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Abstract

Relapse of acute lymphoblastic leukemia (ALL) remains a leading cause of childhood death. Prior 

studies have shown clonal mutations at relapse often arise from relapse-fated subclones that exist 

at diagnosis. However, the genomic landscape, evolutionary trajectories and mutational 

mechanisms driving relapse are incompletely understood. In an analysis of 92 cases of relapsed 

childhood ALL, incorporating multimodal DNA and RNA sequencing, deep digital mutational 

tracking and xenografting to formally define clonal structure, we identify 50 significant targets of 

mutation with distinct patterns of mutational acquisition or enrichment. CREBBP, NOTCH1, and 

Ras signaling mutations rose from diagnosis subclones, whereas variants in NCOR2, USH2A and 

NT5C2 were exclusively observed at relapse. Evolutionary modeling and xenografting 

demonstrated that relapse-fated clones were minor (50%), major (27%) or multiclonal (18%) at 

diagnosis. Putative second leukemias, including those with lineage shift, were shown to most 

commonly represent relapse from an ancestral clone rather than a truly independent second 

primary leukemia. A subset of leukemias prone to repeated relapse exhibited hypermutation driven 

by at least three distinct mutational processes, resulting in heightened neoepitope burden and 

potential vulnerability to immunotherapy. Finally, relapse-driving sequence mutations were 

detected prior to relapse using deep digital PCR at levels comparable to orthogonal approaches to 

monitor levels of measurable residual disease. These results provide a genomic framework to 

anticipate and circumvent relapse by earlier detection and targeting of relapse-fated clones.
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INTRODUCTION

Relapsed acute lymphoblastic leukemia (ALL) is the second leading cause of cancer related 

death in children (1). There are few targeted therapeutic approaches for relapsed ALL, and 

outcome is frequently poor (2), even with the advent of immunotherapeutic approaches. 

ALL typically exhibits a relatively low burden of somatic mutations, which has allowed 

delineation of the nature and sequence of acquisition of genetic variants that drive treatment 

failure (3). These include inherited variants that are often associated with leukemia subtype 

(e.g. TP53 mutations and low hypodiploid ALL), founding chromosomal rearrangements 

(e.g. BCR-ABL1 and rearrangement of KMT2A), secondary genomic alterations (e.g. 

alteration of IKZF1), and somatic alterations that are enriched from minor clones, or 

acquired after initiation of therapy (4). Mutations targeting signaling pathways, chromatin 

patterning, tumor suppression and nucleoside metabolism are enriched at relapse (5), several 

of which confer resistance to specific drugs, such as NT5C2 to thiopurines (4,6-10), and the 

glucocorticoid receptor NR3C1 and acetyltransferase CREBBP to glucocorticoids (11), or 

confer sensitivity to targeted agents, such as Ras pathway mutations and MEK inhibition 
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(12). Prior studies also suggest that “relapse-fated” clones commonly exist as minor clones 

at diagnosis; along with the predominant major clone, these originate from a common 

ancestral clone that undergoes divergent evolution (8).

The early identification and genetic characterization of relapse-fated clones offers the 

opportunity to improve treatment outcomes by anticipating relapse and adjusting therapy, or 

by targeting relapse-fated clones prior to the acquisition of additional mutations facilitating 

leukemic progression. However, prior genomic studies of relapsed ALL have typically been 

limited in cohort size and the extent of genomic analysis such that a rigorous analysis of the 

relapse driver mutations, formal delineation of clonal structure and disease progression, and 

deep sequencing to distinguish preexisting clones from acquired mutations has not been 

possible.

RESULTS

Patterns of relapse in ALL

Multiple tools were used to describe mutational landscape, clonal structure and evolution 

(13,14), results of which may be explored at http://sjresearch-qa.stjude.org/site/data/

relapsed-all/ (Supplementary Table 1). Somatic sequence variants detected at diagnosis and 

relapse were subjected to confirmatory capture-based sequencing at each time point to 

optimize estimation of mutant allele frequency (MAF) and time acquisition of relapse-

associated mutations (Supplementary Note, Supplementary Fig. 1a-d). This deep sequencing 

identified subclonal somatic mutations in a subset of the remission samples (Supplementary 

Table 2), raising the possibility that mutational persistence early in therapy may predict 

relapse, as observed in AML (15). However, comparative analysis of germline mutation 

burden in 12 cases from this cohort with samples at days 27-49, and 20 cases that did not 

relapse, showed no correlation between mutational burden early in therapy and likelihood of 

relapse (Supplementary Note).

The burden of single nucleotide variants (SNVs), short insertions/deletions (indels) and copy 

number alterations (CNA) increased with disease progression (Supplementary Note, 

Supplementary Fig 2a-d, Supplementary Fig 3a-c and Supplementary Tables 3-7). Across 

the cohort, the majority of CNAs (60%) was preserved from diagnosis to relapse, whereas 

the majority of SNV/indels (74%) were acquired (Supplementary Table 8). Twenty-seven 

tumors from 18 patients were hypermutated (>85 mutations per sample, ~1.3 mutations/Mb; 

Supplementary Fig. 4a-f), including 9 of 14 second relapses (64%), 6 of which were already 

hypermutated at first relapse. Apart from an increased mutational burden at early second 

relapse, no relationship was observed between mutation burden and time to relapse. 

CREBBP mutations (N=15 cases) were associated with a longer time to relapse (mean 4.3 v. 

2.8 years, Student’s t-test P=0.019, Supplementary Table 9). Notably, 8 cases with outlier 

early relapse all harbored combinations of alterations known to be involved in relapse 

development (Supplementary Note).
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Frequently mutated genes and pathways

4,509 genes harbored non-silent sequence mutations at diagnosis (D) or relapse (R) 

(Supplementary Tables 3-4). Clonal, non-silent SNV/indels or focal CNAs were acquired or 

selected for in 125 genes at first relapse in at least 2 cases, and 28 genes in at least 3 cases. 

Among the recurrent genes (≥2 cases), 38 genes were known cancer/leukemia genes (16), 

and 87 had not previously been described (Supplementary Table 10). Using GRIN (17), a 

model that incorporates analysis of multimodal genomic data (Methods; Supplementary 

Tables 11-12), 23 genes were significantly mutated (q<0.1) at diagnosis and relapse, and 50 

genes significantly enriched for mutations at R1 (by rising MAF or acquisition of mutation 

following diagnosis). Most (N=20, 87.0%) of the D-R1 shared genes but only 14 (28.0%) R1 

specific were known targets of mutation in cancer/leukemia.

B-ALL relapses were enriched with mutations in Ras pathway (relapse 31.3% v. diagnosis 

17.9%) and epigenetic modifiers/regulators, including PRDM2 (N=4), PHF19 (N=3), TET3 
(N=3) and SIN3A (N=3), 16 of which had not been reported in ALL (49.3% v. 29.9%; Fig. 

1a-b, Supplementary Fig. 5a-b, Supplementary Fig. 6 and Supplementary Table 13). Of 61 

cases with signaling pathway mutations, 31 harbored at least one Ras pathway mutation at 

diagnosis, with 11 cases having multiple, commonly subclonal Ras mutations at diagnosis 

(Supplementary Table 14). Seven cases showed convergence to a single or two clonal Ras 

pathway mutations. In contrast, only three cases showed acquisition of new Ras mutations at 

relapse. Thus, multiclonality of signaling mutations is frequent at diagnosis in ALL, 

indicating that they are secondary lesions in leukemia evolution, and the observed 

mutational extinction and convergence to clonal dominance supports a selective advantage to 

Ras mutations in many cases. In contrast, PI3K-AKT pathway mutations were common at 

diagnosis in T-ALL but were often lost at relapse, suggesting that inhibition of this pathway 

may not reduce likelihood of relapse.

Of the genes known to play a role in the development of ALL, 29 (including IKZF1, TP53, 
NR3C1, TBL1XR1, and PTPN11) showed universal enrichment at relapse, whereby 

mutations were always retained from diagnosis to relapse (i.e. were truncal variants) or 

subsequently emerged at relapse (Supplementary Table 15). Of these, six were never 

observed at diagnosis (NT5C2, LRP1B, USH2A, APC2, PIK3R4 and NCOR2). An 

additional 20 genes showed extinction of mutations present at diagnosis in only a single case 

(e.g. VPREB1, CREBBP, ETV6, and KDM6A). Several genes not previously reported to be 

mutated in ALL were notable for preservation or clonal selection of mutations from 

diagnosis to relapse, including PTPRT (N=6), ROBO2 (N=5) and TRRAP (N=5), suggesting 

a role in promoting leukemogenesis and relapse (Supplementary Fig. 7a-b and 

Supplementary Tables 16-17). Mutations in the glucocorticoid receptor (NR3C1) and purine/

pyrimidine synthesis pathway (NT5C2) were frequent in both B- and T-ALL at relapse, but 

often as subclonal events, suggesting that targeting of these drug-specific resistance-driving 

mutations may not eradicate all relapse clones in many cases.

Integration of mutational landscapes with clonal structure

Using the rise and fall of CNAs and MAF of somatic SNV/indels, most tumor pairs (N=79 

D-R1/secondary tumor (S) (86%), and N=12 R1-R2/S (92%)), showed clonal extinction and 
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evolution of new clones in the subsequent tumor, indicating branching evolution. One 

quarter of the relapses (N=28, including 2 second relapses) arose from the major clone 

(MAF>30%) present at diagnosis or the previous relapse, and half of the relapses (N=53, of 

which 6 second relapses) developed from a minor clone (Fig. 2a-b and Supplementary Table 

18). Of the 53 relapses arising from a minor clone, 9 (17%) had relapse-enriched mutations 

already present in that subclone, and 26 (49%) acquired new or additional relapse-enriched 

mutations following diagnosis. Nineteen tumors (18%), exhibited polyclonal evolution in 

which multiple diagnosis clones persisted at relapse.

We found that second relapses evolved more often in a polyclonal fashion (χ2 P= 0.043) and 

with a shorter remission time than first relapses (average 1.5 years versus 3.0 years, 

Student’s t-test P=0.0044). Compared to first relapses, variants in second relapses were more 

often variants preserved from subclones (10% vs 4%) or preserved at subclonal levels (11% 

vs 2%) and less often acquired (69% vs 79%), which reflects the polyclonal evolution model 

(χ2 P<2.2x10−16). Thus, initial evolution from diagnosis to relapse is characterized by 

mutational convergence, and commonly emergence from a minor clone, but subsequent 

progression exhibits preservation of the initially selected clones and variants.

Second primary leukemia

Four first relapses (SJBALL006, SJTALL142, SJPHALL005 and SJPHALL022425) and one 

second relapse (SJTALL049) were fully discordant for all genetic alterations (SV, CNA, 

SNV/Indel and antigen receptor rearrangements) or shared only a leukemia fusion 

Supplementary Note, Supplementary Tables 19-20), suggesting distinct second leukemias 

masquerading as relapse. These scenarios are important to distinguish, as second leukemias 

may be curable with standard therapy, and multiple primary tumors suggest heritable 

leukemia predisposition. Both tumors in SJBALL006 harbored MEF2D-BCL9 fusions, but 

with unique RNA and DNA breakpoints, and evidence of the second MEF2D-BCL9 fusion 

at low level in the primary sample (Supplementary Tables 20-21). In addition, there was a 

constitutional gain of the chromosome 1q neuroblastoma breakpoint (NBPF)(18) region on 

chromosome 1q that contains MEF2D and BCL9, and discordant somatic complex genomic 

amplifications of the NBPF region at diagnosis and relapse (Fig. 3a-d, Supplementary Tables 

6 and 22). Thus, while emergence of a tumor with the same fusion partners suggests relapse, 

this case represents germline structural variation promoting development of multiple tumors 

with distinct initiating fusions and different latencies of presentation.

BCR-ABL1 cases SJPHALL005 and SJPHALL022425 lacked shared non-silent variants at 

diagnosis and relapse, raising the possibility of second leukemia rather than relapse. 

However, WGS of SJPHALL005 identified identical rearrangement breakpoints at diagnosis 

and relapse and 65 shared somatic non-coding SNVs, demonstrating relapse from a 

common, ancestral clone (Supplementary Table 20). SJTALL049 developed three tumors: 

STIL-TAL1 rearranged T-ALL at age 6 that relapsed at age 14, plus an independent BCR-
ABL1 positive CML at age 20. Breakpoint spanning PCR revealed unique STIL-TAL1 
rearrangements at diagnosis and relapse, but WGS showed 19 shared non-coding SNVs. 

WGS showed no shared SNVs between either of the T-ALLs and the CML, indicating that 

the CML developed as a second primary tumor. Thus, completely genetically distinct second 
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tumors masquerading as relapse of acute leukemia are rare, and even if complete non-silent 

mutational discordance is present, may arise from divergent evolution soon after leukemia 

initiation.

Three relapses were clinically considered second tumors based on a shift to myeloid lineage 

(SJTALL008, SJTALL124, and SJTALL164). However, these tumors revealed shared 

mutations between diagnosis and relapse, indicating a common clonal origin 

(Supplementary Note). This recapitulates the lineage plasticity that is independent of genetic 

variegation we have recently described in acute leukemia of ambiguous lineage (19) and 

highlights the importance of genomic analysis to accurately interpret the relationship of 

diagnosis and relapse samples.

Tracing the evolution of relapse

Bulk sequencing data may fail to unambiguously define a clonal evolution model, 

particularly for mutationally sparse samples and those exhibiting a continuum of variant 

MAFs. We performed limiting dilution xenografting and sequencing of eight matched 

diagnosis and relapse samples (Supplementary Table 1). Most (90.5% of 232) of the somatic 

mutations detected in primary samples were identified in at least one diagnosis or relapse 

xenograft (MAF ≥0.01; Supplementary Fig. 8a). Of the 22 mutations not captured in 

xenografts, 20 were observed only in the bulk diagnosis sample and not in the relapse 

sample, suggesting that such non-xenografted diagnosis mutations must be present in cells 

that lack clonal propagating potential and are less likely to initiate relapse.

Genomic analysis including xenografting overcame the challenge of assigning mutations to 

individual subclones and enabled unambiguous delineation of clonal structure. Xenograft 

analysis of SJBALL036 (ETV6-RUNX1-like subtype) identified two linearly related clones 

(2.1 and 2.2) from mutations originally allocated to a common clone (Fig. 4a). Mutations in 

relapse-fated clone 2.1 were clonal in all xenografts, including those propagated from 

diagnosis, whereas the CREBBP mutations in clone 2.2 were observed in a subset of 

xenografts, indicating that subclone 2.2 arose from 2.1. Additionally, xenografting 

demonstrated the selective advantage of clone 2.1 vs clone 5 that was lost at relapse and was 

not represented in any of the xenografts transplanted with the diagnosis sample. Further, the 

xenografts derived from the relapse sample captured mutually exclusive variants, providing 

definitive evidence that clones 3 and 4 were unrelated, and represent branching evolution 

(Fig. 4b-c). Similarly, xenograft data of SJETV010, of whom the second relapse sample is 

hypermutated (1,699 somatic mutations) resolved 13 clones following linear and branching 

patterns of evolution (Supplementary Fig. 8b-c). These data support the notion of branching 

evolution in ALL suggested by FISH and bulk sequencing analysis (20,21), but now with 

mutational data enabling unambiguous clonal delineation. A subset of xenografts have also 

been utilized to demonstrate that relapse-fated clones may be detected at diagnosis that 

already exhibit resistance to therapy ((22) and submitted).

Tracing mutation acquisition prior to relapse

As xenografting identified resistance-driving mutations in relapse-fated subclones present at 

diagnosis, we sought to determine if these mutations could be detected in patient samples 

Waanders et al. Page 6

Blood Cancer Discov. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



obtained between diagnosis and relapse. We used digital droplet PCR (ddPCR) to track the 

emergence of relapse-specific mutations in CREBBP, NRAS, KRAS, NT5C2, and WHSC1 
in 50 samples from five patients (Supplementary Table 23). With an input of 500ng DNA a 

frequency of >0.005% (>7 copies) could be consistently detected (Supplementary Fig. 9a-d 

and Supplementary Table 24). ddPCR identified previously undetected minor clones in three 

tumor samples (NRAS G12R MAF=0.4% in SJBALL013-R1, KRAS G12S MAF=0.4% in 

SJBALL022481-D, NT5C2 R39Q MAF=0.006% in SJBALL192-R1; Fig. 5), confirming the 

minor clone evolution model for these tumors. Difference in the temporal dynamics and 

occurrence of mutations in SJBALL022481 (CREBBP and KRAS), SJBALL192 (two 

NT5C2 mutations) and SJTALL001 (NT5C2 and KRAS) demonstrated clonal exclusivity of 

these mutations in each case. Despite complete remission by conventional MRD testing, we 

detected tumor specific mutations up to 534 days after the diagnosis (SJBALL022481, 

CREBBP R1446C), as well as 40 days prior to relapse (SJBALL013 NRAS G12R) in 

complete remission bone marrow samples. Moreover, in SJBALL022481, the KRAS G12S 

mutation was detectable at regular intervals during the 1,169 day period between diagnosis 

and relapse, even though the samples were deemed complete remission. Peripheral blood 

samples obtained from patients with B-lineage (SJBALL192, SJHYPER127) as well as T-

lineage ALL (SJTALL001) with eventual bone marrow relapse were negative or contained 

much lower MAFs compared to the bone marrow. Thus, leukemic cells may persist in bone 

marrow and may be detected at low levels during complete remission, indicating the utility 

of this approach for disease monitoring and early relapse detection.

Mutational drivers of hypermutation and neoepitope expression

Three percent of diagnosis, 17% of first relapse, and 64% of second relapse cases exhibited 

hypermutation. This was defined by an inflection at 85 mutations, ~1.3 mutations/Mb, a 

burden that was more conservative than the cut off determined by the Segmented algorithm 

(23) (Supplementary Fig. 4a). Hypermutation was observed in cases relapsing from minor or 

multiple clones of all three hypodiploid, 2/5 ETV6-RUNX1, 5/13 hyperdiploid, one Ph-like, 

two unclassified B-ALL, one ETP, and four T-ALL cases.

To understand the processes responsible for hypermutation, we used non-negative matrix 

factorization (24) and extracted four single base substitution (SBS) signatures (Fig. 6a-b, 

Supplementary Fig. 10a,b). The high prevalence of hypermutation in second relapses 

suggests that hypermutation may be driven by treatment exposure. However, we did not 

uncover a mutational signature associated with treatment, such as temozolomide-associated 

signatures found in glioblastoma and melanoma (24). Based on the most prominent 

mutational signature (Supplementary Fig. 10b), we classified 17 hypermutated relapses from 

13 patients into four groups (Fig. 6c). Two of these groups were characterized by well-

established mutational processes. Group 2 (signature B mutations) resembles signatures 

associated with activity of the AID/APOBEC family of cytidine deaminases (25,26). This 

mutational process is common in human cancer including ALL (27), and was postulated to 

occur in short bursts initiated by retrotransposon mobility (28). The mutational burden in 

this group was relatively low (99-156 acquired mutations) compared to the other three 

groups (group 1: 220-1210, group 3: 860-1218, group 4: 104-710). Group 3 cases have high 

contribution of signature C, which clusters with mismatch repair-associated signatures, with 
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highest similarity to SBS15 (Fig. 6b). Indeed, the three relapses in this group all had biallelic 

mutations in one of the mismatch repair genes (see Supplementary Note) and had high levels 

of single-base insertions or deletions in simple repeats (Fig. 6d), a feature of mismatch 

repair deficiency (29). Genetic alterations in the mismatch repair pathway have been 

associated with resistance to drugs such as thiopurines in ALL (30), suggesting that this 

mechanism of hypermutation directly contributed to relapse in these cases.

Two signatures could not be assigned to known mutational processes. Signature D (group 4) 

lacked a strong bias for a particular trinucleotide context and showed similarity to multiple 

mutational signatures. Signature A (group 1) resembled clock-like signature SBS1, which is 

a known consequence of a slow but progressive accumulation of C to T transitions at CpG 

sites owed to spontaneous deamination of methylated cytosines and is more apparent in 

cancers diagnosed at older age (29). Since the patients in our cohort are young, this process 

appears to be accelerated by an acquired imbalance between damage and repair. This was 

not caused by alterations in genes encoding regulators of DNA deamination. Interestingly, 

the signature A mutations in SJETV010 were subclonal (MAF<0.5%) in the first relapse, but 

showed a much wider spread of allele frequencies in the second relapse, suggesting an 

ongoing endogenous mutational process initiated in a minor clone at first relapse (Fig. 6e). 

Recently, an SBS1-like signature (SBS74) has been reported that appears to be associated 

with MMR deficiency (31). Indeed, all hypermutated ALL relapses with mismatch repair 

deficiency show signature A mutations (Fig. 6c and Supplementary Note).

To further compare the characteristics of signature A with the clock-like signature SBS1, we 

performed WGS of relapse and remission samples of SJETV010, SJHYPER022, and 

SJHYPO117, followed by somatic SNV calling and mutational signature extraction. In line 

with our findings in the coding regions, we identified highly concordant mutation densities, 

as well as composition and relative contribution of the four mutational signatures 

(Supplementary Fig. 10c-f). Signature SBS1 mutations have been described to occur 

throughout the genome and do not show strand asymmetry in transcribed regions (24,32). 

We confirmed these observations using three recently published colon organoid samples 

(33), which are characterized by high prevalence of signature SBS1 mutations, mainly 

outside gene bodies. In contrast, we found that signature A mutation density was highest in 

gene bodies and showed strong transcription strand bias, particularly in genes with high 

expression in the respective samples (Fig. 6f-g and Supplementary Fig. 10g). We did not 

observe strand asymmetry associated with DNA replication for either signature A or 

signature SBS1 (Supplementary Fig. 10h). Transcriptional strand asymmetry can be the 

result of more efficient repair of the transcribed strand, or increased damage on the single-

stranded, non-transcribed strand, two mechanisms that show opposite correlations with 

expression (34). Since signature A mutations are enriched in highly expressed genes, they 

may originate from transcription-coupled damage at the single-stranded, non-transcribed 

strand, as has been described for liver cancer (34).

The high prevalence of hypermutation in relapsed ALL suggested that this may result in 

increased generation of expressed neoepitopes that may be exploited by immunotherapeutic 

approaches to enhance anti-tumor responses of autologous T cells. We used WGS and 

RNAseq data to infer HLA class I types from each sample (35), predicted the binding 
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affinities of all unique 8-12 amino acid peptides corresponding to SNVs and fusion proteins 

(36), and developed unweighted (UPAS) and weighted putative antigenicity scores (WPAS), 

the latter of which incorporates predicted sample-specific peptide: MHC binding with 

variant-specific expression. Although we observed variation in the number of fusion-

encoded, predicted MHC-binding peptides across individual fusions (0-20, median=1), 

fusion-encoded neoepitopes remained unchanged over time (Supplementary Table 21). In 

contrast, we observed that the number of predicted HLA-binding mutant peptides (<= 

500nM) (37) per tumor rose with disease progression as a function of increased mutation 

burden, and thus particularly in hypermutated samples (P<0.001, Supplementary Table 25 

and Supplementary Fig. 11a). In addition, the number of predicted MHC-binding peptides 

per tumor was significantly correlated with disease (B- and T-ALL), disease progression (D, 

R1 and R2), and signatures of hypermutation (Supplementary Fig. 11b). An expression-

weighted antigenicity analysis comprising the subset of missense SNVs with expression data 

showed a significant effect of disease progression, with median WPAS lowest in R1 and 

highest in R2 variants (Supplementary Fig. 11c), and was particularly marked for known 

cancer genes (Supplementary Fig. 11d). These patterns may correspond to variations in 

immunological pressure owed to, for instance, the distinct etiologies underlying B- and T-

ALL and the successive use of immunosuppressive agents in treatment, respectively.

DISCUSSION

Using multiple orthogonal approaches, we have described the patterns, dynamics and drivers 

of clonal evolution in a large cohort of childhood relapsed ALL. These results have 

implications for the development of new approaches to monitor and treat ALL more 

effectively.

The scope of our study allowed us to identify relapsed enriched driver mutations more 

comprehensively than in prior studies, and included newly identified targets of mutation as 

well as recurrent mutations in genes previously identified at relapse (11,38,39). We were 

able to identify distinct patterns of temporal acquisition across relapse-enriched targets of 

mutation, with mutations in genes such as CREBBP preserved from or acquired after 

diagnosis, and others in genes such as NT5C2 and USH2A only observed after initial 

therapy; importantly, these findings suggest a role for therapy in the induction of mutation, 

and/or a deleterious effect on initial leukemic fitness of these mutations (38). Mutations 

observed in different gene regulation pathways showed different frequencies of relapse-

enriched genes between B- and T-ALL, indicating that distinct biological mechanisms drive 

the genetic alterations of the disease progression.

Tumors that evolved from or retained multiple clones all had a short time to relapse, 

supporting a model in which early relapses are associated with dynamic clonal evolution and 

late relapses to a more inert pattern (40). These patterns of evolution, and description of the 

targets of mutation, have important implications for anticipation of relapse and modulation 

of therapy. Over half of relapses arise from a minor clone that commonly harbors, or 

acquires, relapse-enriched mutations that drive drug resistance. Analysis of this large cohort 

also enabled demonstration that relapse enriched drivers such as alterations of CREBBP, 
IKZF1 and NT5C2 are rarely lost if present at diagnosis or subsequently acquired, indicating 
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that early detection may predict an increased likelihood of treatment failure. Moreover, in 

parallel studies using a subset of the xenografts described here, we have shown relapse-fated 

minor clones already exhibiting resistance to therapy are present at the time of diagnosis 

((22) and submitted). Thus, it is imperative that mutational profiling must now strive to 

achieve MRD-levels of mutation detection at diagnosis or early in therapy, and we have 

shown the feasibility of this approach using deep digital PCR. An alternative approach is 

capture based deep sequencing of regions of sequence and structural variation in ALL. Early 

detection will facilitate close monitoring and consideration of alternative treatment 

approaches such as intensification, immunotherapy, or novel drug approaches for drug-

specific resistance (e.g. NT5C2 and thiopurines, and CREBBP and corticosteroid 

resistance).

We show hypermutation is common at relapse, and driven by distinct mechanisms of 

mutation, including tumor-intrinsic processes, such as cytidine deaminase DNA editing 

activity (AID/APOBEC) as previously observed in diagnosis samples (41) and experimental 

models (42), or the acquisition of mutations that cause MMR deficiency, which may 

represent a mechanism of MMR-induced resistance to thiopurines in ALL (30). In addition, 

we identified a new SBS1-like signature (Signature A), characterized by transcriptional 

strand asymmetry and enrichment in expressed genes, caused by an unknown mutational 

mechanism that is acquired during leukemia progression. Importantly, the identification of 

hypermutation as a common phenomenon in relapsed ALL suggests that immunotherapeutic 

approaches intended to restore autoreactivity against neoantigen expression, such as 

checkpoint blockade, should be formally explored. Although long assumed to be poor 

targets for immunotherapy due to the relatively low mutation burden in comparison to other 

tumors (43), recent data have demonstrated that pediatric hematological malignancies 

promote the generation of abundant and functional immune responses to tumor-specific 

neoepitopes despite the apparent inability of the immune system to control those tumors 

(44). In conjunction with those findings, our results suggest that not only does 

hypermutation drive the generation of HLA-restricted neoepitopes, but that these are 

expressed in an immunologically tolerized milieu that may be exploited with strategies to 

augment T cell anti-tumor reactivity. It will now be of great interest to formally document 

the presence of autoreactive T cell clones directed at neoepitopes induced by hypermutation, 

as we have described at diagnosis in ALL (44), and to formally test in experimental models 

whether immunomodulatory approaches can augment or restore anti-tumor reactivity in 

hypermutated ALL.

METHODS

Subjects and samples

The cohort included 92 children (31 female, 61 male) with relapsed B-progenitor (B-ALL, 

N=67) or T-lineage (T-ALL, N=25; including 7 early T-cell precursor ALL (ETP-ALL)) 

ALL treated on St Jude Total Therapy studies XI-XVI (median age at diagnosis 7.8 years, 

range 1 month-18.7 years; Supplementary Table 1) (45-47). The median time from diagnosis 

to first relapse was 2.7 years (range 3 months to 9.9 years). Sixteen cases developed a 

second relapse (range 3 months to 7 years). Relapse was very early (<1 year) in 17 patients, 
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early (1-2 years) in 21, and late (>5 years) in 14 cases. Nine cases developed a second tumor 

of different lineage, including two basal cell carcinomas, one B-cell lymphoma, one chronic 

myeloid leukemia (CML) and five acute myeloid leukemia (AML). A total of 46 patients 

received bone marrow transplants at a median age of 12 years (range 7 months to 22 years) 

and all except one were allogeneic. Tumor samples with a blast percentage of less than 80% 

were flow sorted for the tumor population. Written informed consent was obtained from the 

patient and/or parent. The study was conducted in accordance with the Declaration of 

Helsinki, and was approved by the St. Jude Children’s Research Hospital Institutional 

Review Board,

Genomic analyses

DNA Copy number aberrations were determined using SNP 6.0 microarrays (Affymetrix, 

Santa Clara, CA, USA) in 286 samples from 92 patients (92 diagnosis, 84 relapse, 14 second 

relapse, 5 second tumor and 91 germline samples; Supplementary Table 1). Data were 

analyzed using reference normalization (48) and circular binary segmentation (49).

We performed whole exome sequencing (WES) on 276 samples from 92 cases 

(Supplementary Table 26) and whole genome sequencing (WGS) on 99 samples from 36 

cases (Supplementary Table 27). Exomes were captured using the TruSeq Exome Library 

Prep kit (67Mb, 1μg DNA input) or the Nextera Rapid Capture Expanded Exome (62Mb, 

50ng DNA input; Illumina, San Diego, CA, USA). Paired-end sequencing was performed 

with the HiSeq 2500 sequencer (Illumina). The data were mapped to human reference 

genome hg19 and variant calling was performed using Bambino (50-52). All somatic SNVs 

and indels identified at diagnosis or relapse were validated using NimbleGen SeqCap Target 

Enrichment according to manufacturer’s instructions (Roche NimbleGen, Madison, WI, 

USA) and resequenced using a HiSeq 2500 genome sequencer to a mean coverage >350x 

(250-500ng DNA input; Supplementary Table 28). We performed transcriptome sequencing 

(RNA-seq) for TRIzol extracted RNA for 115 samples obtained from 66 cases 

(Supplementary Table 29). We used 1μg RNA for library preparation with the TruSeq RNA 

Library Prep Kit v2 (Illumina) and 2x 100bp paired-end sequencing was performed on a 

HiSeq 2500 sequencer (Illumina). RNA-seq data were mapped to human reference genome 

hg19 using StrongArm and fusions were identified using CICERO (53) and FusionCatcher 

(54,55).

B-ALL subtyping based on gene expression profile (GEP) from RNA-seq

Read counts for annotated genes (Ensembl Homo sapiens GRCh37 v75) were called by 

HTSeq (version 0.6.0) (56) and processed by DESeq2 R package (57) to normalize gene 

expression into regularized log 2 values (rlog). A subtype predication model was trained by 

Prediction Analysis of Microarrays based on a cohort of 309 samples from our previous 

studies (16,53,58), which consists 8 B-ALL subtypes: IGH-DUX4 (N=42), TCF3-PBX1 
(N=41), ETV6-RUNX1 (N=42), hyperdiploid (N=46), MEF2D-rearranged (N=21), KMT2A 
(MLL) -rearranged (N=44), BCR-ABL1 (N=44) and ZNF384-rearranged (N=27). The 

trained model was applied with 100 evenly divided thresholds (control selected feature genes 

from 5000 to 50) and the probability score was averaged to predict subtypes for the enrolled 

RNA-seq samples.
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Mutation analysis and clonal modeling

Variants with a total coverage of <5 reads (combining WGS/WES and validation) were 

excluded. Variants with ≤2 variant reads were considered wild type; those with 3-8 variant 

reads only considered mutant when both WES/WGS and capture validation techniques 

identified the variant or the variant was called with higher coverage in other (tumor) samples 

of the same patient. A mutant allele frequency (MAF) of <30% was considered subclonal, 

30-75% heterozygous and MAF ≥75% homozygous.

MutSigCV (59) and GRIN (17) (the Genomic Random Interval Model) analyses were 

performed to identify potential driver lesions (Supplementary Tables 11-12). MutSigCV is 

limited to analysis of sequence mutations, whereas GRIN incorporates multimodal genomic 

data including sequence and structural variants with robust adjustment for background 

mutation rate to identify significantly altered genes/regions, and unlike CNA-specific tools 

such as GISTIC (60), is not influenced by full chromosomal aneuploidies.

Two-dimensional MAF plots were used to visualize the relationship between sequential 

samples (4). We used sciClone (14) and manual curation incorporating xenograft data to 

assign variants to clones. Clonal evolution was visualized using clonevol (61) and fishplot 

(13). Non-coding variants were also considered to resolve the nature of clonal evolution in 

cases with presumed evolution from a major clone, which reclassification from evolution 

from a major to a minor clone in 5 of 27 cases. Retention of multiple clones was deemed 

polyclonal evolution, and relapse from an ancestral precursor where D/R tumors share only 

the founding translocation and up to two SNV/indels.

Xenografting

Diagnosis and/or relapse tumors of 8 cases (3 ETV6-RUNX1, 1 ETV6-RUNX1-like, 2 

KMT2A (MLL) rearranged, one DUX4 and 1 case without subtype data; Supplementary 

Table 1) were transplanted at limiting dilution from 250,000 cells to 10 cells into the femur 

of 8-12 week-old sublethally irradiated (225cGy) female NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ 

(NSG) mice. Engrafted tumor cells were harvested from bone marrow, spleen and central 

nervous system when mice displayed evidence of disease or 30 weeks post-transplantation. 

Cells from the bone marrow and spleen were purified using the Miltenyi Mouse Cell 

Depletion Kit (Miltenyi Biotech, Auburn, CA, USA) (samples with >20% engraftment) or 

by cell sorting. All animal experiments were done in accordance to institutional guidelines 

approved by the University Health Network (Toronto, Canada) Animal Resource Centre 

(AUP#1117.37).

Digital Droplet PCR

Seven relapse associated mutations were genotyped by digital droplet PCR technique 

(RainDance Technologies, Lexington, MA, USA) using custom (NT5C2 p.P414A, CREBBP 

p.R1446C, NRAS p.G12R and WHCS1 p.E1099K) or available (NT5C2 p.R39Q, KRAS 

p.G12S, and KRAS p. G12C) primers and probes (Supplementary Table 30). An average of 

7 million droplets were generated by the RainDrop Source instrument, and emulsion PCR 

was performed using the C1000 Thermal Cycler (BioRad, Hercules, CA, USA). Droplet 

fluorescence of the amplified product was detected by the RainDrop Sense instrument, and 
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data analysis was carried out using the RainDrop Analyst II Software. Detection limits were 

determined by testing serial dilutions of flow-purified mutant leukemia cells in wild type 

REH cells. A frequency of >0.005% (>7 copies) could be consistently detected 

(Supplementary Fig. 9 and Supplementary Table 24). ddPCR MAF correlated well with the 

MAFs called from WES (r=0.971) or CapVal (r=0.9964) (Supplementary Fig. 9 and 

Supplementary Table 23).

IGH and TCR rearrangement sequencing

IGH and TCRB loci were genotyped by ImmunoSeq (Adaptive Biotechnologies, Seattle, 

WA, USA) to analyze clonal relationships of putative second tumors lacking shared genomic 

alteration (34 samples from 15 cases; Supplementary Table 19).

Germline analyses

Germline copy number variants were filtered by the Database of Genomic Variants (62) and 

in house databases. To prioritize germline SNV/indel variants, we filtered for rare variants 

(<0.01% population frequency in ExAC, dbSNP, GoNL, ESP, Wellderly, Kaviar, and 

Complete Genomics’ 60 genomes databases) that were predicted to be deleterious 

(nonsense, frameshift, or canonical splice site variants, and missense variants with 

PhyloP>3) and were present in genes known to be associated with leukemia susceptibility 

and pediatric cancer syndromes (Supplementary Tables 31 and 32). Second, we used St. 

Jude’s Medal Ceremony algorithm to identify Gold Medal variants (truncating mutations in 

tumor suppressors, matches to hotspots or truncating mutations in somatic mutation 

databases, and matches to locus-specific databases) (63).

Mutational signature analysis

We defined hypermutation as samples containing >85 SNV/indels (~1.3 mutations/Mb) 

based on the density histogram of the number of variants per sample in our cohort 

(Supplementary Fig. 4), which is more conserved than the cut off determined by Segmented 

(23) (>56 SNV/indels, 0.8 mutations/Mb).

For de novo extraction of somatic mutational signatures, we selected 22 hypermutated ALL 

samples from this cohort, and WES and WGS from hypermutated B-ALL patients (n=38) 

and WGS from B-cell lymphoma samples (N=10, ICGC). Mutational signatures were 

extracted using non-negative matrix factorization (NMF) (64,65) and MutationalPatterns 

(66). Similarity between two signatures A and B, defined as non-negative vectors with n 

mutation types, was calculated using cosine similarity. We defined two signatures to be the 

same if the cosine similarity is ≥0.95 (range 0-1). We calculated the cosine similarity 

between the mutational profiles of the samples and the mutational signatures and included 

the COSMIC mutational signatures and the de novo extracted mutational signatures in this 

analysis.

Finally, we studied the strand asymmetry of signature A mutations in the context of 

transcription and replication. This analysis requires that individual mutations are assigned to 

a single signature. Using the number of trinucleotide changes and the signature probabilities 

per sample, we calculated the relative contributions of each signature for each trinucleotide 
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context in a sample. Only trinucleotide changes with a relative contribution of ≥95% to one 

of the four signatures were assigned to that particular signature.

Replication timing in leukemia samples was determined using Repli-seq data obtained from 

five lymphoblastoid cell lines in the ENCODE project (67) (GM06990, GM12801, 

GM12812, GM12813, GM12878), using median values per 1-kb bin (68). For intestinal 

organoids, we used Repliseq data described previously (69). Predefined signature A 

mutations were assigned to early, intermediate, and late replicating regions, as previously 

described (68). Replication asymmetry analysis was done using the R package 

MutationalPatterns (66). Based on the distribution of rlog values from RNA-seq, genes were 

stratified into 3 groups for each sample separately: not expressed (genes with no or few 

supporting reads), genes with low expression (below the median level) and genes with high 

expression (median expression level or higher). We confirmed presence of SBS1 mutations 

by comparing their mutational profile with signature SBS1 for each sample (cosine 

similarity = 0.98; Supplementary Fig. 10). Gene expression stratification for healthy colon 

organoids was performed as described for the ALL samples. Testing of strand asymmetries 

within 3 groups was done using Poisson test for strand asymmetry significance testing.

Neoepitope analyses

To characterize the antigenic potential of missense variants, we developed putative 

antigenicity scores that consider predicted patient-specific peptide: MHC binding variant-

specific expression. WGS and RNA-seq data were used to infer class I HLA alleles to four-

digit resolution for each patient using OptiType (35). For each missense SNV and patient 

HLA allele, we then used NetMHCcons 1.1 (36) to predict the binding affinities of all 

unique, mutated peptides of lengths 8-12 amino acids, excluding peptides that could be 

found elsewhere in the human proteome. Predicted binding affinities are often categorized as 

presumptive binders (<= 500nM) and non-binders, which can be useful for narrowing 

epitope targets (70) but to estimate total antigenic potential, we also conceptualized binding 

affinities as correlated with probabilities of peptide: MHC binding in order to consider all 

predicted binding affinities additively. The Unweighted Putative Antigenicity Score (UPAS) 

was calculated as the natural logarithm of the summation of the inverse of all putative 

binding affinities; for the subset of SNVs for which expression data were available, this 

value was then weighted by adding the natural logarithm of 0.01 + the fraction of expressed 

alternate-to-total bases to generate a Weighted Putative Antigenicity Score (WPAS) 

specifically for those variants. Each of these scores is best considered in comparison across 

variants, with increasingly positive scores indicative of increasing putative antigenicity.

To investigate potential correlates of antigenic potential (e.g., disease, disease progression, 

hypermutator status, and interactions thereof) while controlling for the non-independence of 

the data owed to multiple variants across patients, we used the lme4 R package (71) to fit 

linear mixed models with patient as a random effect. The car R package (72) was used to 

assess the statistical significance of the fixed effects, and residuals of models with significant 

effects were verified as unbiased and homoscedastic via visual inspection.
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Data availability

Whole exome sequencing, whole genome sequencing, transcriptome sequencing and SNP 

array data are available at the European Genome-Phenome Archive, accession 

EGAS00001003975. The genomic landscape reported in this study can be explored at the St. 

Jude PeCan Data Portal, https://pecan.stjude.cloud/proteinpaint/study/ALL_DxRI and at 

http://sjresearch-qa.stjude.org/site/data/relapsed-all.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SIGNIFICANCE

This study defines the landscape of mutations that preexist and arise after commencement 

of ALL therapy and show that relapse may be propagated from ancestral, major or minor 

clones at initial diagnosis. A subset of cases exhibit hypermutation that results in 

expression of neoepitopes that may be substrates for immunotherapeutic intervention.
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Figure 1. Somatic mutation spectrum in ALL at diagnosis and relapse.
a, Non-silent mutations in recurrently affected (≥3 cases) key genes (COSMIC Cancer Gene 

Census or reported leukemia relevant genes) in diagnosis (D) and first available relapse (R) 

sample per case. The B-ALL cases are grouped into well-defined disease subtypes, which 

include hyperdiploid (Hyper), hypodiploid (Hypo), KMT2A (MLL) -rearranged, DUX4-

rearranged (DUX4), ETV6-RUNX1, BCR-ABL1 (Ph), Ph-like, and a group of other B-ALL 

subtypes including B-other, PAX5 P80R and iAMP21 ALL. Mutations in the form of SNV/

indels and focal CNAs are shown as rectangles with different sizes. Mutations observed only 

in D, only in R or shared by D and R are shown in blue, pink and dark red colors, 

respectively. The prevalence for each gene mutation is shown as bar graph on the right. b, 

Distribution of recurrent mutations in key pathways. The upper panel shows all recurrently 

affected mutations and the lower panel shows the clonal (MAF ≥30%) non-silent mutations. 

Samples are divided into B-ALL (N=67) and T-ALL (N=25) and the mutation ratio in 

diagnosis and relapse stages are shown. Detailed mutations types are indicated by different 

colors.
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Figure 2. Patterns of relapse in ALL.
a, Schematic overview of mechanisms of clonal evolution. Three patients developed a 

second primary tumor that was not clonally related to the previous tumor occurrence. Two 

patients developed a tumor that shared only one founding fusion between diagnosis and 

relapse, indicating the disease relapsed from a pre-leukemic cell. Further relapses arose 

through evolution from a minor clone, a major clone or multiple clones. b, Fish plots of the 

clonal evolution models inferred from somatic mutations detected in diagnosis and relapse 

samples. Mutant allele frequency (MAF) of the somatic mutations was used by the sciClone 

(14) R package to infer potential clonal clusters (shown in different colors) and visualized by 

Fishplot (13) (see Methods). Four major clonal evolution models were observed: 1. Relapse 

sample is a second primary leukemia with no somatic mutations shared with diagnosis; 2. A 

minor clone (somatic mutations’ median MAF of the clone is less than 30%) in diagnosis 

develops into the major clone in relapse; 3. A major clone (somatic mutations’ median MAF 

of the clone is greater than 30%) reserves from diagnosis to relapse (3.1) or emerges as a 

major clone at relapse (3.2); 4. Multiple subclones in diagnosis develop as multiple 

subclones in relapse. For each exemplary case, the time from diagnosis to relapse is 

indicated. Focal deletions and non-silent somatic mutations on cancer genes (according 
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COSMIC cancer gene census and well-known leukemia relevant genes) for each inferred 

clone were shown on the right side.
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Figure 3. CNAs and MEF2D-BLC9 rearrangements in patient SJBALL006.
Signal intensity from Affymetrix SNP6.0 microarrays was normalized to log2 ratio (>0 

indicate copy gain; <0 indicate copy loss) and shown in UCSC genome browser in large (a) 

and focal scale (b) to show the distinct alteration patterns between diagnosis and “relapse” 

(second diagnosis) samples. Constitutional copy number gains were observed in the 

germline sample. c, RNA-seq depth on exons of BCL9 gene. The sequencing depth was 

scaled from 0 to 270-fold for both diagnoses samples. The uptick of exon 9 and 10 was 

observed for first and second diagnosis samples respectively, indicating different 

rearrangement breakpoints on BCL9, which was consistent with fusions called from RNA-

seq. The RNA-seq library for the first diagnosis sample was total RNA, so the intronic 

region was covered by sequencing reads. d, schematic visualization of MEF2D-BCL9 

chimeric protein structure. Two fusion isoforms have been reported as the most recurrent 

MEF2D-BCL9 rearrangments29.
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Figure 4. Integration of mutational landscape and xenografts resolves clonal structure in ALL.
a, Somatic mutation spectrum of diagnosis (D), first relapse (R1) and xenografted leukemia 

samples. Leukemic cells from D (D.*.#) and R1 (R.*.#) from patient SJBALL036 were 

xenografted in mice and collected from bone marrow (*.BM.#), central nervous system 

(*.CNS.#) and spleen (*.SP.#). Cancer genes with non-silent mutations are highlighted in 

red. FS, frameshift; NS, nonsense; SP, canonical splice site; proteinInDel, protein insertion/

deletion. b, Delineation of clonal model from xenografted samples. Mutant allele frequency 

(MAF) of SNV/indels were analyzed by sciClone (14) to infer clonal clusters. Based on the 

MAF in D and R1, clone 2.1 and 2.2 were indistinguishable. Xenograft data shows that 

clone 2.1 rises as a major clone (MAF =0.5) in relapse alone, or together with clone 2.2, 

indicating 2.1 is the parental clone of 2.2. In addition, xenograft data showed variability in 

MAFs between clones 3 and 4, indicating that clone 3 and 4 were two distinct subclones. 

The clones are color-coded in the schema as in a. The number of somatic mutations in each 

clone is shown in parentheses. c, Fishplot of the leukemia evolution model. The top plot 

shows the original evolution model based on D and R1, and the bottom plot is the refined 

evolution model after incorporating the information from xenografted samples. The time (T) 

at diagnosis is defined as 0 and the first relapse was observed 4 years later. Non-silent 

mutations and focal deletions (del) affecting cancer genes are highlighted for each clone.
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Figure 5. Digital droplet PCR reveals mutations at low levels in intermediate complete remission 
samples.
MAF of the indicated variants was determined in bone marrow (dot) and peripheral blood 

(triangle) samples for 5 patients. The time to diagnosis is scaled on the x-axis, with the 

treatment blocks indicated in black (induction), red (consolidation), blue (maintenance), and 

orange (relapse treatment). SJBALL192, SJHYPER127 and SJTALL001 relapsed during 

maintenance treatment. Detection limits are indicated with a red horizontal line and shaded 

background. Detection limits in gray were extrapolated from the other assays (i.e. not 

experimentally determined). The MAF at relapse of WHSC1 in SJHYPER127 was 

determined in our capture validation analysis, as no DNA was available for ddPCR. The y-

axis is in logarithmic scale.
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Figure 6. Mutational signature analysis of hypermutated relapses identifies multiple distinct 
mutational processes in hypermutation.
a, Four mutational signatures identified in hypermutated ALL. Relative contribution of the 

different mutation types in their trinucleotide context, and cosine similarity values to 

reported COSMIC signatures are shown. b, Cosine similarity heatmap showing the 

hierarchical clustering of de novo signatures identified in this study with 30 known SBS 

signatures, including those associated with AID/APOBEC (orange bars), spontaneous 

deamination of meC (red bar), and mismatch repair (blue bar). c, Absolute contribution of 

each of the four signatures to the acquired mutations in 17 hypermutated relapse samples 
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from 13 patients. Samples are grouped based on the most prominent contributing signature. 

d, Average number and size of acquired indels in samples assigned to each group (top panel) 

and the number of repetitive subunits surrounding an inserted or deleted subunit (bottom 

panel). A value of 0 indicates that the indel is not located within a simple repeat. e, Total 

number of mutations (acquired and preserved) assigned with >95% confidence to signature 

A in the tumors of SJETV010, binned based on the mutation allele frequency (MAF). f, 
Density of C>T transitions in CpGs inside and outside gene bodies of two hypermutated 

relapses (SJETV010R2 and SJHYPER022R1) with high contribution of signature A 

mutations (top and middle panel) and healthy colon organoids with high contribution of 

SBS1 mutations (average of 3 organoids; bottom panel). g, Bar plots showing number of 

C>T transitions in CpGs on the transcribed and non-transcribed stand in relation to gene 

expression (top panels) and density of C>T transition in CpGs (bottom panels) in genes with 

no, low (<median) and high (≥median) expression.
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