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Abstract

The cause of failure in cohort studies that involve competing risks is frequently incompletely 

observed. To address this, several methods have been proposed for the semiparametric 

proportional cause-specific hazards model under a missing at random assumption. However, these 

proposals provide inference for the regression coefficients only, and do not consider the infinite 

dimensional parameters, such as the covariate-specific cumulative incidence function. 

Nevertheless, the latter quantity is essential for risk prediction in modern medicine. In this paper 

we propose a unified framework for inference about both the regression coefficients of the 

proportional cause-specific hazards model and the covariate-specific cumulative incidence 

functions under missing at random cause of failure. Our approach is based on a novel 

computationally efficient maximum pseudo-partial-likelihood estimation method for the 

semiparametric proportional cause-specific hazards model. Using modern empirical process theory 

we derive the asymptotic properties of the proposed estimators for the regression coefficients and 

the covariate-specific cumulative incidence functions, and provide methodology for constructing 

simultaneous confidence bands for the latter. Simulation studies show that our estimators perform 

well even in the presence of a large fraction of missing cause of failures, and that the regression 

coefficient estimator can be substantially more efficient compared to the previously proposed 

augmented inverse probability weighting estimator. The method is applied using data from an HIV 

cohort study and a bladder cancer clinical trial.
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1 Introduction

There is an increasing frequency of epidemiological studies and clinical trials that involve a 

large number of subjects, longer observation periods and multiple outcomes or competing 

risks [23]. The basic identifiable quantities from studies with competing risks are the cause-

specific hazard and the cumulative incidence function [27,4]. Choosing the most relevant 

estimand in a given study depends on the scientific question of interest: if the goal of the 

study is to identify risk factors of the competing risks under consideration, the cause-specific 

hazard is the most relevant quantity [17]; if the interest is focused on clinical prediction or 
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prognosis, as for example in studies of quality of life, the cumulative incidence function is 

the most relevant estimand [10,17,1].

A frequent problem in studies with competing risks is that cause of failure is incompletely 

observed, and several methods have been proposed to address this issue under a missing at 

random assumption. Craiu and Duchesne (2004) proposed an EM-algorithm for estimation 

under a piecewise-constant hazards competing risks model, for situations with masked cause 

of failure [9]. Goetghebeur and Ryan (1995) proposed a partial likelihood-based approach 

for estimating the regression coefficients of the semiparametric proportional cause-specific 

hazards model under missing cause of failure, by assuming that the baseline hazards for the 

different cause of failures are proportional [12]. Lu and Tsiatis (2001) proposed a multiple-

imputation approach based on a parametric assumption regarding the probability of the 

cause of failure conditional on the fully observed data [19]. Lu and Tsiatis approach, unlike 

the estimator by Goetghebeur and Ryan [12], did not impose the proportionality assumption 

between the baseline hazards for the different causes of failure. Gao and Tsiatis (2005) 

developed augmented inverse probability weighting estimators (AIPW) for the regression 

coefficients in the class of semiparametric linear transformation models [11]. This approach 

utilizes parametric models for the probability of missingness and the probability of the cause 

of failure conditional on the fully observed data. Hyun et al. (2012) applied the AIPW 

approach to the proportional cause-specific hazards model [15]. These AIPW estimators are 

more efficient compared to the simple inverse probability weighting estimators, and possess 

the double-robustness property. The latter property ensures consistency even if one of the 

parametric models for the probability of missingess and the cause of failure probability is 

incorrectly specified. Recently, Nevo et al. (2018) proposed an estimation approach for the 

proportional cause-specific hazards model that utilized auxiliary covariates for a weaker 

missing at random assumption [24]. However, this approach considered an unspecified 

baseline hazard for only one cause of failure, say λ0,1(t), while the baseline hazards for the 

remaining cause of failures were assumed to satisfy a parametric hazard ratio λ0,j(t)/λ0,1(t). 
On the contrary, the other approaches mentioned above considered unspecified baseline 

cause-specific hazards for all the cause of failures [19,11,15]. It is important to note that, 

none of the aforementioned methods have considered the problem of inference for the 

infinite-dimensional parameters, such as the covariate-specific cumulative incidence 

function. However, these personalized risk predictions provide crucial information to 

clinicians and policy makers in medical decision making and implementation science, as in 

our motivating study described below.

Several other approaches have been proposed for the semiparametric additive cause-specific 

hazards model with missing causes of failure [20,6]. In this article we focus on the 

semiparametric proportional cause-specific hazards model because this is the standard model 

for estimating risk factor effects in practice [17]. Additionally, other approaches have been 

proposed for semiparametric models of the cumulative incidence function [3,21] with 

missing cause of failure. However, it is more appropriate to analyze the cause-specific 

hazard function for evaluating risk factors, than analyzing the cumulative incidence function 

[17].
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An important gap in the literature of competing risks data with missing cause of failure is 

that there is currently no unified approach available for inference about both the cause-

specific hazard, for evaluating risks factors, and the covariate-specific cumulative incidence 

function, for risk prediction purposes. Such an approach would be very useful to an ongoing 

study with competing risks from the East Africa Regional Consortium of the International 

Epidemiology Databases to Evaluate AIDS (EA-IeDEA). Among other data, EA-IeDEA 

records death and disengagement from care, the two major outcomes experienced by HIV-

infected individuals who receive antiretroviral treatment (ART). The goal of the motivating 

study is twofold: i) to identify risk factors of disengagement from HIV care and death in 

patients who receive ART, and ii) to provide individualized (i.e., covariate-specific) 

prognosis and prediction estimates for the aforementioned competing risks. The first goal 

aims at providing a scientific understanding of the factors that are related to disengagement 

from care and death under ART, while the second goal focuses on informing clinical practice 

and implementation science efforts to optimize care in a cost-efficient way [14]. Therefore, 

the first goal is focused on making inference about the regression coefficients in a model for 

the cause-specific hazard functions [17], while for the second goal the focus is in covariate-

specific cumulative incidence functions [17,1]. A major complication in the EA-IeDEA 

study is the significant under-reporting of death. This means that a patient who has been lost 

to clinic (failure from any cause in our example), could be either dead (whose death has not 

been reported) or has disengaged from HIV care. Ascertainment of the cause of failure in 

this study requires intensive outreach of the patients who have been identified as lost to 

clinic in the community, and subsequent ascertainment of their vital status. However, this is 

a difficult and costly process and, thus, it is only carried out for a small subset of patients 

who have been flagged as lost to clinic. This leads to a significant missing cause of failure 

problem.

In this work, we propose a unified framework for inference about both the regression 

coefficients and the covariate-specific cumulative incidence functions under the 

semiparametric proportional cause-specific hazards model with incompletely observed cause 

of failure. To the best of our knowledge, inference about the covariate-specific cumulative 

incidence function has not been studied in the literature of missing cause of failure under the 

semiparametric proportional cause-specific hazards model and the class of linear 

transformation models. In this article we fill this significant gap in the literature. Our 

approach is based on a novel computationally efficient maximum pseudo-partial-likelihood 

estimation (MPPLE) method under the common missing at random assumption. Our 

estimator utilizes a parametric model for the probability of the cause of failure, which 

includes auxiliary covariates in order to make the missing at random assumption more 

plausible [19,24,5]. The parametric assumption for the latter model is evaluated through a 

formal goodness of fit procedure based on a cumulative residual process, similarly to the 

work by [5]. Computation of the proposed MPPLE is easily implemented using the function 

coxph of the R package survival as illustrated in the Electronic Supplementary Material. 

However, computation of standard errors requires bootstrap methods as we have not 

implemented the standard error estimators for general use in the R software yet. Using 

modern empirical process theory, we establish the asymptotic properties of our estimators 

for both the regression coefficients and the covariate-specific cumulative incidence 
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functions, and propose closed-form variance estimators based on the empirical versions of 

the corresponding influence functions. In addition, we also propose a method to construct 

simultaneous confidence bands for the covariate-specific cumulative incidence functions. 

The finite sample properties of the estimators and their robustness against misspecification 

of the parametric model for the probability of the cause of failure are investigated through 

simulations. Moreover, in the simulation studies, we also demonstrate superior finite sample 

performance of our estimator for the regression coefficients compared to the AIPW 

estimator [11,15]. Finally, we apply the methodology to data sets from the EA-IeDEA HIV 

cohort study and a bladder cancer trial from the European Organisation for Research and 

Treatment of Cancer (EORTC).

The rest of the paper is organized as follows: Section 2 provides notation and assumptions 

that pertain to the model associated with the observed data. Section 3 describes the proposed 

estimator and its large sample properties. We conduct a number of simulation studies in 

Section 4 by which we justify numerically the validity of the proposed method and compare 

it with the AIPW method in terms of their finite sample performance. In Section 5 the 

method is applied to the HIV/AIDS study and the bladder cancer trial. We summarize the 

results and discuss potential extensions of the proposed methodology in Section 6. R code, 

asymptotic theory proofs, and simulation results regarding the infinite-dimensional 

parameters are provided in the Electronic Supplementary Material.

2 Notation and Assumptions

Let T and U denote the failure and right censoring times. The corresponding observable 

quantities are X = T ∧ U and Δ = I(T ≤ U). Additionally, let C ∈ {1, . . . , k} denote the 

cause of failure, where k is finite. We assume that the observation interval is [0, τ], with τ < 
∞. Let Z denote a p-dimensional vector of covariates. As mentioned in the Introduction, the 

basic identifiable quantities from competing risks data are the cause-specific hazards

λj(t; z) = lim
ℎ 0

1
ℎP(t ≤ T < t + ℎ, C = j |T ≥ t, Z = z), j = 1, …, k

and the cumulative incidence functions

Fj(t; z) = P(T ≤ t, C = j |Z = z)

= ∫
0

t
exp − ∑

l = 1

k
Λl(s; z) λj(s; z)ds, j = 1, …, k, (1)

where Λj(t; z) = ∫0
tλj(s; z)ds, which is the covariate-specific cumulative hazard for the jth 

cause of failure. A standard model for the cause-specific hazard is the proportional hazards 

model

λj(t; Z) = λ0, j(t)exp β0, j
T Z , j = 1, …, k, (2)

where λ0,j(t) is the jth unspecified baseline cause-specific hazards function for j = 1, . . . , k. 

Note that, unlike in [24], we do not impose further assumptions on the baseline hazards. For 
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competing risks data with incompletely observed cause of failure, we define a missingness 

indicator R, with R = 1 indicating that the cause of failure has been observed, and R = 0 

otherwise. Along with Z, we can potentially observe a vector of auxiliary covariates A ∈ ℝq, 

which are not of scientific interest, but may be related to the probability of missingness. 

Accounting for such auxiliary covariates can make the missing at random assumption more 

plausible in practice [19,24,5]. Throughout this paper, we assume that the event indicator Δ 
is always observed and if Δ = 0, we set R = 1. Therefore, the observable data Di with 

missing cause of failure are n independent copies of (Xi,Δi,ΔiRiCi,Zi,Ai,Ri), where Ci is 

observable only when Δi = 1 and Ri = 1. Based on the observable data we can define the 

counting process and at-risk process as Ni(t) = I(Xi ≤ t,Δi = 1) and Yi(t) = I(Xi ≥ t) 
respectively. Additionally, we define the cause-specific counting process as Nij(t) = I(Xi ≤ 

t,Δij = 1) = ΔijNi(t), where Δij = I(Ci = j,Δi = 1) for j = 1, . . . , k, which can only be observed 

if Ri = 1.

In this work, we impose the missing at random assumption P(Ri = 1|Ci,Δi = 1,Wi) = P(Ri = 

1|Δi = 1,Wi), where Wi = (Ti,Zi,Ai). Note that Ti is observable if Δi = 1 since, in this case, Xi 

= Ti. This assumption is equivalent to

P Ci = j |Ri = 1, Δi = 1, Wi = P Ci = j |Ri = 0, Δi = 1, Wi
= P Ci = j |Δi = 1, Wi
≡ πj Wi, γ0 , j = 1, …, k .

As in previous work on missing cause of failure in the competing risks model, we assume a 

parametric model πj(Wi, γ0) for the jth cause of failure, where γ0 is a finite-dimensional 

parameter. A natural choice for πj(Wi, γ0), j = 1, . . . , k, is the multinomial logit model with 

the generalized logit link function, if k > 2, or the binary logit model with the logit link 

function, if k = 2. In this article, the inverse of the link function for the generalized linear 

model assumed for πj(Wi, γ0) is denoted by g. For the special case of the binary logit model 

(whose link function is the logit link), g is the expit function, that is

π1 Wi, γ0 = g γ0
T 1, WiT

T =
exp γ0

T 1, WiT
T

1 + exp γ0
T 1, WiT

T ,

where 1, Wi
T T

 is the covariate vector for the ith individual that also includes a unit for the 

intercept, where π2(Wi, γ0) = 1 − π1(Wi, γ0).

In this paper, as in [19], we assume that the parametric model πj(Wi, γ0) is correctly 

specified. However, this model may be misspecified in practice. We deal with this issue in 

three ways. First, we suggest the practical guideline of using flexible parametric models for 

time T and the other potential continuous auxiliary variables to make the correct 

specification assumption more plausible, or at least to provide a better approximation to the 

true model for πj(Wi). This can be achieved by incorporating logarithmic, quadratic and 

higher order terms, or (finite-dimensional) B-spline terms, where the number of internal 

knots is fixed and does not depend on sample size n. Second, we provide a residual process 
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to formally evaluate the parametric assumption regarding πj(Wi, γ0) in the next section. 

Finally, we evaluate the robustness of our estimator against misspecification of πj(Wi, γ0) in 

simulation studies.

3 Methodology

3.1 Estimators

In the ideal situation where the cause of failure is fully observed, that is Ci is available for all 

i = 1,2, . . . , n, one can estimate β0 = (β0, 1
T , …, β0, k

T )T  in (2) by maximizing the usual partial 

likelihood:

pln(β) = ∑
j = 1

k
∑
i = 1

n ∫
0

τ
βj

TZi − log ∑
l = 1

n
Y l(t)eβjTZl dNij(t)

≡ ∑
j = 1

k
pln, j βj .

(3)

If there are no restrictions that the hazards for different causes of failure share the same 

regression coefficient values, estimation of β0,j for any j = 1, . . . , k, can be performed by 

independently maximizing pln,j(βj). When some causes of failure are missing, the partial 

likelihood (3) cannot be evaluated. In this case, the expected log partial likelihood, 

conditionally on the observed data Di i = 1
n  is

Qn(β) = ∑
j = 1

k
∑
i = 1

n ∫
0

τ
βj

TZi − log ∑
l = 1

n
Y l(t)eβjTZl dE Nij(t) |Di , (4)

where

E Nij(t) |Di = RiΔij + 1 − Ri πj Wi, γ0 Ni(t)
≡ Nij t; γ0

since E(Δij|Di) = πj(Wi, γ0) if Ri = 0. A pseudo-partial-likelihood for β can be constructed 

by replacing the unknown parameters γ0 in the expected log partial likelihood (4) with a 

consistent estimator γn. Therefore, under the missing at random assumption, the first stage 

of the analysis is to estimate γ0 by maximum likelihood based on the data with an observed 

cause of failure (complete cases), assuming for example a multinomial logit model. It has to 

be noted that this first stage of the analysis is identical to the first stage of the multiple-

imputation approach by [19]. However, unlike [19], in the second stage of the analysis we do 

not utilize simulation-based imputations and, therefore, we avoid the additional variability 

due to the finite number of imputations [30]. For the second stage of the analysis, we 

construct the estimating functions given γn as follows

Gn, j βj; γn = 1
n ∑

i = 1

n ∫0
τ

Zi − En t; βj dNij t; γn , j = 1, …, k,
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where

En t, βj =
∑i = 1

n ZiY i(t)exp βjTZi
∑i = 1

n Yi(t)exp βjTZi
.

The second stage of the analysis is to get the estimators βn, j as the solutions to the equations 

Gn, j βj; γn = 0 for j = 1, . . . , k. Computation can be easily implemented using the coxph 

function in the R package survival, as illustrated in the Electronic Supplementary Material. 

However, computation of standard errors requires bootstrap methods as we have not 

implemented the standard error estimators for general use in the R software yet.

The parametric assumption on the models for πj(Wi, γ0), j = 1, . . . , k, can be evaluated 

using the cumulative residual processes

E Ri Nij(t) − πj Wi, γ0 Ni(t) , t ∈ [0, τ], j = 1, …, k,

which can be estimated by

1
n ∑

i = 1

n
Ri Nij(t) − πj Wi, γn Ni(t) , t ∈ [0, τ], j = 1, …, k .

Under the null hypothesis of a correctly specified model, the cumulative residual process is 

equal to 0 for all t ∈ [0, τ]. A formal goodness of fit test can be performed using a 

simulation approach similar to that proposed by [26]. Additionally, a graphical evaluation of 

goodness of fit can be performed by plotting the simultaneous confidence band for the 

residual process around the line f(t) = 0 and examining whether the observed residual 

process falls outside the region formed by the confidence band. The latter provides strong 

evidence for the violation of the correct specification assumption for the model πj(Wi, γ0). 

Further details on this goodness of fit evaluation approach can be found in [5]. This 

goodness of fit approach is illustrated in Section 5.

The cumulative baseline cause-specific hazard functions can be estimated using the 

Breslow-type estimator

Λn, j(t) = ∫0
t ∑i = 1

n dNij s; γn

∑i = 1
n Yi(s)eβn, j

T Zi
, j = 1, …, k, t ∈ [0, τ] .

Natural estimators of the covariate-specific cumulative incidence functions for Z = z0 are 

given by

Fn, j t; z0 = ∫0
t
exp − ∑

l = 1

k
Λn, l s − ; z0 dΛn, j s; z0 , j = 1, …, k, t ∈ [0, τ],
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where Λn, j t; z0 = Λn, j(t)exp(βn, j
T z0) for all j = 1, . . . , k and t ∈ [0, τ].

Although we have only considered time-independent covariates here, the proposed estimator 

for the regression parameter and its properties, provided in the subsection 3.2, are also valid 

for the case of time-dependent covariates, provided that these covariates are right-continuous 

with left-hand limits and of bounded variation. However, inference for the baseline 

cumulative cause-specific hazards and the covariate-specific cumulative incidence functions 

with internal time-dependent covariates is trickier and requires explicit modeling of the 

covariate processes [8].

3.2 Asymptotic properties

Before providing the regularity conditions assumed here, we define the negative of the 

second derivative of the true log partial likelihood function as

Hj βj = ∫0
τ E Z ⊗ 2Y (t)eβjTZ

E Y (t)eβjTZ
−

E ZY (t)eβjTZ

E Y (t)eβjTZ

⊗ 2

E dNj t; γ0 ,

for j = 1, . . . , k. The asymptotic properties of the proposed estimators are studied under the 

following regularity conditions:

C1. The follow-up interval is [0, τ], with τ < ∞ and Λ0,j(t) is a non-decreasing continuous 

function with Λ0,j(τ) < ∞ for each j = 1, . . . , k. Additionally, E[Y (τ)|Z] > 0 almost surely.

C2. β0, j ∈ ℬj ⊂ ℝpj where ℬj is a bounded and convex set for all j = 1, . . . , k and β0,j is in 

the interior of ℬj.

C3. The inverse g of the link function for the parametric cause of failure probability model 

πj(W, γ0), j = 1, . . . , k, has a continuous derivative ġ with respect to γ0 on compact sets. 

Also, the corresponding parameter space Γ for γ0 is a bounded subset of ℝp.

C4. The score function U(γ) for the model for the true failure type C is Lipschitz continuous 

in γ and the estimator γn is almost surely consistent and asymptotically linear, i.e., 

n γn − γ0 = n−1/2∑i = 1
n ωi + op(1), with the influence function ωi satisfying E(ωi) = 0 and 

E‖ωi‖2 < ∞ for all i = 1,2, . . . , n. Additionally, the plug-in estimators ωi for ωi satisfy 

n−1∑i = 1
n ωi − ωi

2 = op(1).

C5. The covariate vector Z and auxiliary covariate vector A are bounded in the sense that 

there exists a constant K ∈ (0, ∞) such that P(‖Z‖∨‖A‖ ≤ K) = 1.

C6. The true Hessian matrix −Hj(βj) is a negative definite matrix for all j = 1, . . . , k.
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Remark 1. Conditions C3 and C4 are automatically satisfied if the model for πj(W, γ0) is a 

correctly specified binary or multinomial logit model with model parameters estimated 

through maximum likelihood.

The asymptotic properties of the proposed estimators are provided in the following 

theorems. The proofs of these theorems are provided in the Supplementary Material.

Theorem 1 Given the assumptions stated in Section 2 and the regularity conditions C1-C6,

∑
j = 1

k
βn, j − β0, j + Λn, j(t) − Λ0, j(t) ∞

as * 0

where ‖f(t)‖∞ = supt∈[0, τ] |f(t)|.

Remark 2. Based on this consistency result it is easy to argue that 

∑j = 1
k Λn, j t; z0 − Λ0, j t; z0 ∞

as * 0 for any z0 in the (bounded) covariate space. This fact 

along with a continuity result from the Duhamel equation [2] can be used to show that 

∑j = 1
k Fn, j t; z0 − F0, j t; z0 ∞

as * 0 for any z0 in the (bounded) covariate space, since 

Fn, j t; z0 , j = 1, . . . , k, are elements of a product integral matrix [2].

Before providing the theorem for the asymptotic distribution of the finite-dimensional 

parameter estimator we define some useful quantities. Define

ψij = Hj−1 β0, j ∫0
τ

Zi − E t, β0, j dMij t; β0, j, γ0

for i = 1, . . . , n and j = 1, . . . , k, where

E t, β0, j =
E ZY (t)eβ0, j

T Z

E Y (t)eβ0, j
T Z

and Mij t; β0, j, γ0 = Nij t; γ0 − ∫0
tY i(s)exp β0, j

T Zi dΛ0, j(s), with

Λ0, j(t) = ∫0
t E dNj s; γ0

E Y (s)eβ0, j
T Z

.

Finally, define the non-random quantity

Rj = Hj−1 β0, j E (1 − R)∫0
τ

Z − E t, β0, j dN(t)π̇j W, γ0
T
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where π̇j W, γ0 = ∂ πj(W, γ) (∂γ)−1|γ = γ0 and ωi = ℐ−1 γ0 Ui γ0  is the influence function 

for γn, with ℐ γ0  being the true Fisher information about γ0 and Ui(γ0) the individual score 

function for the ith subject. The following theorem provides the basis for performing 

statistical inference regarding the finite-dimensional parameter.

Theorem 2 Given the assumptions stated in Section 2 and the regularity conditions C1-C6,

n(βn, j − β0, j) = 1
n ∑

i = 1

n
ψij + Rjωi + op(1),

and therefore n(βn, j − β0, j) converges in distribution to a mean-zero Gaussian random 

vector with covariance matrix Σj = E ψj + Rjω
⊗ 2 that is bounded for all j = 1, . . . , k.

Remark 3. The covariance matrix Σj can be consistently (in probability) estimated by

Σj = 1
n ∑

i = 1

n
(ψij + Rjωi)

⊗ 2,

where the estimated components of the influence functions in Σj are the empirical estimates 

of the influence function components defined above, with the unknown parameters being 

replaced by their consistent estimates and the expectations by sample averages. Explicit 

formulas for the estimated influence functions are provided in the Supplementary Material.

Before stating the theorem for the asymptotic distribution of Λn, j we define the influence 

functions

ϕij(t) = ∫0
t dMij s; β0, j, γ0

E Y (s)eβ0, j
T Z

− ψij + Rjωi
T∫0

t
E s, β0, j dΛ0, j(s)

and the non-random function

Rj⋆(t) = E (1 − R)π̇j W, γ0 ∫0
t dN(s)

E Y (s)eβ0, j
T Z

T

.

Theorem 3 Given the assumptions stated in Section 2 and the regularity conditions C1-C6,

n Λn, j(t) − Λ0, j(t) = 1
n ∑

i = 1

n
ϕij(t) + Rj

⋆(t)ωi + op(1), (5)

and the influence functions ϕij(t) + Rj
⋆(t)ωi belong to a Donsker class indexed by t ∈ [0, τ]. 

Therefore, (5) converges weakly to a tight mean-zero Gaussian process in the space D[0, τ] 
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of right-continuous functions with left-hand limits, defined on [0, τ], for all j = 1, . . . , k, 

with covariance function E ϕj(t) + Rj
⋆(t)ω ϕj(s) + Rj

⋆(s)ω , for t, s ∈ [0, τ]. Additionally, 

W n, j(t) = n−1/2∑i = 1
n ϕij(t) + Rj

⋆(t)ωi ξi, where ξi i = 1
n  are standard normal variables 

independent of the data, converges weakly (conditionally on the data) to the same limiting 

process as W n, j(t) = n−1/2∑i = 1
n ϕij(t) + Rj

⋆(t)ωi  (unconditionally).

Remark 4. The covariance function can be uniformly consistently (in probability) estimated 

by

1
n ∑

i = 1

n
ϕij(t) + Rj

⋆(t)ωi ϕij(s) + Rj
⋆(s)ωi .

where ϕij(t), Rj
⋆(t) and ωi are the empirical estimates of the corresponding true functions 

with the unknown parameters being replaced by their consistent estimates and the 

expectations by sample averages.

The asymptotic result of Theorem 3 can be straightforwardly used for the construction of 1 − 

α pointwise confidence intervals. For the construction of simultaneous confidence bands we 

use a similar approach to that proposed by [29]. Consider the process 

nqjΛ(t) g Λn, j(t) − g Λ0, j(t) , where g is a known continuously differentiable 

transformation with nonzero derivative and qjΛ is a weight function that converges uniformly 

in probability to a nonnegative bounded function on [t1, t2], with 0 ≤ t1 ≤ t2 < τ. The 

transformation ensures that the limits of the confidence band lie within the range of Λ0,j(t). 

For example one can use the transformation g(x) = log(x) [18]. The weight function qjΛ, 

which is useful in reducing the width of the band, can be set equal to Λn, j(t)/σΛj(t) with 

σΛj(t) = {n−1∑i = 1
n [ϕij(t) + Rj

⋆(t)ωi]
2
}

1/2
, which is the standard error estimate of Wn,j(t). 

This results in the equal precision band [22]. Another choice for the weight function is 

Λn, j(t)/ 1 + σΛj
2 (t)  and this results in the Hall–Wellner band [13]. Using the functional delta 

method it can be shown that the process nqjΛ(t){g[Λn, j(t)] − g[Λ0, j(t)]} is asymptotically 

equivalent to Bn, j(t) = qjΛ(t)ġ[Λn, j(t)]W n, j(t). Furthermore, Theorem 3 ensures that Bn,j(t) is 

asymptotically equivalent to Bn, j(t) = qjΛ(t)ġ{Λn, j(t)}W n, j(t). Hence, a 1 − α confidence band 

can be constructed as

g−1 g Λn, j(t) ±
ca

nqjΛ(t)
t ∈ t1, t2 ,

where cα is the 1 − a quantile of the distribution of supt ∈ t1, t2 |Bn, j(t)| which can be 

estimated by the 1 – α percentile of the distribution of a large number of simulation 
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realizations of supt ∈ t1, t2 |Bn, j(t)| [29]. Each simulated realization of supt ∈ t1, t2 |Bn, j(t)| is 

calculated based on a set of draws of ξi i = 1
n  values from the standard normal distribution.

Remark 5. The region of the confidence band [t1, t2] typically ranges from the minimum to 

the maximum observed times of failure from the jth type. In order to prevent the effect of the 

instability in the tails of the cumulative baseline cause-specific hazards estimator, the range 

can be restricted to [s1, s2], where sl, l = 1, 2, can be set equal to the solutions of 

cl = σΛj
2 sl /[1 + σΛj

2 sl ], with {c1, c2} being equal to {0.1, 0.9} or {0.05, 0.95} [22, 31].

Remark 6. It can be also easily shown that n[Λn, j t; z0 − Λ0, j t; z0 ] is an asymptotically 

linear estimator with influence functions 

ϕij
Λ t; z0 = [z0

T ψij + Rjωi Λ0, j(t) + ϕij(t) + Rj
⋆(t)ωi]exp(β0, j

T z0) for j = 1, . . . , k and t ∈ [0, τ]. 

The Donsker property of the class {ϕj
Λ t; z0 : t ∈ [0, τ]}, for every j = 1, . . . , k and z0 in the 

bounded covariate space follows from the fact that it is formed by a sum of functions that 

belong to Donsker classes, which are multiplied by fixed functions. Pointwise 1 − α 
confidence intervals and simultaneous confidence bands can be similarly constructed based 

on the estimated influence functions ϕij
Λ t; z0 .

The following theorem describes the asymptotic properties of the plug-in estimators of the 

covariate-specific cumulative incidence functions.

Theorem 4 Given the assumptions stated in Section 2 and the regularity conditions C1-C6,

n Fn, j t; z0 − F0, j t; z0 = 1
n ∑

i = 1

n
ϕij

F t; z0 + op(1), (6)

where

ϕijF t; z0 = ∫0
t
exp − ∑

l = 1

k
Λ0, l s − ; z0 dϕijΛ s; z0

− ∫0
t ∑

l = 1

k
ϕil

Λ s − ; z0 exp − ∑
l = 1

k
Λ0, l s − ; z0 dΛ0, j s; z0

and the influence functions ϕij
F t; z0  for i = 1, . . . , n and j = 1, . . . , k belong to a Donsker 

class indexed by t ∈ [0, τ]. Therefore, (6) converges weakly to a tight mean-zero Gaussian 

process in D[0, τ], for all j = 1, . . . , k, with covariance function E[ϕj
F t; z0 ϕj

F s; z0 ], for t, s 

∈ [0, τ].

Remark 7. The covariance function can be uniformly consistently (in probability) estimated 

by n−1∑i = 1
n ϕij

F t; z0 ϕij
F s; z0 , where the empirical influence function ϕij

F s; z0  can be 

similarly calculated as described above. Moreover, the asymptotic (conditional on the data) 

distribution of
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W n, j
F t; z0 = 1

n ∑
i = 1

n
ϕij

F t; z0 ξi,

where ξi i = 1
n  are standard normal variables independent of the data, is the same as the 

(unconditional) asymptotic distribution of

W n, jF t; z0 = n−1/2 ∑
i = 1

n
ϕijF t; z0 .

Remark 8. Theorem 4 can be used for the construction of 1−α pointwise confidence 

intervals for F0,j(t;z0). Construction of simultaneous confidence bands can be performed as 

described for Λ0,j(t) and in a similar fashion as that in [7], using the process 

Bn, j
F t; z0 = qjF t; z0 ġ[Fn, j t; z0 ]W n, j

F t; z0 . In this case the transformation g(x) can be set 

equal to log[−log(x)], and the weight function qjF t; z0  to Fn, j t; z0 log[Fn, j t; z0 ]/σFj t; z0 , 

with

σFj t; z0 = n−1 ∑
i = 1

n
ϕij

F t; z0
2 1/2

,

which is the standard error estimate of W n, j
F t; z0 . This weight leads to an equal-precision-

type confidence band [22]. Alternatively, qjF t; z0  can be set equal to

Fn, j t; z0 log Fn, j t; z0 / 1 + σFj
2 t; z0 ,

which yields a Hall–Wellner type confidence band [13].

4 Simulation Studies

To evaluate the finite sample performance of the proposed estimator, we conducted a series 

of simulation studies. We used similar simulation settings to those used in [15]. Specifically, 

we considered a cohort study with an observation interval [0, 2], two causes of failure, and 

two covariates Z = (Z1, Z2)T, where Z1 was generated from U(0, 1) and Z2 from the 

Bernoulli(0.5) distribution. Additionally, we considered an independent random right-

censoring variable simulated from an exponential distribution with a rate equal to 0.4. Event 

time for cause of failure 1 was generated from the exponential distribution with hazard 

λ0,1(t;Z) = exp(β1Z1), where β1 = −0.5. Event time for cause of failure 2 was generated 

either from a Gompertz distribution with a rate λ0,2(t;Z) = exp[−β2(Z2 + 1) + νt] where (β2, 
ν) = (0.5, 0.2) (scenario 1), or from a Weibull distribution with a hazard function 

ηληexp β3Z2 tη − 1 where (λ, β3) = (0.5, −0.5) and η = 0.5 (scenario 2), η = 2 (scenario 3), or 
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η = 0.1 (scenario 4). The implied model for π1(W, γ), the probability of the cause of failure 

1 with W = (T, Z), has the form

logit π1(W, γ) = γ0 + γ1T + γ2Z1 + γ3Z2

with (γ0, γ1, γ2, γ3) = (β2, −ν, β1, β2) = (0.5, −0.2, −0.5, 0.5) under scenario 1 and

logit π1(W, γ) = γ0 + γ1log(T) + γ2Z1 + γ3Z2

with

γ0, γ1, γ2, γ3 = −log(η) + λη, − (η − 1), β1, λη exp β3 − 1

under scenarios 2–4. For scenario 2, (γ0, γ1, γ2, γ3) ≈ (0.94, 0.5, −0.5, −0.10), while for 

scenarios 3 and 4 (γ0, γ1, γ2, γ3) was equal to (0.31, −1, −0.5, −0.39) and (2.35, 0.9, −0.5, 

−0.02), respectively. This simulation setup resulted on average in 25.6% right-censored 

observations and 59.4% failures from cause 1 and 40.6% failures from cause 2, under 

scenario 1. The corresponding figures for scenarios 2–4 were 25.1%−54.1%−45.9, 31.6%

−77.7%−22.3%, and 20.0%−38.3%−61.7%, respectively. The average ranges of failure time 

in scenarios 1–4 were 0.004−1.901, < 0.001−1.894, 0.006−1.932, and < 0.001−1.874. For 

the probability of an observed cause of failure P(R = 1|Δi = 1, W) ≡ p(W, θ) (i.e. 1 - 

probability of missingness) we considered a model of the form

logit[p(W, θ)] = θ0 + θ1T + θ2Z1 + θ3Z2 .

In our simulations we considered θ = (0.7, 1, −1, 1)T, θ = (−0.2, 1, −1, 1)T, or θ = (−0.8, 1, 

−1, 1)T which resulted in 25.2%, 43.5% and 56.4% missingness on average under scenario 

1, 27.1%, 45.5% and 58.6% missingness under scenario 2, 23.1%, 40.4% and 53.6% 

missingness under scenario 3, and 30.2%, 49.3% and 62.2% missingness under scenario 4.

For each scenario we simulated 1,000 datasets and evaluated the performance of the 

proposed MPPLE, the AIPW estimator [11, 15], and the multiple imputation (MI) estimator 

with 5 imputations [19], for estimating β1. For the AIPW estimator, we used the correctly 

specified model p(W, θ) for the probability of an observed cause of failure in all cases to 

guarantee the estimation consistency due to its double robustness property. For the 

probability of C = 1 given {Δ = 1} and W = (T, Z), all analyses assumed the model 

logit[π1(W, γ)] = γ0 + γ1T + γ2Z1 + γ3Z2. Therefore, the assumed model for π1(W, γ) 

was correctly specified in scenario 1, but misspecified in scenarios 2–4. For standard error 

estimation we used the proposed closed-form estimators provided in subsection 3.2 for the 

proposed MPPLE, while for the AIPW and the MI estimators we used bootstrap based on 

100 replications. We also evaluated the performance of our estimators for the infinite-

dimensional parameters. The simultaneous 95% confidence bands for these parameters were 

constructed based on 1,000 simulation realizations of sets ξi i = 1
n , from the standard normal 

distribution. The domain limits for the confidence bands were calculated based on {c1, c2} = 
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{0.1, 0.9}, as described in the preceding section. Note that since the AIPW approach [11, 

15] and the MI estimator [19] did not consider inference about the infinite-dimensional 

parameters we were not able to provide results from these approaches in the latter set of 

simulations.

Simulation results for the regression coefficient β1 under scenario 1 are presented in Table 1. 

The MPPLE provides virtually unbiased estimates even under a mispecified model π1(W, 
γ). The average standard error estimates are close to the corresponding Monte Carlo 

standard deviations of the estimates, with the empirical coverage probabilities being close to 

the nominal level in all cases. Compared to the AIPW estimator with the correctly specified 

model for the probability of an observed cause of failure and the MI estimator, our estimator 

achieves higher efficiency in all cases. The advantage of our estimator over the AIPW 

estimator in terms of efficiency is substantial in cases with a larger sample size and a larger 

proportion of missing cause of failure. However, such a pattern was not observed for the 

case of the MI estimator. Simulation results under scenario 2 (Table 2) are similar. These 

results indicate the robustness of our estimator against certain misspecification of the 

parametric model π1(W, γ) and, also, its substantially higher efficiency compared to the 

AIPW estimators in cases with larger sample size and proportion of missing cause of failure. 

Simulation results under scenarios 3 and 4 with a more pronounced misspecification of the 

model π1(W, γ) (Tables 1 and 2 in the Electronic Supplementary Material) are similar, 

although the higher efficiency of our estimator compared to the AIPW estimator is less 

pronounced in these cases. It has to be noted that, under a scenario with baseline hazards of 

a more complicated form or a considerably longer follow-up period, it is expected that the 

MPPLE and the multiple imputation estimator would exhibit more bias and lower coverage 

rates. Simulation results for the infinite-dimensional parameters are presented in Tables 3–8 

in the Electronic Supplementary Material. The bias of our estimators is very small even in 

cases where π1(W, γ) is misspecified, the average standard error estimates are close to the 

corresponding Monte Carlo standard deviations of the estimates, and the empirical coverage 

probabilities for the pointwise confidence intervals remain close to the nominal level in 

scenarios 1 and 2. In scenarios 3 and 4, where the model misspecification is more 

pronounced, empirical coverage probabilities were also close to the nominal level except for 

the early time point that corresponds to the 10% of the total follow-up time, in some cases. 

The simultaneous confidence bands have empirical coverage probabilities close to the 

nominal level under a correctly specified model for π1(W, γ). However, the coverage of the 

confidence bands in cases where the event time is modeled incorrectly, i.e. as T instead of 

log(T), is lower than 95%, especially in cases with a large fraction of missingness. The latter 

result indicates the importance of evaluating the goodness of fit of the assumed model for 

π1(W, γ) using the cumulative residual process given in subsection 3.1.

It is worth pointing out that the proposed MPPLE method not only enjoys efficiency 

advantages compared to the AIPW method and the MI estimator, but is also computationally 

very fast and robust. These advantages rank the proposed method favorably in practical 

applications, particularly in for large studies like the EA-IeDEA HIV study which is 

analyzed in subsection 5.1.
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5 Data Applications

In this section we apply the proposed methods to analyze data from the EA-IeDEA HIV 

study and the EORTC bladder cancer trial, which were mentioned in the Introduction 

section. It has to be noted that standard errors for the MPPLE were computed using the 

closed-form estimators provided in subsection 3.2, while for the AIPW estimators we used 

bootstrap based on 100 replications.

5.1 HIV data analysis

In this subsection we apply the proposed methodology to the electronic health record data 

from the EA-IeDEA study to analyze time from ART initiation to disengagement from HIV 

care or death. In this analysis, disengagement from care was defined as being alive and 

without HIV care for two months. The data set we used consisted of 6,657 HIV-infected 

patients on ART. The data of those patients were collected during routine clinic visits which 

were typically scheduled every 4 weeks. The median (IQR) time between two consecutive 

actual visits in our data set was 28 (28, 56) days. In total, 346 patients died (reported deaths) 

and 2,929 patients missed a scheduled clinic visit for a period of at least two months (loss to 

clinic). The remaining 3,382 patients were still in care at the end of the study period and 

hence were treated as right-censored observations. Due to the significant death under-

reporting in sub-Saharan Africa, the 2,929 lost to clinic patients included both disengagers 

from HIV care and deceased individuals whose death was not reported to the clinic. Of those 

patients, 448 (15.3%) were successfully outreached by clinic workers in order to ascertain 

their vital status and record whether these patients were disengagers or deceased. Among 

them, 99 (22.1%) were found to have died, indicating a significant death under-reporting 

issue. Cause of failure (i.e. disengagement from care or death) was missing for the 

remaining 84.7% of the patients who were lost to clinic and were not outreached. For these 

data, we assumed a binary logistic model π1(W, γ0) for the probability of death among 

patients who were lost to clinic. In order to analyze the EA-IeDEA data using the proposed 

methodology we first evaluated the goodness of fit of this logistic model. The covariates 

considered in π1(W, γ0) were time since ART initiation, gender, age, and CD4 cell count at 

ART initiation. Descriptive characteristics of the study sample are presented in Table 3.

The goodness of fit evaluation based on the residual process defined in Section 3.1 is 

presented in Figure 1. Panel (a) in Figure 1 clearly indicates the lack of fit for the model 

with a linear effect of time since ART initiation, as the residual process is outside the 95% 

confidence band for the early timepoints. It is evident that the fitted model π1 W, γn
underestimates the probability of death within about the first 12 months since ART 

initiation. After 2 years there is a tendency for overestimation of the probability of death. 

The corresponding goodness of fit test is statistically significant (p-value<0.001) indicating 

strong evidence for model misspecification. We then considered a model with piecewise 

linear effect of time with a change in slope at 12 months after ART initiation. This is a 

reasonable change point from a clinical perspective because the probability of death is 

expected to decrease dramatically during the first 12 months as a result of ART. After this 

timepoint the probability of death remains low and approximately constant. The cumulative 

residual process for this model (Panel (b) of Figure 1) was close to 0 at all time points and 
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remained within the 95% confidence band under the null hypothesis (p-value=0.689). This 

piecewise model was used for the analysis of the EA-IeDEA data.

Despite the sample of 6,657 patients with a large percent of missing cause of failures, the 

proposed MPPLE method required only about 33 seconds for each cause of failure, to 

compute the regression coefficients and the corresponding standard error estimates. This 

analysis (Table 4) revealed that males and younger patients have a higher hazard of 

disengagement from care. Also, patients with a lower CD4 count at ART initiation had a 

higher hazard of death while in HIV care. The analysis based on the AIPW estimator 

provided similar results qualitatively, however, unlike the analysis using the proposed 

MPPLE, the effect of gender was not statistically significant. This is a result of the larger 

standard error of the AIPW estimator and this is in agreement with our simulation results 

where our estimator achieved a substantially higher efficiency compared to the AIPW 

estimator. To illustrate the use of our methodology for risk prediction we depict the 

predicted cumulative incidence function of disengagement from HIV care and death for a 

40-year old male patient with a CD4 cell count of 150 cells/μl at ART initiation, along with 

the equal-precision and Hall–Wellner-type simultaneous 95% confidence bands, in Figure 2.

5.2 Bladder cancer trial data analysis

In this subsection we analyze a subset of the data from the EORTC bladder cancer clinical 

trial [25]. This trial was conducted to assess whether 1/3 dose of intravesical bacillus 

Calmette-Guérin (BCG) is inferior to full dose of BCG in treating non-muscle-invasive 

bladder cancer (NMIBC). The subset of the data we analyze here included 680 intermediate- 

and high-risk NMIBC patients who underwent transurethral resection and received BCG for 

one year. Of them, 341 were randomly assigned to the 1/3 dose group and 339 to the full-

dose group of the trial. In this analysis, we focus on time to death from bladder cancer (event 

of interest) or from other causes (competing event). In total, 171 (25.1%) patients died 

during the study period. Of them, 33 (19.3%) died due to bladder cancer, 115 (67.3%) due to 

other causes, while the cause of death was missing for 23 (13.4%) of the deceased patients. 

The covariates considered in this analysis were treatment assignment, age and World Health 

Organization (WHO) performance status at baseline. Descriptive characteristics of the study 

sample can be found in section 5 of the Electronic Supplementary Material.

The covariates considered in π1(W, γ0) were time from randomization to death, treatment 

assignment, age, and WHO performance status. The goodness of fit evaluation for this 

model based on the residual process defined in section 3.1 is presented in Figure 1 in the 

Electronic Supplementary Material. The corresponding goodness of fit test was not 

statistically significant (p-value=0.281) and, thus, there was no evidence for misspecification 

of π1(W, γ0). The results of the data analysis regarding the estimated regression coefficients 

are presented in Table 5 in the Electronic Supplementary Material. The estimated regression 

coefficient for the effect of assignment to the full-dose BCG group versus the 1/3-dose BCG 

group on the cause-specific hazard of death from bladder cancer was 0.451 based on the 

proposed MPPLE estimator and 0.421 based on the AIPW estimator. The corresponding 

standard error was smaller for the MPPLE (SE = 0.356) compared to the AIPW estimator 

(SE = 0.372). However, based on both analyses, the effect of treatment assignment on the 
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cause-specific hazard of death from bladder cancer was not statistically significant. To 

explicitly test the inferiority null hypothesis that the 1/3 BCG dose assignment is inferior to 

the full BCG dose assignment, with respect to the cause-specific hazard of death from 

bladder cancer, we considered a non-inferiority margin of log(0.85). This non-inferiority 

margin corresponds to the log hazard ratio for death from bladder cancer in the full-dose 

BCG group versus the 1/3-dose BCG group. Under this non-inferiority margin and a one-

sided Wald test, according to the recommendations for non-inferiority hypothesis testing 

[28], the null hypothesis of inferiority of the 1/3 dose assignment compared to the full dose 

assignment was rejected based on the MPPLE estimator (p-value=0.042). However, this null 

hypothesis could not be rejected at the α = 0.05 level based on the AIPW estimator (p-

value=0.059). To illustrate the use of our methodology for risk prediction we depict the 

predicted cumulative incidence function of death from bladder cancer and other causes, for a 

68-year old patient who is fully active and who was assigned to the 1/3 dose BCG group, 

along with the equal-precision and Hall–Wellner-type simultaneous 95% confidence bands, 

in Figure 2 of the Electronic Supplementary Material.

6 Concluding Remarks

In this article we proposed a computationally efficient MPPLE method for the 

semiparametric proportional cause-specific hazards model under incompletely observed 

cause of failure. We propose estimators for both the regression parameters in the 

proportional cause-specific hazards model and the covariate-specific cumulative incidence 

functions. To the best of our knowledge, a unified approach for semiparametric inference 

about both the cause-specific hazard, for evaluating risks factors, and the covariate-specific 

cumulative incidence function, for risk prediction purposes, is missing in the literature. Our 

approach utilizes a parametric model for the probability of the cause of failure and imposes a 

missing at random assumption. The estimators were shown to be strongly consistent and to 

converge weakly to Gaussian random quantities. Closed-form variance estimators were 

derived. In addition, we propose methodology for constructing simultaneous confidence 

bands for the covariate-specific cumulative incidence functions. Simulation studies showed a 

satisfactory performance of our estimators even under a large fraction of missing causes of 

failure and under some degree of misspecification of the parametric model for the 

probability of the cause of failure.

Although the main model of interest is semiparametric, our estimation method depends on 

the parametric model πj(W, γ0) for the probability of the cause of failure. Essentially, this 

model is used to calculate the expected log partial likelihood contribution for the missing 

cases. The main reason for adopting such a parametric model was to allow the incorporation 

of auxiliary covariates that are typically important in practice in order to make the MAR 

assumption plausible. Additionally, this choice led to an increased computational and 

statistical efficiency of our estimator. It has to be noted that the true model πj(W, γ0) is 

induced by the propotional cause-specific specific hazards model assumption and the 

baseline hazards. Even though correct specification of the model πj(W, γ0) is a sufficient 

condition for consistency, our estimator was shown to be robust against some degree of 

misspecification in the simulation studies. However, the coverage probability of the 

simultaneous confidence bands was lower than the nominal level when πj(W, γ0) was 
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misspecified, as a result of bias in the infinite-dimensional parameter estimates. Of course, 

simulation scenarios with more pronounced misspecification are expected to lead to more 

bias and lower coverage rates. For this reason, we suggest the practical guideline of using 

flexible parametric models for time T and the other potential continuous auxiliary variables 

to make the correct specification assumption more plausible, or at least to provide a better 

approximation to the true model for πj(Wi). This can be achieved by incorporating 

logarithmic, quadratic and higher order terms, or (finite-dimensional) B-spline terms, where 

the number of internal knots is fixed and does not depend on sample size n. Additionally, a 

formal goodness-of-fit procedure based on a cumulative residual process [5] can be used to 

provide insight about a potential violation of the model assumption for πj(W, γ0), as it was 

illustrated in the HIV data analysis subsection.

By the theory of maximum likelihood estimators under misspecified models, if the model 

πj(Wi, γ0) is misspecified then condition C4 still holds but with γ0 being replaced with γ∗, 

which defines the probability that minimizes the Kullback–Leibler divergence between the 

true conditional distribution Pr(Ci = j|Δi = 1, Wi) and the assumed distribution πj(Wi, γ∗). 

Under this modified condition C4, the consistency in Theorem 1 holds for the parameters βj*

and Λj*, with (βj*, Λj*) ≠ β0, j, Λ0, j , which correspond to the maximizers of the (expected) 

partial pseudo-likelihood under πj(W, γ∗). Similarly, n(βn, j − βj*), n[Λn, j(t) − Λj*(t)], and 

n[Fn, j t; z0 − Fj* t; z0 ] are all asymptotically linear with influence functions given by 

Theorems 2–4, respectively. Consequently, the proposed estimators are still asymptotically 

normal, and the corresponding standard error estimators are still consistent for the true 

standard errors even under a misspecified model. The latter phenomenon is similar to the 

consistency of the sandwich variance estimator for maximum likelihood estimators under 

misspecified models.

The analysis of competing risks data with masked cause of failure has been considered in 

[9]. However, this method is based on a parametric cause-specific hazards model and also 

utilizes the computationally intensive EM-algorithm, which can be impractical for large 

studies such as the studies with electronic health record data. Several methods for 

semiparametric analysis of competing risks data with missing causes of failure have been 

previously proposed. Some of these methods focus on the proportional cause-specific 

hazards model [12,19, 15,24] or the more general class of semiparametric linear 

transformation models [11]. It has to be noted that the first stage of the analysis in the 

proposed approach is identical to the first stage of the multiple imputation approach for the 

proportional cause-specific hazards model in [19]. However, unlike [19], we do not utilize 

simulation-based imputations in the second stage of the analysis and, thus, we do not 

introduce additional variability in the regression parameter estimates due to the finite 

number of imputations [30]. Therefore, as also shown empirically in the simulation studies, 

our regression parameter estimator is expected to be somewhat more efficient compared to 

the multiple imputation estimator in [19]. Importantly, none of the aforementioned articles 

provide estimators for the covariate-specific cumulative incidence functions and the 

corresponding standard errors. This is a significant gap in the literature, as these quantities 

are crucial from a clinical and implementation science perspective. Our proposed method 
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fills this gap by proposing a unified way for inference about both the risk factor effects on 

the cause-specific hazards and individualized risk predictions, based on the covariate-

specific cumulative incidence functions.

Among the previously proposed methods for inference about the regression coefficients 

under the semiparametric proportional cause-specific hazards model with missing cause of 

failure, the AIPW estimation method [11,15] appears to be the most attractive approach. 

This is because of the so-called double robustness property that the AIPW possesses. This 

property ensures estimation consistency even if one of the two parametric models that are 

used to deal with missingness is misspecified and, also, due to their higher statistical 

efficiency compared to the simple inverse probability weighting estimators. However, it has 

been shown that if both parametric models are even slightly incorrectly specified, the AIPW 

estimators can yield severely biased estimates [16]. Compared to the AIPW estimator, our 

proposed MPPLE estimator has the advantage of not requiring to model the probability of 

missingness and is also a likelihood-based approach. In the simulation studies, our proposed 

MPPLE was shown to be more statistically efficient compared to the AIPW estimator with a 

correctly specified model for the probability of missingness (in favor of the AIPW 

estimator). It has to be noted that this was only shown empirically in the simulation studies, 

and we have not formally proven this claim. In addition, the MPPLE demonstrated certain 

estimation robustness against misspecification of the parametric model for the failure-cause 

probabilities πj(W, γ0). More importantly, inference about the infinite dimensional 

parameters, such as the covariate-specific cumulative incidence function, has not been 

studied so far in the framework of AIPW. Putting all these advantages together makes the 

proposed MPPLE an appealing approach to use in practice for inference under the 

semiparametric proportional cause-specific hazards model with missing causes of failure. A 

potential alternative approach would be to develop an EM-algorithm for the semiparametric 

proportional cause-specific hazards model. Even though this approach would be expected to 

be somewhat more efficient compared to our proposed MPPLE, it would be much more 

computationally intensive and would also be more difficult to implement in practice. The 

computational efficiency and ease of implementation of our MPPLE are very important 

characteristics in real world applications.

Although the method is illustrated with time-independent covariates, the estimator for the 

regression parameter presented in this paper and its properties are also valid for the case of 

time-dependent covariates, provided that these covariates are right-continuous with left-hand 

limits and of bounded variation. However, inference for the covariate-specific cumulative 

incidence functions with internal time-dependent covariates is trickier and requires explicit 

modeling of the covariate processes [8]. This is an interesting topic for future research. 

Additionally, considering a nonparametric or semiparametric models for the failure-cause 

probabilities πj(W, γ0) that are used to predict the missing causes of failure may be 

important in some applications and also interesting from a theoretical standpoint.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Bakoyannis et al. Page 20

Lifetime Data Anal. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

We thank the Associate Editor and the two anonymous referees for their insightful comments that led to a 
significant improvement of this manuscript. Research reported in this publication was supported by the National 
Institute Of Allergy And Infectious Diseases (NIAID), Eunice Kennedy Shriver National Institute Of Child Health 
& Human Development (NICHD), National Institute On Drug Abuse (NIDA), National Cancer Institute (NCI), and 
the National Institute of Mental Health (NIMH), in accordance with the regulatory requirements of the National 
Institutes of Health under Award Number U01AI069911 East Africa IeDEA Consortium. The content is solely the 
responsibility of the authors and does not necessarily represent the official views of the National Institutes of 
Health. This research has also been supported by the National Institutes of Health - NIAID grants R21 AI145662 
“Estimating the cascade of HIV care under incomplete outcome ascertainment” and R01 AI102710 “Statistical 
Designs and Methods for Double-Sampling for HIV/AIDS”, and by the President’s Emergency Plan for AIDS 
Relief (PEPFAR) through USAID under the terms of Cooperative Agreement No. AID-623-A-12-0001 it is made 
possible through joint support of the United States Agency for International Development (USAID). The contents 
of this journal article are the sole responsibility of AMPATH and do not necessarily reflect the views of USAID or 
the United States Government.

References

1. Andersen P, Geskus R, de Witte T, Putter H: Competing risks in epidemiology: possibilities and 
pitfalls. International Journal of Epidemiology 41, 861–870 (2012) [PubMed: 22253319] 

2. Andersen PK, Borgan O, Gill RD, Keiding N: Statistical Models Based on Counting Processes. 
Springer-Velrag, New York (1993)

3. Bakoyannis G, Siannis F, Touloumi G: Modelling competing risks data with missing cause of 
failure. Statistics in Medicine 29, 3172–3185 (2010) [PubMed: 21170911] 

4. Bakoyannis G, Touloumi G: Practical methods for competing risks data: A review. Statistical 
Methods in Medical Research 21, 257–272 (2012) [PubMed: 21216803] 

5. Bakoyannis G, Zhang Y, Yiannoutsos CT: Nonparametric inference for Markov processes with 
missing absorbing state. Statistica Sinica 29, 2083–2104 (2019) [PubMed: 31516308] 

6. Bordes L, Dauxois JY, Joly P: Semiparametric inference of competing risks data with additive 
hazards and missing cause of failure under mcar or mar assumptions. Electronic Journal of Statistics 
8, 41–95 (2014)

7. Cheng SC, Fine JP, Wei LJ: Prediction of cumulative incidence function under the proportional 
hazards model. Biometrics 54, 219–228 (1998) [PubMed: 9544517] 

8. Cortese G, Andersen PK: Competing risks and time-dependent covariates. Biometrical Journal 52, 
138–158 (2010) [PubMed: 20029852] 

9. Craiu RV, Duchesne T: Inference based on the em algorithm for the competing risks model with 
masked causes of failure. Biometrika 91, 543–558 (2004)

10. Fine JP, Gray RJ: A proportional hazards model for the subdistribution of a competing risk. Journal 
of the American Statistical Association 94, 496–509 (1999)

11. Gao G, Tsiatis AA: Semiparametric estimators for the regression coefficients in the linear 
transformation competing risks model with missing cause of failure. Biometrika 92, 875–891 
(2005)

12. Goetghebeur E, Ryan L: Analysis of competing risks survival data when some failure types are 
missing. Biometrika 82, 821–833 (1995)

13. Hall WJ, Wellner JA: Confidence bands for a survival curve from censored data. Biometrika 67, 
133–143 (1980)

14. Hirschhorn LR amd Ojikutu, B., Rodriguez, W.: Research for change: using implementation 
research to strengthen hiv care and treatment scale-up in resource-limited settings. Journal of 
Infectious Diseases 196, S516–S522 (2007) [PubMed: 18181704] 

15. Hyun S, Lee J, Sun Y: Proportional hazards model for competing risks data with missing cause of 
failure. Journal of Statistical Planning and Inference 142, 1767–1779 (2012) [PubMed: 22468017] 

16. Kang J, Schafer J: Demystifying double robustness: A comparison of alternative strategies for 
estimating a population mean from incomplete data. Statistical Science 22, 523–539 (2007)

17. Koller M, Raatz H, Steyerberg E, Wolbers M: Competing risks and the clinical community: 
irrelevance or ignorance? Statistics in Medicine 31, 1089–1097 (2012) [PubMed: 21953401] 

Bakoyannis et al. Page 21

Lifetime Data Anal. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Lin DY, Fleming TR, Wei LJ: Confidence bands for survival curves under the proportional hazards 
model. Biometrika 81, 73–81 (1994)

19. Lu K, Tsiatis AA: Multiple imputation methods for estimating regression coefficients in the 
competing risks model with missing cause of failure. Biometrics 57, 1191–1197 (2001) [PubMed: 
11764260] 

20. Lu W, Liang Y: Analysis of competing risks data with missing cause of failure under additive 
hazards model. Statistica Sinica 18, 219–234 (2008)

21. Moreno-Betancur M, Latouche A: Regression modeling of the cumulative incidence function with 
missing causes of failure using pseudo-values. Statistics in Medicine 32, 3206–3223 (2013) 
[PubMed: 23653257] 

22. Nair VN: Confidence bands for survival functions with censored data: a comparative study. 
Technometrics 26, 265–275 (1984)

23. Ness RB, Andrews EB, Gaudino JA Jr, Newman AB, Soskolne CL, Stürmer T, Wartenberg DE, 
Weiss SH: The future of epidemiology. Academic Medicine 84, 1631–1637 (2009) [PubMed: 
19858828] 

24. Nevo D, Nishihara R, Ogino S, Wang M: The competing risks cox model with auxiliary case 
covariates under weaker missing-at-random cause of failure. Lifetime Data Analysis 24, 425–442 
(2018) [PubMed: 28779227] 

25. Oddens J, Brausi M, Sylvester R, Bono A, van de Beek C, van Andel G, Gontero P, Hoeltl W, 
Turkeri L, Marreaud S, et al.: Final results of an eortc-gu cancers group randomized study of 
maintenance bacillus calmette-guérin in intermediate-and high-risk ta, t1 papillary carcinoma of 
the urinary bladder: one-third dose versus full dose and 1 year versus 3 years of maintenance. 
European urology 63(3), 462–472 (2013) [PubMed: 23141049] 

26. Pan Z, Lin DY: Goodness-of-fit methods for generalized linear mixed models. Biometrics 61, 
1000–1009 (2005) [PubMed: 16401273] 

27. Putter H, Fiocco M, Geskus RB: Tutorial in biostatistics: competing risks and multi-state models. 
Statistics in Medicine 26, 2389–2430 (2007) [PubMed: 17031868] 

28. Rothmann MD, Wiens BL, Chan IS: Design and analysis of non-inferiority trials. Chapman and 
Hall/CRC (2016)

29. Spiekerman CF, Lin DY: Marginal regression models for multivariate failure time data. Journal of 
the American Statististical Association 93, 1164–1175 (1998)

30. Wang N, Robins JM: Large-sample theory for parametric multiple imputation procedures. 
Biometrika 85(4), 935–48 (1998)

31. Yin G, Cai J: Additive hazards model with multivariate failure time data. Biometrika 91, 801–818 
(2004)

Bakoyannis et al. Page 22

Lifetime Data Anal. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Cumulative residual process for the evaluation of the parametric model π1(W, γ0) based on 

the HIV data along with the 95% goodness-of-fit band (grey area) and the corresponding p-

value.
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Fig. 2. 
Predicted cumulative incidence functions (solid lines) of (a) disengagement from care and 

(b) death while in HIV care, for a 40-year old male patient with CD4 cell count of 150 cells/

μl at ART initiation, along with the 95% simultaneous confidence bands based on equal 

precision (dotted lines) and Hall–Wellner-type weights (dashed lines).
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Table 1

Simulation results for β1 under scenario 1 where the model π1(W,γ) was correctly specified.

n pm Method Bias MCSD ASE CP MSE RE

200 25% Proposed MPPLE 0.002 0.409 0.396 0.945 0.167 1.000

AIPW 0.003 0.412 0.418 0.946 0.170 1.013

MI(5) 0.009 0.424 0.419 0.941 0.180 1.074

44% Proposed MPPLE 0.007 0.450 0.428 0.943 0.203 1.000

AIPW 0.009 0.464 0.468 0.943 0.215 1.061

MI(5) 0.004 0.460 0.461 0.946 0.211 1.043

56% Proposed MPPLE 0.004 0.492 0.468 0.942 0.242 1.000

AIPW 0.009 0.526 0.540 0.949 0.277 1.144

MI(5) −0.004 0.502 0.510 0.951 0.253 1.043

400 25% Proposed MPPLE 0.001 0.284 0.282 0.948 0.081 1.000

AIPW −0.001 0.289 0.288 0.949 0.084 1.038

MI(5) −0.004 0.290 0.290 0.948 0.084 1.046

44% Proposed MPPLE −0.001 0.308 0.305 0.949 0.095 1.000

AIPW −0.004 0.326 0.321 0.946 0.106 1.116

MI(5) −0.008 0.320 0.316 0.950 0.102 1.076

56% Proposed MPPLE −0.003 0.337 0.333 0.946 0.114 1.000

AIPW −0.008 0.368 0.364 0.937 0.135 1.191

MI(5) −0.006 0.350 0.346 0.940 0.122 1.077

2000 25% Proposed MPPLE 0.003 0.124 0.126 0.955 0.015 1.000

AIPW 0.003 0.126 0.127 0.950 0.016 1.029

MI(5) 0.003 0.127 0.127 0.955 0.016 1.045

44% Proposed MPPLE 0.005 0.132 0.136 0.954 0.017 1.000

AIPW 0.005 0.137 0.139 0.953 0.019 1.080

MI(5) 0.003 0.139 0.138 0.950 0.019 1.119

56% Proposed MPPLE 0.002 0.142 0.148 0.956 0.020 1.000

AIPW 0.002 0.152 0.155 0.941 0.023 1.150

MI(5) 0.003 0.153 0.150 0.946 0.023 1.164

pm: percent of missingness; MCSD: Monte Carlo standard deviation; ASE: average estimated standard error; CP: coverage probability; MSE: 

mean squared error; RE: variance of the estimator to variance of the proposed MPPLE (relative efficiency); MPPLE: maximum partial 
pseudolikelihood estimator; AIPW: augmented inverse probability weighting estimator; MI(5): Lu & Tsiatis type B multiple imputation based on 5 
imputations
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Table 2

Simulation results for β1 under scenario 2 where the model π1(W,γ) was misspecified with η = 0.5.

n pm Method Bias MCSD ASE CP MSE RE

200 27% Proposed MPPLE 0.006 0.424 0.419 0.955 0.180 1.000

AIPW 0.004 0.427 0.442 0.957 0.182 1.014

MI(5) 0.001 0.445 0.446 0.956 0.198 1.100

46% Proposed MPPLE 0.015 0.471 0.458 0.954 0.222 1.000

AIPW 0.013 0.484 0.500 0.955 0.235 1.059

MI(5) −0.007 0.487 0.495 0.948 0.237 1.071

59% Proposed MPPLE 0.009 0.520 0.504 0.939 0.271 1.000

AIPW 0.009 0.556 0.579 0.952 0.310 1.143

MI(5) −0.010 0.536 0.553 0.951 0.287 1.061

400 27% Proposed MPPLE 0.000 0.301 0.298 0.952 0.091 1.000

AIPW −0.002 0.306 0.305 0.946 0.094 1.034

MI(5) −0.004 0.312 0.306 0.943 0.097 1.070

46% Proposed MPPLE −0.001 0.332 0.326 0.948 0.110 1.000

AIPW −0.006 0.350 0.343 0.945 0.122 1.111

MI(5) −0.007 0.348 0.337 0.933 0.121 1.098

59% Proposed MPPLE −0.004 0.364 0.359 0.946 0.132 1.000

AIPW −0.012 0.399 0.390 0.941 0.159 1.203

MI(5) −0.004 0.381 0.372 0.940 0.145 1.100

2000 27% Proposed MPPLE 0.006 0.130 0.133 0.960 0.017 1.000

AIPW 0.004 0.132 0.134 0.953 0.017 1.035

MI(5) 0.003 0.132 0.134 0.957 0.018 1.044

46% Proposed MPPLE 0.006 0.141 0.145 0.955 0.020 1.000

AIPW 0.005 0.146 0.149 0.952 0.021 1.084

MI(5) 0.002 0.150 0.147 0.950 0.023 1.141

59% Proposed MPPLE 0.005 0.152 0.159 0.958 0.023 1.000

AIPW 0.003 0.163 0.167 0.957 0.027 1.150

MI(5) −0.001 0.163 0.161 0.952 0.027 1.153

pm: percent of missingness; MCSD: Monte Carlo standard deviation; ASE: average estimated standard error; CP: coverage probability; MSE: 

mean squared error; RE: variance of the estimator to variance of the proposed MPPLE (relative efficiency); MPPLE: maximum partial 
pseudolikelihood estimator; AIPW: augmented inverse probability weighting estimator; MI(5): Lu & Tsiatis type B multiple imputation based on 5 
imputations
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Table 3

Descriptive statistics for the EA-IeDEA study sample.

Cause of failure

In care (N=3,382) n (%) Disengagement (N=349) n (%) Death (N=445
1
) n (%) Missing (N=2,481) n (%)

Gender

 Female 2,300 (68.0) 210 (60.2) 254 (57.1) 1,665 (67.1)

 Male 1,082 (32.0) 139 (39.8) 191 (42.9) 816 (32.9)

Median (IQR) Median (IQR) Median (IQR) Median (IQR)

Age
2 37.9 (31.8, 45.4) 35.5 (29.7, 41.9) 37.3 (31.3, 46.0) 35.4 (29.9, 42.7)

CD4
3 174 (91, 258) 145 (69, 222) 88 (39, 180) 155 (71, 214)

1
: includes 346 reported deaths and 99 unreported deaths which were ascertained through outreach

2
: at ART initiation in years

3
: at ART initiation in cells/μl
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Table 4

Data analysis of the EA-IeDEA study sample.

Proposed MPPLE AIPW

Covariate exp(βn) 95% CI p-value exp(βn) 95% CI p-value

Disengagement from care

Sex (male = 1, female = 0) 1.15 (1.02, 1.31) 0.022 1.24 (0.69, 2.23) 0.462

Age (10 years) 0.75 (0.70, 0.80) <0.001 0.58 (0.40, 0.85) 0.004

CD4 (100 cells/μl) 1.03 (1.00, 1.06) 0.094 1.17 (0.97, 1.42) 0.104

Death while in care

Sex (male = 1, female = 0) 1.24 (0.96, 1.59) 0.094 1.14 (0.95, 1.37) 0.157

Age (10 years) 1.10 (0.97, 1.25) 0.153 0.99 (0.87, 1.13) 0.926

CD4 (100 cells/μl) 0.76 (0.63, 0.91) 0.003 0.78 (0.68, 0.89) <0.001

MPPLE: maximum pseudo partial likelihood estimator; AIPW: augmented inverse probability weighting estimator; 95% CI: 95% confidence 
interval for the cause-specific hazard ratio exp(β0)
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