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To the Editor — Reconstructing metabolic reaction networks enables the development of 

testable hypotheses of an organism’s metabolism under different conditions1. State-of-the-

art genome-scale metabolic models (GEMs) can include thousands of metabolites and 

reactions that are assigned to subcellular locations. Gene–protein–reaction (GPR) rules and 

annotations using database information can add meta-information to GEMs. GEMs with 

metadata can be built using standard reconstruction protocols2, and guidelines have been put 

in place for tracking provenance and enabling interoperability, but a standardized means of 

quality control for GEMs is lacking3. Here we report a community effort to develop a test 

suite named MEMOTE (for metabolic model tests) to assess GEM quality.

Incompatible description formats and missing annotations4 limit GEM reuse. Moreover, 

numerical errors5 and omission of essential cofactors6 in a single biomass objective function 

can have substantial impact on the predictive performance of a GEM. Failure to make checks 

for flux cycles and imbalances can render model predictions untrustworthy7.

Every year, increasing numbers of manually curated and automatically generated GEMs are 

published, including those for human and cancer tissue models8. We believe that it is 

essential to optimize GEM reproducibility and reuse. Researchers need models that are 

software-agnostic, with components that have standardized, database-independent 

identifiers. Default conditions and mathematically specified modeling formulations must be 

precisely defined to allow reproduction of the original model predictions. Models must 

produce feasible phenotypes under various conditions. Finally, data used to build any model 

must be made available in a reusable format.
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A dual approach could be used to improve GEM reuse and reproducibility. First, we 

advocate adoption of the latest version of the Systems Biology Markup Language (SBML) 

level 3 flux balance constraints (SBML3FBC) package9 as the primary description and 

exchange format. The SBML3FBC package adds structured, semantic descriptions for 

domain-specific model components such as flux bounds, multiple linear objective functions, 

GPR rules, metabolite chemical formulas, charge and annotations. The SBML and 

constraint-based modeling communities collaboratively develop this package, updating it 

based on user input. It has been adopted by a wide range of constraint-based modeling 

software and public model repositories (http://cbmpy.sourceforge.net/ and refs.10–15), and 

should therefore be considered the standard for encoding GEMs.

Second, we present MEMOTE (/’mi:moʊt/ in international phonetic alphabet notation), an 

open-source Python software that represents a unified approach to ensure the formally 

correct definition of SBML3FBC and provides quality control and continuous quality 

assurance of metabolic models with tools and best practices already used in software 

development16,17. MEMOTE accepts stoichiometric models encoded in SBML3FBC and 

previous versions as input. In addition to structural validation analogous to the SBML 

validator18, MEMOTE benchmarks metabolic models using consensus tests from four 

general areas: annotation, basic tests, biomass reaction and stoichiometry.

Annotation tests check that a model is annotated according to community standards with 

minimum information required in annotation of models (MIRIAM)-compliant cross-

references19, that all primary identifiers belong to the same namespace rather than being 

fractured across several namespaces, and that components are described using Systems 

Biology Ontology (SBO) terms20. A lack of explicit, standardized annotations complicates 

the use, comparison and extension of GEMs, and thus strongly hampers collaboration3,4.

Basic tests check the formal correctness of a model and verify the presence of components 

such as metabolites, compartments, reactions and genes. These tests also check for 

metabolite formula and charge information, and GPR rules. General quality metrics, such as 

the degree of metabolic coverage representing the ratio of reactions and genes21, are also 

checked.

A model is tested for production of biomass precursors in different conditions, for biomass 

consistency, for nonzero growth rate and for direct precursors. The biomass reaction is based 

on the biomass composition of the modeled organism and expresses its ability to produce the 

necessary precursors for in silico cell growth and maintenance. Thus, an extensive, well-

formed biomass reaction is crucial for accurate predictions with a GEM6.

Stoichiometric inconsistency, erroneously produced energy metabolites7 and permanently 

blocked reactions are identified by MEMOTE. Errors in stoichiometries may result in the 

production of ATP or redox cofactors from nothing2 and are detrimental to the performance 

of the model when using flux-based analysis4.

MEMOTE enables a quick comparison of any two given models, in which individual test 

results are quantified and condensed to calculate an overall score (Supplementary Note 1). In 

addition to these consensus tests, researchers can supply experimental data from growth and 
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gene perturbation studies in a range of input formats (.csv, .tsv, .xls or .xslx) in MEMOTE. 

To support reproducibility, researchers can configure MEMOTE to recognize specific data 

types as input to predefined experimental tests for model validation (Supplementary Note 2).

There are two main workflows for MEMOTE (Fig. 1a and Supplementary Figs. 1–3). For 

peer review, MEMOTE can produce either a ‘snapshot report’ or a ‘diff report’ that display 

MEMOTE test results of one single or multiple models, respectively. For model 

reconstruction, MEMOTE helps users to create a version-controlled repository of the model 

and to activate continuous integration toward building a ‘history report’ that records the 

results of each tracked edit of the model. Although a model repository can be used offline, 

we encourage community collaboration via distributed version control development 

platforms, such as GitHub (https://github.com), GitLab (https://gitlab.com/) or BioModels12 

(http://wwwdev.ebi.ac.uk/biomodels/). MEMOTE is tightly integrated with GitHub. Models 

generated and versioned in MEMOTE can easily be uploaded to GitLab and BioModels. 

Collaborative model reconstruction with MEMOTE as benchmark can occur using all three 

software platforms (Fig. 1b).

We validated MEMOTE using models from seven GEM collections (Fig. 2, Supplementary 

Table 1 and Supplementary Methods), that comprise manually and (semi)-automatically 

reconstructed GEMs (10,780 models in total). Most GEM collections have already made 

models available in SMBL format. A nonlinear dimensional reduction of the normalized test 

results (Supplementary Methods) using t-distributed stochastic neighbor embedding (t-SNE; 

Fig. 2a) indicates that models from the same source are generally more similar to each other 

than to models from other sources. Nevertheless, several model sources reveal internal 

subgroupings (Fig. 2a). With the exception of Path2Models22, which relies on pathway 

resources that contain problematic reaction information on stoichiometry and 

directionality23, automatically reconstructed GEMs were stoichiometrically consistent (Fig. 

2b) and mass-balanced (Supplementary Fig. 4). Of the manually reconstructed GEMs we 

tested, most models in BiGG13 are stoichiometrically consistent, but there is wide variation 

among published models, with ~70% of models having at least one stoichiometrically 

unbalanced metabolite. Stoichiometrically inconsistent models cannot be mass-balanced, but 

missing formula annotations, from which molecular masses are calculated, further contribute 

to reactions being counted as unbalanced. The problems that we identified in published 

models underpin the need for application of MEMOTE during peer-review process (but 

ideally before submission) of GEMs.

During GEM reconstruction, metabolic reactions are defined based on functional gene 

annotations, and this information is output as GPR rules. We found that ~15% of reactions in 

models we tested are not annotated with GPR rules (Fig. 2c). For published models, 

subgroups of models contain up to 85% of reactions without GPR rules. This could be due to 

a large number of modeling-specific reactions, spontaneous reactions24 and known reactions 

with undiscovered genes, or if GPR rules were annotated in nonstandard ways.

CarveMe25 and Path2Models22 have a very low fraction of universally blocked reactions, 

whereas models from AGORA26 and KBase14 contain ~30% blocked reactions, and BiGG13 

models and OptFlux15 models contain ~20% blocked reactions (Fig. 2d). Similarly, orphan 
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and dead-end metabolites (Supplementary Figs. 5 and 6) are also present in all of these 

published collections. We note that blocked reactions and dead-end metabolites are not 

indicators of low-quality models but that a large proportion (for example, >50%) of 

universally blocked reactions can indicate problems in reconstruction that need solving.

AGORA, KBase and BiGG are the only collections with SBML-compliant metabolite and 

reaction annotations. Gene annotations are only present in KBase models and selected BiGG 

models (Supplementary Figs. 7–9). Each collection uses its own system of identifiers for 

each model component, but there is some overlap between all three (Supplementary Figs. 10 

and 11), and partial overlaps for models from KBase and BiGG (Supplementary Figs. 12–

16), or AGORA and BiGG (Supplementary Figs. 17 and 18), but not KBase and AGORA. 

BiGG is the only collection with models using MetaNetX27 annotations (Supplementary Fig. 

19). MetaNetX consolidates biochemical namespaces by establishing a mapping between 

them through a set of unique identifiers. Hence, knowing the MetaNetX identifier for a given 

entity often means also knowing the identifiers for other databases (Supplementary 

Methods).

MEMOTE tests cover semantic and conceptual requirements, which are fundamental to 

SBML3FBC and constraint-based modeling, respectively. They are extensible to allow the 

validation of a model’s performance against experimental data and can be executed as a 

stand-alone tool or integrated into existing reconstruction pipelines. Capitalizing on robust 

workflows established in modern software development, MEMOTE promotes openness and 

collaboration by granting the community tangible metrics to support their research and to 

discuss assumptions or limitations openly.

Application of a set of defined metabolic model tests is not dependent on implementation in 

MEMOTE, and for some users it may be more desirable to implement each test separately to 

streamline the user experience.

We propose that an independent, central library of tests and a tool to run them offers an 

unbiased approach to quality control because the tests are continuously reviewed by the 

community. This resource will be maintained under stewardship of Nikolaus Sonnenschein 

by the openCOBRA consortium (https://github.com/opencobra). To encourage integration as 

opposed to duplication, MEMOTE provides a Python application programing interface 

(API) as well as being available as a web service. MEMOTE has already been integrated in 

several services and tools (Supplementary Note 3). We discuss alternatives and future 

perspectives of MEMOTE in Supplementary Notes 4 and 5, respectively.

We recommend that MEMOTE users reach out to GEM authors to report any errors and 

thereby enable community improvement of models as resources. Using inconsistent GEMs 

for hypothesis generation could lead researchers down blind alleys, so we weighed the 

influence of ‘consistency’ and ‘stoichiometric consistency’ and SBO terms higher than tests 

for metabolite, reaction and gene annotations.

We are committed to keeping MEMOTE open to support community principles. Robust 

benchmarking will only work if it is actively supported by the whole community, and we 

call on any interested experts to join this endeavor and enable its continual improvement.

Lieven et al. Page 4

Nat Biotechnol. Author manuscript; available in PMC 2020 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/opencobra


Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Graphical summary of MEMOTE.
a, Graphical representation of the two principal workflows in detail. For peer review, 

MEMOTE serves as a benchmark tool generating a comprehensive, human-readable report, 

which quantifies the model’s performance (Supplementary Figs. 1 and 2). With this 

information, a definitive assessment of model quality can be made by editors, reviewers and 

users. This workflow is accessible through a web interface (https://memote.io) or locally 

through a command line interface. For model reconstruction, MEMOTE helps users to 

create a version-controlled repository for the model (indicated by the blue asterisk), and to 

activate continuous integration. The model is tested using MEMOTE’s library of test cases, 

the results are saved, and an initial report of the model is generated. This constitutes the first 

iteration of the development cycle. Now, users may edit the model using their preferred 

reconstruction tool and subsequently export it to SBML3FBC, thus creating a new version 

(indicated by +n). This will restart the cycle by running the tests automatically, saving the 
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results for each version and including them incrementally in a report on the entire history of 

results. This serves as a guide toward a functional, high-quality GEM (Supplementary Fig. 

3). This workflow is accessible through the command line only. b, Both, GitHub and GitLab 

support a branching strategy, which model builders could use to curate different parts of the 

model simultaneously or to invite external experts to improve specific model features. 

MEMOTE further enables model authors to act as gatekeepers, choosing to accept only 

high-quality contributions. Identification of functional differences happens in the form of a 

comparative ‘diff’ report, whereas for file-based discrepancies MEMOTE capitalizes on the 

platform’s ability to show the line-by-line changes between different versions of a model. 

For this purpose, the model is written in a sorted YAML format28 after every change. Bold 

blue text denotes actions performed by MEMOTE.
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Fig. 2|. Quality of manually reconstructed GEMs from collections without quality control or 
quality assurance.
a, Depicted is a t-SNE two-dimensional reduction of models using normalized test features 

as input. Only GEMs from the BiGG collection form a single albeit small cluster. Models 

from all other collections are grouped in several fragmented but distinct clusters. b–d, 

SinaPlots29 of each collection overlaid with box and whisker plots to indicate 25%, 50% 

(median) and 75% quantiles. GEMs from collections built in a modern automated pipeline 

(AGORA, CarveMe, KBase) are stoichiometrically consistent, whereas models from the 

older Path2Models collection are up to 50% stoichiometrically inconsistent (b). Manually 

reconstructed models (BiGG, Ebrahim et al.30, OptFlux models) contain varying degrees of 

inconsistent GEMs. GPR rules are essential for in silico knockout studies, but also serve to 

justify the presence of a reaction (c). Generally, the fraction of reactions without GPR rules 

is low (~15%). Yet a distinct group of models from the collections of Ebrahim et al. and 

OptFlux lack GPR rules for >75% of their reactions. Most models from the CarveMe and 
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Path2Models collections contain very few blocked reactions, whereas for models from the 

other collections the number of blocked reactions lies mostly between 10% and 30% (d). 

Again, models from the collections of Ebrahim et al. and the Optflux models show the 

largest variance.
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