY 43|400] '181S
(266T) 19WeS pue ‘uloxIapalN ‘uloques

(286T) Aefezs

pue BuiuseH {(z66T) [9WeS pue ‘uloxIapaIN ‘uloques
‘(266T) HaGIV pue ‘|[SYOHIN-UBY ‘UI0MIBPaIN ‘Ulogues
(S66T) "2 19 SNEJNIUSSOID

(G66T) '[e 10 snepjiussol9 ‘(#102) '[e 19 lefey

(£86T)
‘e 18 UIoMJIapaIN ‘(Z66T) [BWRD pue ‘ulodJapalN ‘uloques

(786T) UI0XJ3PaIN ‘(L86T) [SUED
pue ‘uloques ‘uloxapalN ‘(286T) Aefezs pue BuiureH

*(066T) uloxI3paIN

pue Ajasiuy {(S66T) ‘[e 18 snepjiussol 1(0T02)

‘le18 A7 :(2102) "o 30 9b6ue 9p (2T0Z) "[e 18 Iej |9
(S66T) UOS|IA pUe ‘uoieg ‘snepyIussolo)

(5T02) "le 19 BNX

(T102) 12 18 Buea :(9707) "8 18 UBH
(9702) uloxJapaIN pue ‘umoig ‘ueH

(666T) SNeP{IUSSOID pue Jewyna ‘ouetosny ‘zeiq :(0002)
‘e 18 ‘uuAT ‘ourrasny ‘rewiynd ‘(000z) SnepqIuSSolD)

pue ‘ouerasny “rewyna (€002) ‘[e 30 yspezily (1102)

[e 18 Bueyz ‘(€102) "[e 1o Ja1me] 1(9002) SnepiussolD
pue ‘auoAn] ‘nx ‘Buea ‘(0TOZ) SnepqIussols) pue ‘iaber
‘BueA ‘(0T0Z) SnepjIussolo pue BueA (9T0Z) ‘Ie 10 Buex
'(GT02) "fe 19 8nX ‘(6T02) ‘[e 10 Buoq (6TOT) ‘e 18 sauop

So0UR BPY

Author Manuscript

Janl] pue sbun
pauiodal JoN

sapou
ydwA| pue sbun

sbunT

sbunT
3UON

sbun

sbun

sbunT

pauiodal JoN

auoN

pauiodal J0N

JEN|

pauiodal J0N

sapou ydwiA|
pue ‘sbunj ‘JaA1]

sseser N

Author Manuscript

s|199 W-uejaw
91Ad0uejoW pasnpsues}
snoaueIndgns  (UeH uel) (286T) MeH pue ‘4adoo) ‘Nauusg asnowW pazijeroww| -3uaboouQ
BWIOURIBW
[eaninenu| (Bunn. sewoyl) (9T02) '[e 10 Uel|IY SNO3UEIND 3SNOIA ZTIBWOH
UIaA [1el
Jaquieyd "y
BWIOURIBW
|epioloyoesdng (Aejezs auuear) (£86T) ‘[e 18 BuluteH SnoaueINd asnoA| suaand
UIaA [1eL
laquieyd "y
(uswpng uAjLeN) BUIOUR|OW
leploioyoeidng (926T) uswipng pue ‘UsIsIas) ‘Ia|pi4 Sno3UEINI 3SNOIA 014919
J1jedayeu|
olug|dsesu|
[easyin_IU|
laquieyd "y
BwiouBdW
|epioloyoeidns (19b1ng xeN) (66T) ‘e 18 ouelosny SNOBURIND 3SNOA| 651919
poyww (uiblio 804n0s aull |pO
uolre|noou | Jo A1ore Joge ) uoireoljgnd reuibiio

’UWOURISW [23AN BulpenwIS 10} S|9POW BLWOUR[SW SNO3URIND 3snow d1ausbuAs

T3149vL

Author Manuscript Author Manuscript

Pigment Cell Melanoma Res. Author manuscript; available in PMC 2020 March 31.



Page 23

Richards et al.

S90UB B oY ssesep N 915 UoI1e|noou | (uib1io jo Aloreoge ) uoirealignd reuiblIQ 3910 oul 15 (0)
(2102)
S|aYoIuyaS pue ‘Yoeqiyoy ‘1SINH ‘puInssns auoON [ep1oJoydeldns (81ye4-8xusH puBIS) (STOZ) ‘e 18 puIyssans siown) Arewtid (460z0TTVYND) ZLAIN
(60z0TTYND)
(9702) "€ 18 XneLno pauodal J0N snoaueInaIgns (uuono utealAs) (910z) ‘[e 18 Xneunoy siowny Arewtd ¢yTL pue GO0TL
(uewoy-uewoy Jowny Arewd
(6702) °[e 10 S910]4-0BIRS 1A UIaA |feL 01B13S) (¥10Z) *[e 13 1220[9BUY/-aUsYIN0IILUY ® Woy Xad (16020 TTVYND) TrdIN
(etoz
‘¥T02) ‘Ie 10 1webues) {(STOZ) ‘|t 10 suoisueg Jan ojus|dsenu|
(8702) "Ie 38 Yeyooey
{(6T02) '[e 19 eleuuy {(6T0Z) ‘|e 10 Asedolop paiodai 107
(6702) 1 19 1ysauyeL sBunj pue JaAI snosueINIgNSg

(¥T02) "le 19 NA

(€66T) pueuy
pue ‘MayAey ‘Aaulaypld ‘UOJIBIN ‘UIoMIapaIN

(9702) "|e 18 00A

(966T) U10x13paIN pue ‘1aber ‘Japing
‘ualAnT ‘eIN ‘(866T) UIONIBPAIN pue BN

(6702) " 18 Biagsiod

(cT0T
‘¥T0Z) "[e 39 1wabues (STOZ) '[e 19 auoisLieg

(€702) 'le 19 [[erereN

(966T) U10x13paIN pue ‘1aber ‘Japing
‘UalAnT ‘eIN ‘(866T) UIONIBPAIN pue B

(¥T02) "le 39 NA
(6702) "le 38 BuoQ

(c102) "B 1R

3|[1Aa1pueT ((2T02) '|B 38 IpRWES (2T02) ‘[e 10
OH *(€T02) ‘1 18 BBLINS (¥T0Z) ‘ZHemyds pue
"BUILDUBIS ‘IUISOIqUIY ‘ISNIA ‘(ETOZ) ‘ZMBMYIS
pue ‘BUIYOUBIS ‘OH ‘ISNIAl ‘1uIsOIqWY ‘(STOZ)
ZBMUIS pUe ‘ISNIA ‘B|meS ‘1uIsolquiy (¥T0Z
‘LT02) [e 18 Uayd (8T02) 1e 18 sauly (6T02)

payodal 10N

Jan

payodal 10N

Jan

payodal 10N

Jan

sbun| pue Jan

Jan
payodal 10N

JaAIT

[epioJoyoeidng

utsA rel

]

Jaquieyd "y

snosueINdgns

olua|dsenu|

UIBA |1e)

Jaquieyd "y

[ep1oJoyoeidng

(Japuesy

20n.1g) (L66T) Japuesy pue ‘uei] ‘Aeunin N1qIa/

(urs)18.05 suAeM °r) (T66T) UIL18S
puUe ‘suIsno) ‘uas|O ‘uawesqny ‘Iapues

Jowny Arewild

Jowny Arewild

(460200OVND) 02218

(o5204TEESS
“160200VND) Z0ZISN

(geoX V1413

‘e 18 B1agsi04 (6T0Z) '|e 10 Sal0]4-0IeH payodal 10N snoaueINIgns (1aber auneN) (G66T) "I 18 ebulgals-pieep aa Jowny Arewild “16020OVND) T'Z6I8IN
Sa0UR B JRY ssexsep N poypw (uib1io jo Aloreoqe ) uoirearignd ruiblIQ 82.Inos (suoireinwy) aui| [PD (e)
uolire|noou |

SjuswiIadxa
YyeribBouax asnow ul pasn saselselaw (q) suswiiadxe Yelbousx asnow ul pasn siown Arewnid (8) woiy paALIap Saul| |99 BWOUR[SW [BaAN UBWNH

¢ 3149vL

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Pigment Cell Melanoma Res. Author manuscript; available in PMC 2020 March 31.



Page 24

Richards et al.

“Juaiyed awes sy} Ul SISLISEIBW JaAI] JBUI0UR WOLY PAALIBP SI (S TIANO Paj1ed 0S[e) aull 1182 G ZININO 8y “own) Arewd s,Jusiyed SIU) WOy PBALISP SeM aul| 1139 0LZISIN auL,

“JaQURYD JOLIBIUE 1IaqUIRYD JUY :UOIRIABIGAY

(2702) "Ie 10 BWEASBEY)
(9102) "[e 19 MezO :(6T0Z) ‘[e 10 18nbid

(5T02) T2 38 Busyd
:(9702) "e 38 1feZO ‘(LT0Z) ‘18 10 ewekahey

(8102) "[e 10 UIC
(€102) "2 10 ©bLUNS
(0102) "fe 30 Nz (2102) ‘1e 10 Buer

(€102) 12 18 9nbep
{(8102) Te 18 uIL {(6TOC) ‘I8 18 IISOIqUY

(G66T) UI0XIBPBIN puE BN

(T002) u0x13paIN
pue ‘yspezi|y ‘psemoH ‘mayhey ‘ddey

(0002)

“[e 38 J3[INWINS *(210Z) ued pue ‘Buelr ‘ui
‘niT ‘Buem ((LT0Z) Ued pue ‘NIt ‘ulr ‘uir ‘noyz

Author Manuscript

3UON
JaAIT

sapou ydwA|
‘WNauoIIad

1A
sBun| pue Jan1

JaAIT

pauodal 10N

JaAIT

Jan

pauodal 10N

onedayenu|

olug|dsenu|

onedayenu|
olug|dsenu|
[e3qi0-0119Y

[epioJoyoeidng

snosueINdgns

UIBA |1e)

Jaquieyd "y

snosueINdgns

Author Manuscript

(ores 1wexel) (5T02) ‘1e 10 Busyd siseiselsw [engio (460200OVND) YOONN-NCL

(o1es 1wexel) ($T02) ‘[e 18 BPIUSOA SISeISelsW JsAIT (460200OVND) TOONN-NCL

fmom@@(Z 9)

(Yapuesy| 2on1g) (L66T) *[e 19 IaA SIseIseIaW JanI €£'ZNINO = ,€ TWINO

sisejselall
(1pin 08y 1) (966T) ‘[e 12 UsIANT snnagns (16020 TTYND) TWINO

Author Manuscript Author Manuscript

Pigment Cell Melanoma Res. Author manuscript; available in PMC 2020 March 31.



Page 25

Richards et al.

(esnead >IN uer)

(£002) ‘Ie 19 pJeebasH SnoaueINAgNS (£002) asneud pue ‘uaswoy ] -Bueds ‘preehasH Jowny Arewd ¥02-1d@

LN pue

SOSE]SEIaW JAAIT ‘99NN ‘ZSININ ‘82NN ‘92NN

SISelselsw sinagns EENIN

08dIAl pue ‘2/dIN

(2102)'[2 3 1P {(0TOZ ‘¥T0Z) 1€ 30 eWdN ‘TLdIN ‘SSdIN ‘2¥dIN ‘OFdIN

{(#TOZ ‘9T0T) 'Ie 38 12Z0Jabuy/-ausydnoliwy ((9T02) ‘|e 10 eleD  ped Jey tejndessiaju| (utpnessq Ja1p1@) (0TOZ) Te 39 NewaN siowny Arewitid ‘TrdN ‘TrdIN ‘8EdIN ‘VEJIN
sawn

(L702) "Ie 10 eweAabey JanI (ores 1wexel) (£T02) ‘e 18 eweAsbey) SOSeISEIaW JOAIT € payelb A||nysse0ons sesed 9

SaoUB B oY 9115 UoI1e|NdoU | (uiBrio jo AlojeJoge ) uolredl|gnd feuiblio 80.N0S Ppow Xad

BLIOUER|SW [B8AN JO S|3poW 1JeiBouax asnow paAlIap-1uaied

€3149vl

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Pigment Cell Melanoma Res. Author manuscript; available in PMC 2020 March 31.



Page 26

Richards et al.

(oeN
oeyunr) (6102) ‘e 18 11

(uayo
nA) (8T0Z) |e 18 8100

(juopsweey
ueA auLIaye))
(S702) "2 18 BuenH

(pupping olAlls
'r) (¥702) "1e 18 Buad

(uibrio jo Alote.toqe )
uo(real|gnd feuiblio

Author Manuscript

(sypuow )
|BAIAINS PadNpal pue adiwW /// Ul SIoWwn] ewouejaw [eaAn Jable| :anoge 03 pasedwo)

Ajannoadsal ‘801w 0T/8
pue $T/2T Ul SYIUOW 9 Je UOIIBWIO) BLIOURIBW [BBAN pUR syjuow g Je buibing a3

SuoIS3] BuN| 40 SIOWN) BWOURIAW [23AN JO 9ZIS J0 J3quinu Ul aBueyd
OU ‘Xapul dAIIEI8}1104d pUB USPING BLIOUE|SW [eWISP Pasesioul :aA0qe 0} pasedwo)

90IW JO %00T

u1 syluow 9—¢ e sbun| pue sapou ydwA| Aejjixe ui saseiselawl aaireInd ‘ueay pue

‘pue|B ueLapIey ‘ajoLIUSA paIY) ‘sabuluawolda) ayp o eisejdoau onAdoueBW fad1W
10 950G Ul SYIUOW 9 Je BLIOUR|aW [eWLISp pue [eaAn LIBA0 ‘uoneiuswbidiadAy uys

30IW g/¢ Ul (Bwouejaw

1J9A0 10U INQ) 10B4] [eaAN 8y} Jo eisejdiadAy onAoouejaw ‘uoinejuswhidiadAy us
ERIN]

6T/8T Ul syluow ¢ Je sbunj ayy ui saselselawl aAneInd WaisAs JejnqisaA pue ‘eajyood

‘pue)b ueapaey ‘sebuluawolda] ayy 4o eisejdoau d1Ad0URIBW {821W GT/GT Ul SYIUOW
€ T2 BUWOUR[SW [BWLIBP [BUOISEI0 PUR BLUOUR[BW [B3AN 1I8A0 UoieiuswbidiadAy us

10BJ) [B3AN 3U} U SUOISA] 40 1odal OU ‘ewouR|aW SN0aUERIND Padojansp 301l 40 9405<

adAouayd

¥ 37avlL

Author Manuscript

Qzrosei-1S7 4,2se
YuISIeT 910d=49-201L-SAVY

AVY 40 uonosful
[eproJoyoeldns ‘801w pjo-yuow-y 01 -¢

CSIET 4y ISIET 810d=9
~ZAIL-SAVY 10 2IDAWI-SAVY

+z, | 5F819-8SBUISOIA] . o oLV
16020l TYND-TST-924

+y, 4F819-9SBUISOIAL
“Hpoedl IYIND-T1ST-92

uajIxowre}
J0 uonoalur 4 ajbuis ‘821w pjo-3eam-i

+/&/F349-3SBUIS Q\\D
“+160200VIND-0IS PaXOYY-928S0Y

sAep G 10} 1 H- ut dip |1e} pue usjIxoLuey
10 uonaalui 4| Ajrep ‘a8d1w pjo-yesm-g

JBALIP 81D BAIINIISUOD +RLHIN
Aq uoneanae (g'gT3) owoAiqu3 160200 VND-dOJS Paxoy-928soH
ox6Ta9Td

P00} Ul auI[oAdAXOp ‘891 P|O-Y98M-9 0} -G +160z00VIND-VH-19] +VL119T

uolpnpu| adAiousb ppo

BLIOUR|SW [2BAN JO S|8POW asnow palasulbua Ajjeansuso

Author Manuscript Author Manuscript

Pigment Cell Melanoma Res. Author manuscript; available in PMC 2020 March 31.



	Abstract
	INTRODUCTION
	ANIMAL MODELS OF UVEAL MELANOMA
	INOCULATION SITES
	SYNGENEIC CUTANEOUS MELANOMA MOUSE MODELS FOR SIMULATING UVEAL MELANOMA
	XENOGRAFT MOUSE MODELS OF UVEAL MELANOMA
	GENETICALLY ENGINEERED MOUSE MODELS (GEMMS) OF UVEAL MELANOMA
	CONCLUSIONS
	References
	FIGURE 1
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4

