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Abstract

Cortical atrophy and degraded axonal health have been shown to coincide during normal aging; 

however, few studies have examined these measures together. To lend insight into both the 

regional specificity and the relative timecourse of structural degradation of these tissue 

compartments across the adult lifespan, we analyzed gray matter (GM) morphometry (cortical 

thickness, surface area, volume) and estimates of white matter (WM) microstructure (fractional 

anisotropy, mean diffusivity) using traditional univariate and more robust multivariate techniques 

to examine age associations in 186 healthy adults aged 20–94 years old. Univariate analysis of 

each tissue type revealed that negative age associations were largest in frontal GM and WM tissue 

and weaker in temporal, cingulate, and occipital regions, representative of not only an anterior-to-

posterior gradient, but also a medial-to-lateral gradient. Multivariate partial least squares 

correlation (PLSC) found the greatest covariance between GM and WM was driven by the 

relationship between WM metrics in the anterior corpus callosum and projections of the genu, 

anterior cingulum, and fornix; and with GM thickness in parietal and frontal regions. Surface area 

was far less susceptible to age effects and displayed less covariance with WM metrics, while 

regional volume covariance patterns largely mirrored those of cortical thickness. Results support a 

retrogenesis-like model of aging, revealing a coupled relationship between frontal and parietal GM 

and the underlying WM, which evidence the most protracted development and the most 

vulnerability during healthy aging.
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1 | INTRODUCTION

The healthy adult brain is susceptible to structural degradation of both gray and white matter 

tissue throughout the aging process. To understand the relative timecourse and anatomical 

specificity of volumetric decline, much effort has been directed toward associating loss of 

structural integrity, as observed through various magnetic resonance imaging (MRI) 

modalities, with increasing age. The majority of these aging studies utilized a univariate 

approach to assess gray matter (GM) and white matter (WM) tissue compartments 

separately for their sensitivity to the effects of time. Cumulatively, these studies 

demonstrated the differential age-sensitivity of regional GM and WM properties, but leave 

unclear how these tissue compartments influence each other and age together. Given that 

these structural measurements reflect components of one cellular unit—the neuron, with 

somatic, dendritic, and axonal components, it makes sense that aging of these biological 

components must be linked. However, few studies have considered this dependency by 

examining the joint contribution of both GM and WM tissue to investigate how alterations in 

both aspects of brain structure are related across the lifespan. In contrast to univariate 

approaches, multivariate analysis techniques are perfectly poised to address this issue. As 

demonstrated by Groves et al., 2012, information from multiple imaging modalities can be 

analyzed together to assess the combined effect of structural integrity loss using multivariate 

analysis techniques. Treating complementary components of the neuronal unit as a whole, as 

opposed to independent features with orthogonal contributions, allows for a more complete 

representation of imaging data. Multimodal analyses such as these, which synthesize 

interdependent data, are necessary to advance understanding of the progression of structural 

decline and the influence on cognition throughout the lifespan.

Advances in MRI pulse sequences, and subsequent imaging analysis processing tools, 

allowed for an abundance of research identifying age-related associations in both cortical 

morphometry and WM health. Regional differences in cortical morphometry associated with 

age (Raz, 2000; Raz & Rodrigue, 2006) generally show measurement peaks during 

childhood (Tamnes et al., 2009), followed by an anatomically and chronologically divergent 

pattern of decline during senescence (Fjell et al., 2013; Shaw et al., 2008). Regional analyses 

revealed age-related atrophy in frontal (Allen, Bruss, Brown, & Damasio, 2005; Bartzokis et 

al., 2001; Fjell et al., 2009; Grieve, Clark, Williams, Peduto, & Gordon, 2005; Jernigan et 

al., 2001; Lemaitre et al., 2012; Manard, Bahri, Salmon, & Collette, 2016; Resnick, Pham, 

Kraut, Zonderman, & Davatzikos, 2003; Sowell et al., 2003; Zimmerman et al., 2006), 

parietal (Fjell et al., 2009; Grieve et al., 2005; Sowell et al., 2003), and select temporal 

(Bartzokis et al., 2001; Fjell et al., 2009; Sowell et al., 2003) regions of GM, yet relatively 

no association with limbic cortices (Grieve et al., 2005). Biological mechanisms underlying 

regional vulnerability to aging include loss of synaptic density and/or dendritic arborization 

(Raz, 2001; Salat et al., 2004), alterations in small diameter or thinly myelinated 

intracortical WM (Eickhoff et al., 2005; Walters et al., 2003; Westlye et al., 2010; Ziegler et 

al., 2010), neuronal shrinkage (Sowell et al., 2004), and/or loss of neuropil (Lemaitre et al., 

2012; Pakkenberg et al., 2003; Ziegler et al., 2010). Measures of WM health across the 

lifespan often demonstrate an inverted U-shaped curve with peak levels of estimated 

integrity during early adulthood (Raz, 2000; Westlye et al., 2009). After a short plateau 
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period, the fourth or fifth decade of life initiates an acceleration of age-related structural 

loss, which continues throughout senescence (for review see Bennett & Madden, 2014).

Macroscale aspects of cortical morphometry have been shown to represent unique 

contributions to age-related atrophy, for example age-related differences in volume appear to 

be differentially driven by its two components, cortical thickness and cortical surface area 

with surface area remaining relatively age-invariant and cortical thickness demonstrating 

particular vulnerability to the aging process (Lemaitre et al., 2012; Panizzon et al., 2012). 

Differences observed among these measures are likely to be driven by cyto- and myelo-

architectonic differences across cortical tissue and the way in which different estimates 

account for the ratio of WM and GM within regionally distinct laminar structure (Lemaitre 

et al., 2012; Paus, Keshavan, & Giedd, 2008; Raz, 2001; Storsve, Fjell, Yendiki, & Walhovd, 

2016).

Quantification of regional specificity in age-related structural brain decline prompted the 

development of different theories of brain aging to explain the reported patterns of cross-

sectional age-related differences and longitudinal decline (Salat, 2011). For example, 

typically, WM of the frontal lobes shows greater loss of integrity than do more posterior 

regions (Bennett, Madden, Vaidya, Howard, & Howard, 2010; Kennedy & Raz, 2009; 

Madden, Bennett, & Song, 2009; Salat et al., 2005). This gradient-like relationship has been 

observed throughout the WM of the cortex and has been described as a frontal vulnerability, 

or as an anterior-to-posterior gradient (Davis et al., 2009; Head, et al., 2004; Pfefferbaum, 

Adalsteinsson, & Sullivan, 2005; Ziegler et al., 2010). Other directional age-gradients may 

exist, including increased age-vulnerability in superior WM compared to inferior and greater 

vulnerability in lateral versus medial WM (Sexton et al., 2014; Sullivan, Rohlfing, & 

Pfefferbaum, 2010). In addition, regionally specific structural losses in aging have been 

proposed to mirror evolutionary and developmental trajectories through a retrogenesis or 

“last-in, first-out” framework of decline (Raz, 2000). Many of the later myelinating 

association fibers that connect higher-order cognitive association centers, exhibit greater 

age-related integrity loss than fibers in earlier developing limbic or primary visual, sensory, 

or motor areas (Salat et al., 2005; Ziegler et al., 2010).

Although MRI measures serve only as a proxy for the underlying cellular architecture, it 

seems apparent that these measured MRI signals track alterations to the neuronal 

components. Given the intimate connection among cell body, axons, and dendrites, aging 

should lead to nonindependent alterations to these MRI-based GM and WM metrics (Gao et 

al., 2018; Groves et al., 2012; Salat et al., 2004; Storsve et al., 2016). Specificity in this 

coupled aging include proposed lead–lag relationships such that cortical thinning via cell 

body damage leads to axonal alteration and decreased WM health (e.g., Wallerian 

degeneration), or that decreased axonal health propagates from the axon to produce 

alterations in the cell body (e.g., transneuronal atrophy) (Kochunov et al., 2011; Storsve et 

al., 2016). Given this GM–WM dependency, studies have begun to incorporate the idea of 

coupled age-differences (Brickman, Habeck, Zarahn, Flynn, & Stern, 2007) and coupled 

decline (Brickman et al., 2007; Raz et al., 2005). Univariate correlational analyses revealed 

associations between aging trajectories of cortical morphometry and indices of WM health 

(such as fractional anisotropy (FA), which is sensitive to the directionality of water flow, or 
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mean diffusivity (MD), which measures the overall rate of diffusion) (Kochunov et al., 2011; 

Storsve et al., 2016) and the underlying intracortical myelin (He, Chen, & Evans, 2007; 

Vidal-Pineiro et al., 2016). Additionally, multivariate frameworks can be utilized to make 

accurate predictions of age when accounting for age-related patterns of covariance among 

multiple tissue types (Groves et al., 2012). While current in vivo human neuroimaging 

techniques are not yet capable of fine-grained analyses at the neuronal level, improved 

statistical techniques, which properly account for the relatedness of these neuronal proxies, 

can and should now be employed to examine the coupled relationship of neuronal 

component data. This approach could shed light on regional differences in how neuronal 

components age together across the cortex and will bridge gaps in our knowledge of how 

this structural covariance varies with aging.

The current study aims to first utilize univariate analyses of each tissue type in an attempt to 

replicate and enhance previous lifespan aging work, examining linear and quadratic age 

associations with GM cortical thickness, volume, and surface area, as well as with WM FA 

and mean diffusivity; and second to utilize multivariate analyses (partial least squares 

correlation; PLSC) combining, in turn, measures of GM thickness, surface area, and volume, 

with WM FA and MD to evaluate covariance patterns. We then consider the results from 

these approaches in the context of two major theoretical models of brain aging: the last-in 

first-out retrogenesis pattern and directional/spatial age-gradients patterns (e.g., anterior-to-

posterior). We predict that univariate analyses will demonstrate a last-in first-out trend where 

the association cortices, and separately, their underlying connections, are associated with the 

strongest age differences as opposed to primary and secondary sensory cortex. Further, we 

predict that a multivariate analysis will expand on these findings and reveal regionally 

differential coupled GM–WM associations, such that higher order association cortices and 

their underlying WM fibers, will show the greatest coupling of structural age-differences.

2 | MATERIALS AND METHODS

2.1 | Participants

Participants included 190 cognitively normal healthy adults sampled across the adult 

lifespan ranging in age from 20 to 94 years of age recruited by flyers and media ads from the 

Dallas-Fort Worth Metroplex. Participants were screened to be free from a history of 

neurological, cardiovascular, metabolic, or psychiatric problems, head trauma involving loss 

of consciousness, substance abuse, or cognitive altering medications. Participants were also 

free from MRI contraindications, such as metallic implants and claustrophobia. Further 

inclusion criteria required mini-mental state exam (MMSE) scores >25 (Folstein, Folstein, & 

McHugh, 1975) and Center for Epidemiologic Studies Depression Scale (CES-D) scores 

<16 (Radloff, 1977). Before entering the study, each participant provided written informed 

consent, in accord with the local Institutional Review Boards. Participant demographic data 

are summarized in Table 1, broken down by arbitrary age groups. In total, four participants 

were excluded from data analysis: low MMSE score (n = 1), incorrect neuroimaging data 

acquisition (n = 1), abnormalities in brain structure (n = 2), yielding a total N = 186 (mean 

age = 53.71 years; 110 women).
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2.2 | MRI protocol

All participants were scanned on the same 3-Tesla Philips Achieva scanner with a 32-

channel head coil using SENSE encoding (Philips Healthcare Systems, Best, Netherlands). 

Diffusion weighted images were acquired using a single shot EPI sequence with the 

following parameters: 65 axial slices with voxel size of 2 × 2 × 2.2 mm3 (reconstructed to 

0.85 × 0.85 × 2.2 mm3), 30 diffusion weighted directions (b-value = 1000s/mm2) with 1 

non-diffusion weighted b0 (0 s/ mm2), TR/TE = 5,608/51 ms, FOV = 224 × 224, matrix = 

112 × 112, 4:19 min. High-resolution T1-weighted images were acquired using MPRAGE 

with the following parameters: 160 sagittal slices, voxel size 1 × 1 × 1 mm3, flip angle = 

12°, TR/TE/TI = 8.1/3.7/1100 ms, FOV = 256 × 204 × 160, matrix = 256 × 256, 3:57 min. 

T2 FLAIR images were collected using the following parameters: 64 axial slices, voxel size 

0.449 × 0.449 × 2.5 mm3, flip angle = 90°, TR/TE/TI = 11,000/125/2800 ms, FOV = 230 × 

230, matrix = 512 × 512, 3:40 min.

2.3 | MRI data processing

After visual inspection for subject movement distortions and acquisition artifacts, cortical 

reconstruction and volumetric segmentation was completed using Freesurfer v5.3 image 

analysis suite (Dale, Fischl, & Sereno, 1999; Fischl & Dale, 2000). Freesurfer includes 

motion correction and tissue segmentation procedures allowing isolation and quantification 

of tissue properties such as volume, thickness, and surface area. Furthermore, Freesurfer 

includes tools to segment regions of interest (ROI) which allows for alignment of a 

predefined atlas to the anatomy of an individual’s T1 image. Dura removal and control point 

edits were manually performed by trained researchers to optimize results and reliability. A 

standard atlas of cortical parcellation (Desikan et al., 2006) was used to extract the 

morphometric measures (cortical thickness, surface area, volume) from 34 distinct 

parcellations in each hemisphere for all participants.

Diffusion images were preprocessed using the DTIPrep v1.2.4 quality control software suite 

to detect acquisition artifacts including susceptibility, eddy current, and subject movement 

distortions (Liu et al., 2010). Using the default settings, slice-wise, and gradient-wise 

artifacts, appearing as intensity distortions, were corrected by removing associated gradients 

from analysis. On average, less than four gradients were removed per subject. Appropriate 

corrections were applied to minimize the effects of distortions, including those caused by 

head motion in the scanner, by removing gradients determined to be of insufficient quality, 

at the default threshold levels, and by registering all remaining gradients to the nonweighted 

b0 image. Diffusion directions were adjusted to account for independent rotations of any 

gradient relative to the original encoding direction (Leemans & Jones, 2009). Diffusion 

tensors were calculated using the DSI Studio software package build released September 26, 

2014 (Yeh, Verstynen, Wang, Fernández-Miranda, & Tseng, 2013). Diffusion metrics of FA 

and MD were calculated at each voxel. Finally, a study-specific template was created from 

all FA images to align all voxels using advanced normalization tools (ANTs) template 

creation and image registration tools (Avants, Tustison, & Song, 2009). This template 

aligned all voxels across all participants to allow analyses to be spatially equivalent. To 

further refine our analyses to voxels that are equivalent across the sample we restricted the 

template to only contain voxels with FA values > 0.15 for all participants. Any voxel with a 
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value below 0.15 was not considered to be WM and was removed from all analyses. The 

final WM space contained 138,283 voxels. A similar procedure was applied to the whole 

brain MD images, but we used the same voxels derived from the refinement procedure 

described above to create an identical template.

The influence of WM hyperintensities (WMH), and any potential bias they could introduce 

to our analyses, was of concern given previous research (Jones et al., 1999; Vernooij et al., 

2008). In our sample of healthy adults, 108 participants were identified as having WMH. 

The median participant from this subsample only had WMH in 541 voxels of all WM 

voxels, or 541 of the total 138,283 voxels in the template (0.39% of voxels). Despite this low 

number, we ran all analyses twice; once with WMH included, and once with WMH 

excluded in such a way that any voxel containing a WMH for any participant was removed 

for all participants to ensure that every participant had data at every voxel. There were no 

differences between the two methods and thus no bias of WMH under this analysis method. 

Given the ultra-conservative nature of removing any WMH voxel from all participants and 

the discontinuity it creates in our WM template; we present the data that include WMH 

voxels.

2.4 | Data analysis procedures

2.4.1 | Univariate analyses—Separate univariate analyses were conducted to estimate 

the effect of age on both GM and WM tissue. The three GM morphometry measures 

(thickness, volume, and surface area) were extracted for each ROI and averaged across 

hemispheres within each individual. Statistical models were conducted using R statistical 

software (R Core Team, 2016) within RStudio (RStudio Team, 2016) to estimate the linear 

and quadratic effects of age (as continuous variables) on regional cortical thickness, surface 

area, and volume, covarying for sex. To test for statistical significance, permutation 

resampling without replacement was used to build a null distribution of t-values for each 

region. Nonparametric p-values were calculated by dividing the number of permuted t-
values that were less than the observed t-value by the total number of permutations 

conducted (i.e., permuted < observed/10,000). WM voxels were analyzed using FSL’s 

permutation-based general linear model program randomize (Winkler, Ridgway, Webster, 

Smith, & Nichols, 2014) to test the linear and quadratic effect of age (as a continuous 

variable) on FA and MD, covarying for sex. Family-wise error corrected p-values were 

calculated at each voxel after 10,000 (Dickie et al., 2015) permutations were conducted with 

threshold-free cluster enhancement.

2.4.2 | Multivariate analyses—Data were combined and analyzed using the 

multivariate technique Partial Least Squares Correlation (PLSC) (McIntosh, et al., 1996; 

Wold, 1982) to estimate possible covariance with GM properties and the distinctive aspects 

of each WM metric. To examine the GM–WM covariance patterns, six separate PLSC 

analyses were conducted: one for GM thickness and its relation to WM FA, one for GM 

thickness and its relation to WM MD, and the same for surface area and FA and MD, and 

volume and FA and MD. Because volume is composed of both thickness and surface area, 

we chose to focus on each aspect of volume in this report, with volume-FA and volume-MD 

multivariate results presented as Supplementary Information. Separate data matrices were 
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created; one for each diffusion metric (FA and MD), as well as one for each GM property 

(GM thickness, surface area or volume). By submitting one data matrix composed of WM 

values, extracted from the standardized diffusion images, and a second data matrix of GM 

thickness, surface area or volume, extracted from the Freesurfer cortical parcellations, 

covariance between the two structural imaging techniques emerge. The table composed of 

WM metrics was created by registering each individual’s diffusion images to a standardized 

WM space, followed by reorganizing of the 3D matrix into a vectorized whole brain. Once 

combined across participants, the data matrix consisted of 186 participants organized in rows 

with vectorized whole brain voxels in columns. This allowed each column within the data 

matrix to represent the same point in the brain for each participant. The table composed of 

GM thickness (or surface area or volume) consisted of the same 186 participants organized 

in rows with GM thickness (or surface area or volume) for each ROI organized along the 

columns. Additionally, the potential effects of sex were residualized from each data table 

before analysis.

Once raw data values were organized in their respective tables, columns were centered and 

normalized such that the sum of squares within a column was equal to one. A correlation 

matrix was computed from the normalized columns of the data tables and orthogonal factors 

were decomposed using singular value decomposition. This resulted in a matrix of left 

singular vectors (or saliences) for the WM data, a matrix of right singular vectors for the 

GM data, and a diagonal matrix of singular values (Abdi & Williams, 2013; Krishnan, 

Williams, McIntosh, & Abdi, 2011). The original observations were then projected onto 

their respective saliences to observe their contribution to the derived components. These 

linear combinations of the original variables form the latent variables, which express the 

covariance between the two data tables (Krishnan et al., 2011).

To test for statistical significance of the derived components, permutation resampling was 

used to create new, rearranged matrices from our original data that were then submitted to 

PLSC. Specifically, 10,000 permutations were run to reorganize the participants (data rows) 

while holding the brain variables (data columns) constant. Submitting the permuted data to 

PLSC results in a distribution of new singular values, which are used as a null hypothesis to 

test against the original singular values (Krishnan et al., 2011; McIntosh & Lobaugh, 2004). 

To test the reliability of the data elements (GM ROIs and WM voxels) an inferential 

bootstrap technique was used to create entirely new sets of data by sampling with 

replacement. Through bootstrap resampling, bootstrap ratios (BSR) were derived by 

dividing the mean of the distribution by its SE. The larger the BSR the more it is 

significantly stable (Abdi & Williams, 2013; Ferreira et al., 2016; McIntosh & Lobaugh, 

2004). Bootstrap ratios function similar to z-scores and are considered significant when the 

ratio is greater than 1.96, which equates to a p-value of .05. Due to the large number of 

voxelwise comparisons computed in this data set, we selected a more conservative BSR 

threshold of ± 3, which equates to a p-value of .0027, as a cutoff to interpret stability of the 

observed saliences. Because many of our findings survived the inferential analysis, 

interpretations rely instead on the magnitude of the BSR relative to other data points. The 

PLSC analysis was run using TExPosition, part of the ExPosition analysis package (Beaton, 

Fatt, & Abdi, 2014) within RStudio, while the inferential analysis was run using in-house 
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code (MATLAB 2012b, The MathWorks Inc., Natick, MA) based on the Welford/Knuth 

algorithm (Welford, 1962).

3 | RESULTS

3.1 | Univariate

Univariate analyses demonstrated that much of the GM and WM tissue is susceptible to the 

effects of aging, beyond the effects of sex. GM measure age results are summarized by 

region in Figure 1 and WM diffusion metric age results are illustrated by voxelwise plots in 

Figure 2.

3.1.1 | Gray matter measures—Standardized parameter estimates for age effects on 

volume, cortical thickness, and surface area are plotted together by region in Figure 1. Each 

model included both a quadratic and linear age term to test for a nonlinear effect of age. In 

cases where the nonlinear term was not significant it was removed and only the linear effects 

were modeled. There was a significant, negative, linear effect of increasing age on volume in 

all GM regions measured (illustrated by the first bar in each ROI in Figure 1). For three of 

these regions (posterior cingulate, temporal pole, and transverse temporal) the age effects 

were significantly better modeled with a quadratic fit. For all three GM metrics a significant 

quadratic fit is indicated with an asterisk in Figure 1. Similarly, increasing age was 

associated with significantly thinner cortex in all GM regions, except for the caudal anterior 

cingulate gyrus (illustrated by the middle bars in Figure 1). This relationship was linear in 

most regions, but quadratic in the caudal anterior cingulate, entorhinal, inferior temporal, 

lateral occipital, medial orbitofrontal, superior parietal, and temporal pole. In contrast, 

surface area measurements were found to be significantly smaller with increasing age in 28 

of the ROIs, but not for the other six (insula, paracentral, entorhinal, rostral anterior 

cingulate, medial orbitofrontal, and superior temporal), suggesting that regional surface area 

is more resilient to the effects of aging (see last bar in each ROI in Figure 1). Only the 

lingual gyrus and transverse temporal regions fit a quadratic age trajectory better than a 

linear. Comparing across the standardized parameter estimates also reveals regional trends 

among GM measures. The strongest linear effects of age on both cortical thickness and 

volume were found in frontal lobe regions, most notably the parstriangularis, 

parsopercularis, and superior frontal gyrus, followed closely by parietal regions: precuneus, 

supramarginal gyrus, and angular gyrus, and some temporal regions (superior temporal, 

middle temporal, and fusiform gyri). Very few occipital and cingulate regions showed strong 

age effects for volume or thickness measures. In contrast, when comparing surface area 

measures, the fusiform, posterior cingulate, middle temporal, banks of the superior temporal 

sulcus, and the parahippocampal gyrus were all among the most highly negatively associated 

with age.

3.1.2 | White matter measures—Both WM FA and MD measures indicated extensive 

age-related decreases in WM health throughout the brain (see Figure 2). Over 86.2% of WM 

voxels analyzed evidenced a negative association between age and FA, and over 80.5% 

showed a positive association between age and MD. Only the center and occipital 

projections of the splenium of the corpus callosum and the inferior-most projection fibers 
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extending into the cerebellum and spinal cord from the brainstem showed no relationship 

with age in either WM metric (see green voxels in Figure 2). Unique effects of age on FA 

(i.e., not found on MD) were seen in the cerebellum, hippocampal projection of the 

cingulum, posterior cingulum bundle, projections into the superior-most parts of the frontal, 

and parietal gyri from both the U-fibers of the corpus callosum and the corticospinal tract, 

and the posteriormost projections of the inferior longitudinal fasciculus, inferior-frontal 

occipital fasciculus, optic radiations, and splenium (see Figure 2, panel a). These unique 

effects with FA were mixed between linear (yellow voxels) and quadratic (blue voxels for 

quadratic, and pink voxels for linear/quadratic overlap) effects with no obvious regional 

specificity to the shape differences noted. Unique effects of age on MD (i.e., not seen for 

FA) were observed in medial portions (viewed sagittally) of the corona radiata and 

corticospinal tract, and the cingulum bundle body (see Figure 2, panel b), most of which 

demonstrated a quadratic association with age (illustrated in blue/pink voxels). The 

remaining portions of the cerebral WM exhibited significant age-related association with 

both FA and MD measures including the superior longitudinal fasciculus, superior frontal 

occipital fasciculus, inferior longitudinal fasciculus, large anterior, and posterior portions of 

the inferior frontal occipital fasciculus, remaining portions of the corpus callosum, uncinate 

fasciculus, and fornix (see Figure 2, panels a and b). Most of these regions demonstrated a 

quadratic relationship with age (blue/pink voxels), especially between MD and age (panel 

2b), while FA showed a linear relationship in medial parts of the corpus callosum, the center 

and anterior projections of the genu, and in some of the U-fibers projecting to the frontal 

lobe gyri (yellow voxels in panel 2a).

3.1.3 | Spatial gradient patterns—To systematically depict any gradient patterns of 

age effects on FA and MD, the strength of the association between age and each WM metric 

is plotted across the slices of the brain in Figure 3. Examination of the plots in Figure 3 

suggests that traversing in either the posterior-to-anterior direction or the inferior-to-superior 

direction there is a strong age gradient effect demonstrated by the increasingly strong 

association between both age and FA (in Figure 3, top panel) and age and MD (in Figure 3, 

bottom panel) when moving anteriorly and moving superiorly across the brain. Interestingly, 

there is also a strong medial-to-lateral gradient in the relationship between age and MD that 

decreases when moving from mid-sagittal toward the lateral most slices, which is reversed 

with FA (Figure 3).

3.2 | Multivariate

Separate partial least squares correlation analyses were applied to examine how estimates of 

neuronal degradation were associated across the adult lifespan: two each (one for FA and 

one for MD) for each of the GM regional measures (cortical thickness, surface area, volume) 

for a total of six analyses. The univariate findings suggested that age-related variance in 

volume was driven primarily by thickness values, and that surface area was relatively age-

invariant. Therefore, the presentation of multivariate results is primarily focused on cortical 

thickness with surface area and volume PLSC results presented as Supplemental Material.
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3.3 | Cortical thickness

3.3.1 | Inferential analysis—The first set of two analyses combined GM thickness and 

WM FA (PLSC-FA), while the other combined GM thickness and WM MD (PLSC-MD). 

Each analysis revealed a single significant component that explained 94.42 and 91.48% of 

the variance in the data, respectively for PLSC-FA and PLSC-MD, at a p-value of p < .0001. 

No other components resolved, from either analysis, explained a significant amount of 

variance. An inferential battery was performed on the saliences of each component to 

establish reliability of these results. After averaging across each hemisphere, all GM regions, 

in both analyses, survived a bootstrap ratio cutoff of ± 3 (p = .0027), except for the 

entorhinal cortex in PLSC-FA, pericalcarine cortex in PLSC-MD, and caudal anterior 

cingulate and parahippocampal gyrus in both analyses (Figures 4a,b).

In PLSC-FA, the most stable GM saliences were those of the parietal regions, which all 

obtained BSR > 6 (p < .0001). All frontal regions obtained BSR > 5 (p < .0001), with the 

lone exception being the frontal pole. Additionally, while most temporal, occipital, and 

cingulate regions were the least stable, the lingual, superior temporal, and lateral occipital 

gyri all obtained high bootstrap ratios demonstrating high importance in the analysis (Figure 

4a). Similar to GM thickness, most FA voxels survived an inferential bootstrap ratio cutoff 

of three, with the few exceptions being medial portions of the corticospinal tracts, 

projections from the brainstem, and the splenium of the corpus callosum (Figure 4a). The 

most significant FA voxels, obtaining a BSR ≥5, were WM connections typically thought to 

traverse frontal and parietal regions. These include the projections from the genu and body 

of the corpus callosum including the U-fibers extending into frontal and parietal gyri, 

anterior portions of the SLF and superior frontal occipital fasciculus, and the fornix. In this 

analysis, both GM and WM exhibit negative BSRs, which indicates a positive association 

between the two tissues—as thickness in frontal and parietal cortex decreased, FA in largely 

frontal and parietal WM decreased.

In PLSC-MD, the most stable GM saliences were both the frontal and parietal regions as all 

regions obtained a BSR around five or above (p < .0001), except for the frontal pole. 

Similarly, most temporal, occipital, and cingulate regions were among the least stable. 

However, the fusiform, superior temporal, lateral occipital, and lingual gyri were each 

important contributors to the analysis (Figure 4b). Results with WM MD were similar to 

those with WM FA. The most stable WM voxels were those of both the frontal and parietal 

regions, although most frontal and parietal regions showed less stability with MD than they 

did with FA. Interestingly, many temporal and cingulate regions were shown to be more 

stable with MD than with FA. The most significant MD voxels, obtaining a BSR > 5, (p 
< .0001), were the centers of the genu and body of the corpus callosum as opposed to the 

projections and U-fibers observed with FA (Figure 4b). Additionally, the medial portions of 

the corona radiata (superior to the thalamus but inferior to the cortical gyri), the anterior 

thalamic radiations, and the fornix, also were shown to share the most variance with GM 

thickness. Opposite signs of the GM and WM BSRs in this analysis indicates a negative 

relationship between the two measures—as GM thickness decreased in frontal and parietal 

cortex, MD increased in medial WM regions.
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3.3.2 | Latent analysis—PLSC provides “brain scores” for each participant which 

describe the degree to which an individual expresses the WM and GM latent variables from 

the model (Krishnan et al., 2011). A brain score near zero indicates that the variance 

attributed to the model from a given data point contributed less informative or influential 

information to resolving the component, or was highly similar to the mean participant for 

that measurement. In contrast, the greater the magnitude of the brain score the more 

influential a given data point were in the overall covariance structure. Figure 5, panel a 

illustrates how the observations (each participant in the sample) contributed to GM thickness 

(y-axis) and WM FA (x-axis) of component 1 while Figure 5, panel d shows these same 

observations and the contributions of GM thickness (y-axis) and WM MD (x-axis) of 

component 1. Observations are colored by age group, for visualization purposes, to illustrate 

how component 1 can be interpreted in the context of an age gradient.

Plotting the WM and GM brain scores together shows how the age of the participants 

describes the resolved component as there is a relatively linear progression from the 

youngest adults (the darkest blue), to the oldest adults (the lightest blue), across the first 

component in each PLSC. Additionally, the brain score magnitude of both young adults and 

very old adults (i.e., the distance from the origin), shows that they are driving the variance 

and contributing to the significance of the component. To test this relationship more directly, 

regression curves are depicted demonstrating the association between GM (Figure 5 panels 

b, e) and WM (Figure 5 panels c, f) brain scores from each PLSC and participant age. There 

is a significant linear effect of each brain score and age; PLSC-FA: WM ∼ Age (F[1,184] = 

111.7, p < .001), GM ∼ Age (F[1,184] = 143.9, p < .001); PLSC-MD: WM ∼ Age (F[1,184] 

= 106.4, p < .001), GM ∼ Age (F[1,184] = 141.1, p < .001). Given the strength of these 

associations, the PLSC results can be interpreted relative to age by combining information 

from the two-salience plots with the chronological information provided from the latent 

mapping of the brain scores. Interestingly, there is also a significant quadratic effect of age 

for each WM brain score; PLSC-FA: WM ∼ quadratic Age (F[2,183] = 64.72, p < .001); 

PLSC-MD: WM ∼ quadratic Age (F[2,183] = 81.14, p < .001), but not for GM brain scores.

The PLSC-FA saliences for both the GM ROIs and the voxel-wise WM FA estimates are on 

the same side of the component structure (evidenced by the negative saliences leading to 

negative BSRs in Figure 4a), suggesting a positive relationship between GM thickness and 

WM microstructure (e.g., as thickness increases, FA values increase). The plot of brain 

scores for this analysis reveals that older adults, plotted in the bottom left quadrant (i.e., 

negative brains scores for both GM and WM latent variables), demonstrate a negative 

relationship with the coupled variance of GM thickness and WM structural measures (Figure 

5a). In contrast, the youngest adults fell to the upper-right quadrant of the first component 

demonstrating a positive relationship with the coupled variance of GM thickness and WM 

structural measures. Together, these results indicate that the age gradient aligns with the 

coupled variance in structural measures such that the youngest adults exhibit the expected 

positive association between GM thickness and FA estimates, while older adults are better 

characterized by coupled decreases in structural integrity.

In PLSC-MD, a similar pattern emerges among the coupling of structural integrity measures 

and age. The saliences for the GM ROIs are along the left side of the component structure 
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(leading to negative BSRs in Figure 4b), while the saliences for the voxel-wise WM MD are 

along the right (leading to positive BSRs in Figure 4b), suggesting a positive relationship 

between GM thickness and WM microstructure (Figure 5, panel d). This is due to the fact 

that higher MD is typically associated with poorer structure in healthy adults, thus a sort of 

“double-negative” association emerges between the two structural measures. When 

examining WM and GM brain scores, the oldest adults are projected to the upper right 

quadrant of the first component which is characterized by positive GM brain scores 

(opposite the negative GM saliences) and positive WM brain scores (same as the positive 

WM saliences) (Figure 5d). This demonstrates a negative relationship with the coupled 

variance in structural decline of GM thickness and WM structural measures. Taken together, 

these results also indicate that the age gradient aligns with the coupled variance in structural 

measures (i.e., the youngest adults exhibit a positive relationship, while older adults exhibit a 

negative relationship).

Anatomical specificity is evident due to the magnitude of the saliences and latent 

projections, or the distance each data point is from the origin. In the PLSC-FA analysis, GM 

thickness measures in the parietal and frontal regions, specifically the superior frontal, 

parstriangularis, precuneus, angular gyrus, and supramarginal gyri are driving the observed 

variance (Figure 4a). In other words, the largest covariance between thickness and WM FA, 

or greatest coupling, appears in these association cortices. Similarly, the WM saliences for 

FA, which show the greatest coupling with GM thickness, are the voxels in the brightest blue 

(Figure 4a). These consist of a large amount of frontal voxels such as the genu and body of 

the corpus callosum, anterior portions of the cingulum bundle, U-fibers extending from 

anterior portions of the corpus callosum to frontal and parietal gyri, the superior longitudinal 

fasciculus, and the fornix. In contrast, thickness values from the parahippocampal and 

entorhinal regions in the temporal lobe share little variance with FA values, while the caudal 

anterior cingulate shares no variance with FA values. WM FA of the more posterior and 

inferior regions, including the splenium of the corpus callosum, projections from the 

corticospinal and corona radiata, anterior thalamic radiation, projections into the occipital 

lobe and the brainstem, and cerebellar fibers share very little variance with measures of 

thickness.

The PLSC-MD analysis reveals that GM thickness measures in the parietal and frontal 

regions, specifically the superior frontal, caudal middle frontal, angular gyrus, precuneus, 

and supramarginal, are driving the observed covariance (see Figure 4b). Similarly, the WM 

saliences for MD, which show the greatest coupling with GM thickness, are composed of 

numerous frontal voxels such as the genu and body of the corpus callosum, U-fibers 

extending from anterior portions of the corpus callosum to frontal gyri, medial portions of 

the corona radiata and corticospinal tract, and the fornix (Figure 4b). In contrast, thickness 

values from the parahippocampal, pericalcarine, and caudal anterior cingulate, share little 

variance with MD values. WM voxels of the more posterior and inferior regions, including 

the splenium of the corpus callosum, the inferior longitudinal fasciculus, projections into the 

occipital lobe and the brainstem, and the cerebellum, share little variance with measures of 

thickness.
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3.4 | Surface area

3.4.1 | Inferential statistics—PLSC models were also conducted for regional surface 

area and FA and MD. Surface area demonstrated fewer and less robust covariance with WM, 

as surface area is less susceptible to the effects of aging, compared to cortical thickness. 

Surface area PLSC results are provided as Supplemental Information. Figure S1, panel a 

illustrates that there is significant covariance with FA and surface area in rostral and caudal 

middle frontal and superior frontal gyri, in all parietal regions but paracentral, in middle 

temporal, banks of the superior temporal, and fusiform gyri, in all occipital regions, and in 

only the posterior portion of the cingulate gyrus.

Figure S1a also illustrates the WM voxels where FA covaries with surface area. These 

voxels are sporadic, but tend to cluster in the projections of the corpus callosum, including 

the genu and u-fibers extending from the body of the corpus callosum to frontal and parietal 

gyri, as well as the frontal projections of the IFOF, the cingulum body, the SLF, and fornix.

For the covariance between surface area and WM MD, Figure S1 panel b illustrates 

significance in the caudal and rostral middle frontal and superior frontal gyri, in postcentral, 

supramarginal, and precuneus, in fusiform, middle temporal, transverse temporal, and banks 

of the superior temporal gyri, in all of occipital regions, and in the posterior portion of the 

cingulate gyrus. Figure S1b also illustrates the WM MD voxels where there is significant 

covariance with surface area. These voxels are even more sporadic than in the surface area 

analysis with FA, including the genu and some projections of the corpus callosum to the 

frontal lobes, as well as the fornix and anterior IFOF.

3.4.2 | Latent analyses—Figure S2A provides “brain score” plots for the covariance 

between surface area and WM FA in terms of latent components. As in the cortical thickness 

results shown in Figure 5, the first component is interpreted as age. Figure S2b,c illustrates 

the strength of the brain score for GM and WM, respectively, and age. Figure S2d–f displays 

the same information for WM MD.

3.5 | Gray matter volume

3.5.1 | Inferential statistics—We also include as supplemental information the PLSC 

results for the covariance between GM volume and WM FA and MD. Because volume is the 

product of surface area and cortical thickness, it makes sense that its covariance would be 

similar to one of its driving components. Indeed, the covariance patterns for volume appear 

similar to the cortical thickness covariance and distinct from the surface area pattern. Figure 

S3 provides regional volume BSR plots and WM maps for FA (Figure S3a) and for MD 

(Figure S3b). Significant covariance between GM volume and WM FA was observed in 

every region except the caudal portion of the anterior cingulate gyrus. GM volume and WM 

MD covariance was also significant for every region except caudal anterior cingulate. In 

addition, significant WM voxels mirrored the regional distribution in the thickness results 

with large areas of frontal and parietal WM dominating the covariance for both FA and MD.

3.5.2 | Latent analyses—“Brain score” plots for the covariance between cortical 

volume and WM FA in terms of the first latent component, with age coded across the plot 
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are shown in Figure S4a. The relationships between each brain score and age are shown in 

Figure S4b,c while the results for volume and WM MD covariance are provided in Figure 

S4d–f.

4 | DISCUSSION

Neuronal degradation in the aging brain is a complex biological process involving changes 

in both gray and WM tissue. MRI metrics, serving as a proxy for these tissue compartments, 

show differential effects of normal aging and are generally investigated separately. Here, we 

report traditional univariate findings of normal aging effects on GM thickness, surface area, 

and volume as well as FA and MD differences in WM across the adult lifespan. We replicate 

previous findings to demonstrate how each tissue type is associated with age. We then report 

results using a multivariate technique to investigate the effects of aging on both tissue types 

simultaneously to demonstrate how regional tissue degradation has both shared and unique 

aspects across the adult lifespan, elucidating this relationship in a way univariate methods 

cannot. We found that variance in the data follows an aging trajectory evidenced by intact 

structure in early adulthood, followed by differential degradation, in regard to both tissue 

type and anatomy, throughout mid- to late-adulthood.

4.1 | Univariate findings

Previous research illustrated that age-related declines in GM follow a “patchwork” pattern of 

regional specificity that roughly follows a “last-in first-out” gradient of vulnerability such 

that structures that evolve and/or mature earliest are the most resilient to the processes of 

aging, and likewise, those with the most protracted development are the most vulnerable to 

the aging process (Raz, 2000; Salat et al., 2004). Although we did not explicitly test this 

hypothesis by directly comparing early and late developing regions, the univariate results in 

the current study largely replicate and expand upon this idea. The cortical thickness and 

volume measures with the highest aging parameter estimates are all located in the frontal 

lobe. Other high parameter estimates were those of the parietal regions, while the only 

temporal regions with high estimates were that of the superior and middle temporal gyri, 

which are known for contributions to higher order cognitive processing and demonstrate 

susceptibility to aging (Fjell et al., 2009; Van Petten et al., 2004). A regional gradient is 

evident such that the frontal regions have higher parameter estimates than the majority of the 

occipital, temporal, and cingulate regions, meaning that these association cortices explain 

significantly more age-related variance. Interestingly, surface area measures with the highest 

age-related parameter estimates include occipital and temporal regions, some of which are 

reportedly more highly associated with age than with thickness or volume (Dickerson et al., 

2009). However, age-related parameter estimates of surface area are modest relative to 

volume and thickness, suggesting that while surface area does show differences with age, it 

is not nearly as age-vulnerable as other measurements (Lemaitre et al., 2012). As suggested 

by Lemaitre et al., it might be the case that surface area measurements are more sensitive to 

the loss of intracortical WM.

Alternately, cortical thickness has been suggested to reflect, during development, dendritic 

arborization and pruning in GM (Huttenlocher, 1990), and myelination differences at the 
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interface of GM and WM tissue compartments (Sowell et al., 2004). During development, 

surface area is related to the maintenance and division of progenitor cells (Chenn & Walsh, 

2002). However, both cortical thickness and surface area development are related to 

neuronal migration and minicolumn organization (Rakic, 1988). Surface area may reflect the 

density of minicolumns in cortex (Rakic, 1988), whereas cortical thickness reflects the size 

and density of cells, including those that make up minicolumns (Rakic, 1988), at least in 

animal models of development. Cortical thickness appears to be most impacted 

developmentally by alterations in myelin, reduction in size or number of neurons, and 

changes to the synaptic environment (Sowell et al., 2003; Sowell et al., 2004), which are the 

hallmarks of age-related decline, suggesting a biological basis for a retrogenesis-like 

recapitulation of development in aging.

In univariate analyses, measures of WM FA and MD also show strong associations with age. 

Analyses revealed linear gradients of age-differences across much of the myelinated area, 

indicating that regional specificity might be more complex than a simple anterior-to-

posterior gradient or last-in first-out framework. While anterior regions did evidence strong 

age-related associations for both FA and MD compared to posterior regions (lower FA and 

higher MD while moving toward anterior voxels), there were also strong medial-to-lateral 

effects such that MD evidenced weaker age associations while moving from mid-sagittal to 

more lateral slices. Age-related associations with FA appear to reflect an overall disruption 

in WM microstructure at the tract centers, which remained stable in large WM bundles such 

as the corpus callosum, yet declined in smaller offshoots that approach lateral gyri. This 

finding corresponds with the idea that more primitive brain regions, which typically 

myelinate earliest in development and are more centrally located in medial portions of the 

brain, are typically more preserved in aging; as opposed to later myelinating association 

fibers, which connect cognitive centers across the superior and lateral surfaces, and exhibit 

greater age-related structural loss (Salat et al., 2005; Ziegler et al., 2010). Indeed, the latest 

myelinating regions are superiorly positioned—the supramarginal, superior frontal, and 

superior parietal—followed by inferior temporal, middle temporal, and superior temporal 

gyri, and the precuneus (Deoni, Dean III, Remer, Dirks, & O’Muircheartaigh, 2015; Leipsic, 

1901). In comparison, middle-development is characterized by myelination of the corpus 

callosum, and the earliest to develop are the projection fibers (Brickman et al., 2012; 

Stricker et al., 2009). On the other hand, decreasing MD appears to be more specific to the 

edges of each tract, possibly representative of myelin degradation with age as larger WM 

bundles become less dense along the periphery. Demyelination and changes to myelin 

density might have an exacerbated effect on larger fiber bundles. Therefore, MD might be 

less sensitive to regional phylogeny or ontogeny and more sensitive to the size and/or density 

of fiber bundles. More research is needed regarding myelin density and how it is affected 

within individual tracts across developmental and aging processes.

4.2 | Multivariate findings and comparison to univariate results pattern

Because the different processes of the neuron (cell body, axons, dendrites) likely age in 

conjunction, we sought to use multivariate analyses to expand upon current and previous 

univariate aging brain findings with a more biologically relevant guiding model which 

simultaneously takes data from proxies of both the neuronal axon and cell body into account 
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to gauge, at least with cross-sectional estimates, how these brain compartments may age 

together. Specifically, we utilized a partial least squares statistical technique to demonstrate 

how variance among GM and WM estimates of neuronal integrity covary across the brain; 

and how this covariance varies across the adult lifespan. Comparisons between the two types 

of analyses show that multivariate techniques emphasize a coupled relationship of GM and 

WM decline which is not evident from univariate analyses alone. While univariate analyses 

show the strongest effects of age and thickness to be in the frontal cortices, the covariation 

with WM FA reveals that the greatest coupled association is actually in frontal and parietal 

cortices and the frontal WM connections. Additionally, occipital regions, which in the 

univariate analyses were among the least associated with age, are more highly associated 

with WM metrics and aging once both tissues are considered together. In particular, aging of 

the lingual and lateral occipital cortices thickness show a strong coupling with both FA and 

MD in the multivariate analyses. In contrast, cingulate regions, which were only weakly 

affected by age in the univariate analysis, showed lesser association with both WM FA and 

MD when analyzed together. Frontal regions, which were the most highly associated with 

age in the univariate analyses, still demonstrate high coupling with WM and age, albeit less 

than many parietal regions. These findings reveal that considering structural brain aging as a 

whole, and the coupling among GM and WM tissue, leads to different conclusions than an 

analysis that considers the neuronal processes as two unrelated tissue types. Previous studies 

suggest that correlations between cortical thickness across brain regions may be related to 

the function of the networks the regions participate in and to the underlying WM 

connectivity (He et al., 2007; Lerch et al., 2006). This type of connectivity could then serve 

as a plausible explanation of how aging of one component of one region might affect 

downstream regions; however, this speculation requires longitudinal design to fully test.

4.3 | Regional timecourse specificity: Gray and white matter coupling

The current study not only demonstrated a coupled association of tissue integrity in a 

lifespan sample of healthy aging adults, but it also suggests a differential timecourse of 

aging within each tissue type, in accord with other cross-sectional studies (Fjell et al., 2013; 

Raz & Rodrigue, 2006; Ziegler et al., 2010). As discussed above, the relationship between 

structural measures is described by age such that the projection of the latent variable 

contributions map onto an age trajectory. However, despite this strong coupling of structural 

measures, regional aspects of GM cortices and WM voxels differentially contributed to the 

age effects. Thus, it appears that different tissues types, despite their connectedness within a 

neuron, degrade at different points in the lifespan. This distinction is most notable in the 

relationship between frontal and parietal structural measures. In comparisons with WM FA, 

parietal GM thickness measures were at the extreme end of the component. Therefore, the 

age-related thickness of the parietal cortices is not only sharing the most variance with 

estimates of WM FA, but is also driven by the oldest adults. Frontal cortices also contributed 

heavily to this relationship and the component structure as a whole, but shares less variance 

with WM FA than parietal regions. Interestingly, in analyses with WM MD, this relationship 

is similar such that, as a whole, WM MD shares the most variance with thickness measures 

of frontal cortices, followed by thickness measures from parietal regions. Therefore, there is 

an overall coupling of aging of GM thickness in the frontal and parietal regions with 

estimates of WM microstructure, although regional specificity may be evidenced depending 
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on which WM metric is evaluated. Temporal and occipital regional thickness were even less 

represented in analyses with either WM FA or MD, reflecting less coupling with age, except 

for lingual and superior temporal cortices.

Our results indicate that similar regionally specific features of WM voxels emerge in both 

analyses. Frontal WM voxels shared the most variance with age-related GM thickness in 

both analyses, specifically, WM voxels spanning between frontal and parietal cortices such 

as the genu and body of the corpus callosum, the projections from the corpus callosum, and 

the anterior portions of the cingulum bundle. Comparisons between the two WM metrics 

revealed that FA demonstrated greater covariance (via higher bootstrap ratios) with GM 

thickness in some of the largest association fiber bundles, such as the anterior projections of 

the corpus callosum into frontal and parietal lobes, the frontal–parietal portion of the SLF, 

the cingulum bundle, and posterior projections of the splenium, ILF, and IFOF, compared to 

MD. Reshaping of the diffusion ellipsoid within these voxels, due to the loss of more thinly 

myelinated axons, without compromising the overall magnitude of water flow is plausible in 

these association fibers. In contrast, MD evidenced stronger age-related coupling with GM 

thickness in medial portions of the brain such as the corona radiata, cortical spinal tract, and 

anterior thalamic projection fibers. This could be the result of thickly myelinated, medially 

located bands of WM, allowing for more water flow (due to less displacement) with aging, 

yet not necessarily reshaping the directionality of this flow (as would be measured by FA). 

This anatomical dissociation of tissue compartments is important with regard to age-related 

tissue alterations, as it suggests that certain tissue types are more susceptible to the aging 

process than others (Bartzokis et al., 2004; Bartzokis et al., 2012), and could yield insight as 

to how regionally differential neurons degrade according to different trajectories. Although 

longitudinal imaging data with finer resolution than currently available at the cellular or 

neuronal level would be necessary to validate these ideas, one possibility based on the 

current results is that parietal neurons degrade from cell body to axons (e.g., as in Wallerian 

degeneration) whereas frontal neurons degrade from cell axons to body (e.g., transneuronal 

atrophy).

While the results from cross-sectional studies are limited in their ability to elucidate age 

progression within individuals, it is interesting to note that our findings are consistent with 

the general patterns of longitudinal studies (Rast et al., 2017; Raz et al., 2005). We found 

that GM regions that contribute the most variance, and display a negative trajectory with 

age, are parietal and frontal regions, while those regions contributing the least to this 

relationship with age are occipital and cingulate regions. This framework in which 

heteromodal, association cortices (forming higher-level cognition centers) evidence early 

decline and are associated with deteriorating cognition, with a relative preservation of 

primary sensory areas has been a proposed mechanism underlying cognitive decline patterns 

in healthy aging (Raz, 2000). Similarly, the strongest relationships in WM degradation were 

evidenced by the negative age trajectory with areas throughout the anterior and superior 

WM, typifying anatomical association connections between higher-order cognitive centers 

of frontal and parietal GM. Furthermore, the few WM regions showing a positive 

relationship with age, in posterior and inferior portions of the brain, are located in visual, 

spatial, and motor areas, which show little to no decline with aging. Despite the strong 

evidence we have presented showing the differential timecourse of structural decline across 
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the adult lifespan, these data were collected in a cross-sectional design and thus represent 

between-participant differences as opposed to reflecting change over time within an 

individual. Longitudinal data are essential to investigate whether these differences develop 

and progress as individuals age, and that aging of the GM and WM are coupled over time, 

and follow-up is currently underway for this sample.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Univariate results for age differences in gray matter measures of volume, thickness, and 

surface area by region. Values represent standardized beta-weights from regression models 

containing age and sex as predictors. Larger estimates represent greater negative effect of 

age. Note: STS = superior temporal sulcus. Bars with asterisks indicate measures that show 

significant quadratic effects of age (beyond linear). Bars with NS indicate measures with 

neither linear nor quadratic age effects
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FIGURE 2. 
Univariate results for age differences in white matter FA (a) and MD (b). Panel a depicts 

regions with significant effects of age projected onto sagittal slices. Linear effects of age on 

fractional anisotropy (FA) are depicted in yellow, quadratic effects of age in blue, and their 

overlap in pink. Panel b depicts regions with significant age effects on mean diffusivity 

(MD) following the same voxel color scale as for FA in panel a. Plotted voxels represent 

significant voxels from threshold-free cluster enhancement (TFCE) raw test statistics that 

survived permutation correction. In both panels, green voxels represent regions of age 

invariance
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FIGURE 3. 
Strength of relationship between age and white matter (WM) metric plotted across brain 

slices illustrating spatial age gradients. The top panel plots fractional anisotropy-age 

correlations and the bottom panel mean diffusivity-age correlations across slices in four 

directions. There is a strong, posterior–anterior and inferior–superior gradient increase in the 

strength of the effect of age on both FA and MD. There is also a medial-to-lateral (sagittally 

from midsagittal to parasagittal across both hemispheres) gradient of age effect on MD and 

FA. Hemispheric (laterality) differences, sagitally from right to left, were minimal
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FIGURE 4. 
Bootstrap ratios for PLSC-FA (a) and PLSC-MD (b). Barplots show bootstrap ratios for GM 

regions, while brain images show bootstrap ratios for WM voxels. Bootstrap ratios below an 

absolute value of three (which corresponds to p < .0027) are considered nonsignificant and 

are faded in GM barplots, or green in WM voxelwise brains. Note: STS = superior temporal 

sulcus
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FIGURE 5. 
Latent variable projections and the relationship of each brain score with age for (a–c) PLSC-

FA and (d–f) PLSC-MD. For the PLSC-FA analysis, gray matter (GM) brain scores decrease 

linearly with age demonstrating that data from younger adults drive the positive side of 

component 1, while data from older adults drive the negative side of component 1 

(illustrated in panel b). This association is also evident for white matter (WM) brain scores 

in a nonlinear fashion (i.e., decelerates with age; panel c). For the PLSC-MD analysis 

similar linear (for gray matter in panel e) and quadratic (for WM in panel f) relationships 

with age are found. Scatter dots represent individual participants, triangles represent the 

mean of an age “group,” and blue color fades from dark to light blue represents younger to 

older adults, respectively to illustrate the age effect. Both linear and nonlinear regression 

lines are illustrated on the scatterplots, with the more significant fit denoted with bold solid 

lines, and the lower fitting line denoted by faded dashed lines. Note: YA, younger adults; 

MA = middle-aged adults; OA = older adults; VOA = very old adults
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