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Abstract

The gamma aminobutyric acid (GABA) neurotransmission system has been implicated in autism
spectrum disorder (ASD). Molecular neuroimaging studies incorporating simultaneous
acquisitions of GABA concentrations and GABA receptor densities can identify objective
molecular markers in ASD. We measured both total GABA receptor densities by using
[18F]flumazenil positron emission tomography ([18F]FMZ-PET) and GABA concentrations by
using proton magnetic resonance spectroscopy (*H-MRS) in 28 adults with ASD and in 29 age-
matched typically developing (TD) individuals. Focusing on the bilateral thalami and the left
dorsolateral prefrontal cortex (DLPFC) as our regions of interest, we found no differences in
GABA receptor densities between ASD and TD groups. However, 1H-MRS measurements
revealed significantly higher GABA/Water (GABA normalized by water signal) in the left DLPFC
of individuals with ASD than that of TD controls. Furthermore, a significant gender effect was
observed in the thalami, with higher GABA/Water in males than in females. Hypothesizing that
thalamic GABA correlates with ASD symptom severity in gender-specific ways, we stratified by
diagnosis and investigated the interaction between gender and thalamic GABA/Water in predicting
Autism Quotient (AQ) and Ritvo Autism Asperger’s Diagnostic Scale — Revised (RAADS-R) total
scores. We found that gender is a significant effect modifier of thalamic GABA/Water’s
relationship with AQ and RAADS-R scores for individuals with ASD, but not for TD controls.
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When we separated the ASD participants by gender, a negative correlation between thalamic
GABA/Water and AQ was observed in male ASD participants. Remarkably, in female ASD
participants, a positive correlation between thalamic GABA/Water and AQ was found.

Introduction

Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder
associated with over 900 genes! and many environmental factors.2 There are no proven
common pathophysiologic pathways that link these genetic and environmental factors. A
pathophysiological model of ASD that has accumulated much evidence suggests that this
condition is a result of an imbalance between excitation (E) and inhibition (1) in key neural
systems.3 While the major neurotransmitter involved in excitation is glutamate, the most
abundant inhibitory neurotransmitter is gamma aminobutyric acid (GABA). Various animal
models of ASD have been associated with converging evidence on a reduction of
parvalbumin-positive GABAergic interneurons,* which serve important neural functions
including generation of -y oscillations® and mediation of synchrony of neural circuits.®
Examination of postmortem brain samples of young adults with ASD and intellectual
disability revealed decreased densities of GABAa and/or GABAg receptors in the anterior
cingulate cortex (ACC),”2 hippocampus,1? fusiform gyrus,® and superior frontal cortex
(BA9), which contains part of the dorsolateral prefrontal cortex (DLPFC).11-13 Activation of
the DLPFC is reduced in people with ASD as they perform spatial working memoryl4 and
executive functionl® tasks, suggesting that there could be an E/I imbalance in this region.

To interrogate the GABAergic system at the neurotransmitter receptor level /in vivo, recent
studies have employed positron emission tomography (PET). Using [11C]R015-4513, a
radiotracer which binds selectively to ag subunit-containing GABA receptors, Horder et al
reported no differences in GABAa as subunit availability in any brain region of high-
functioning men with ASD compared to age- and 1Q-matched typically developing males.1
Furthermore, using [*1C]flumazenil, a radiotracer that binds to the a; a, ag and as
subunits of the GABA receptor,’ the Horder group also reported that there were no
differences in GABA, availability in any brain region of adults with ASD compared to age-
and 1Q-matched typically developing adults.18

In addition to the GABA receptor, another crucial component of the GABAergic system is
the neurotransmitter GABA. GABA concentrations have been measured successfully in
individuals with ASD by proton magnetic resonance spectroscopy (*H-MRS),18-23 and
region-specific trends have emerged. GABA has been shown to be /ower in the frontal lobes,
19, 23 quditory cortex,?!: 22 and motor cortex?! of children and adolescents with ASD
compared to typically developing (TD) controls. Other brain regions, such as the ACC,24
occipital cortex,2® and visual cortex,2! have shown no difference in GABA levels in ASD.
Furthermore, none of the studies recently reviewed by Ajram et al. reported any regional
differences in GABA levels in adults.26 Looking at the relationship between
neurotransmitter levels and ASD symptom severity, Cochran et al revealed that GABA-to-
creatine ratios in the ACC correlated positively with the social cognition subscale of the
Social Responsiveness Scale version 2 (SRS-2) and negatively with the Reading the Mind in
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the Eyes score in adolescents with ASD.20 Furthermore, Robertson et al recently
demonstrated an important relationship between GABA levels in the visual cortex and
binocular rivalry (a basic visual function that is thought to rely on the E-1 balance in the
visual cortex) in neurotypical controls but not in adolescents and adults with ASD.18
Collectively, these accumulating lines of evidence support the importance of the GABAergic
system in the pathophysiology of ASD.

In addition to the differences in the GABAergic system in the cortical regions, we
hypothesize that the GABAergic system in subcortical regions such as the thalamus are also
aberrant. The thalamus is an anatomical structure that coordinates the synchronization of
circuits connected to it. Aberrant GABAergic neurotransmission in the thalamocortical
circuits is supported by electroencephalogram (EEG) studies which revealed significantly
shorter phase shift duration in the gamma frequency band in ASD subjects, as compared to
age-matched control participants.2’ Alterations in connectivity between the thalami and
various cortical regions have recently been found in high-functioning children with ASD by
functional MRI and diffusion tensor imaging studies.28 Furthermore, hyper-connectivity
between the thalamus and parietal sensorimotor system were found in an analysis of 360
individuals with ASD (compared with 403 neurotypical controls).2® Although evidence in
thalamocortical differences as well as GABAergic dysfunction in ASD is increasing, there
has not yet been direct evaluation of the GABAergic system (i.e., GABA concentrations and
GABA receptor densities) in the thalamocortical network.

Sex/gender also impacts the function of the GABAergic system. The menstrual cycle has
been shown to affect GABA levels in the prefrontal cortex (PFC)30 and occipital cortices.3!
Furthermore, GABA in the DLPFC and the GABA, receptor alpha-1 subunit in the superior
temporal gyrus are both decreased in neurotypical women compared to men.32 33 Evidence
suggests that these sex differences in the GABAergic system may also be relevant to ASD
symptomatology. Focusing on adults with ASD, Kirkovski et al found a positive correlation
between GABA concentration in the superior temporal sulcus and ASD-related social
impairments in women but not men.34 These results suggest that there may be sex
differences in the way the GABAergic system in impacted in ASD, and that these
differences are region-specific.

Accordingly, the objectives of this innovative study are to determine simultaneously the
GABA receptor densities and GABA levels in the thalami and left DLPFC of adults with
ASD using a state-of-the-art integrated PET-MR imaging system. Simultaneous PET-MR
imaging allows for improvement in spatial alignment, temporal co-registration, and motion
artifacts that would not be possible with sequential PET and MRI. Furthermore, GABA
levels and GABA receptor densities can change with time, and thus, the simultaneous
acquisition of PET and MRS data can provide a more accurate assessment of the
GABAergic system. To our knowledge, no previous study in the field of autism has been
published examining receptor density and GABA levels in the same sample. We hypothesize
that the GABAergic tone (GABA receptor densities and/or GABA concentrations) in these
regions will be different in individuals with ASD, compared to 1Q-, age- and gender-
matched typically developing (TD) controls. We test our hypothesis by using the approach
of simultaneous acquisitions of GABA receptor binding potentials (BP\p) by
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[18F]flumazenil-PET ([8F]JFMZ-PET) and GABA concentrations by 1H-MRS. Furthermore,
we explore the roles of gender and specific brain regions in the GABAergic system of
individuals with ASD.

Materials and Methods

Participants

Twenty-eight individuals with ASD (mean[SD] 26.6[8.3] years; 11 females; 1Q 102.1[16.5])
and 29 1Q-, gender- and age-matched typically developing (TD; 27.7[7.4] years; 10 females;
1Q 112.1]13.1]) individuals (Table 1) were recruited. Methodology of the study was
approved by the Institutional Review Board of Stanford University. All participants provided
written informed consent. Inclusion criteria for the ASD group included: (a) Diagnosis of
ASD based on DSM-5 criteria as confirmed by a qualified clinician, and the administration
of Autism Diagnostic Interview-Revised (ADI-R)3° and Autism Diagnostic Observation
Schedule, Second Edition-2 (ADOS-2).38 (b) Age 18 to 55. (c) Adults who are physically
healthy. (d) No significant current psychosocial stressors per history. (e) Full scale 1Q >70.
Exclusion criteria for the ASD group included: (f) Pre-term birth (<34 weeks’ gestation). (g)
Low birth weight (<2000g). (h) DSM-5 diagnosis of other severe psychiatric disorder such
as bipolar disorder or schizophrenia. (i) Current use of benzodiazepines. (j) Use of other
medications that directly modulate the binding of GABA, receptor3’ (e.g. flumazenil,
zolpidem, zaleplon, eszopiclone) and active transport of GABA (e.g. tiagabine) within 4
weeks of scanning. (k) History of alcoholism or current substance abuse. (I) Active medical
problems such as unstable seizures, congenital heart disease, endocrine disorders. (m)
Significant sensory impairments such as blindness or deafness. (n) Contraindication for MRI
or PET. (o) Pregnancy. (p) Evidence of any genetic syndrome. Inclusion criteria for the TD
group included: Criteria (b) thru (e), as above. Exclusion Criteria: Criteria (f) thru (p).
Additional exclusion criteria for the TD group included: (1) Current or past neurological
disorders. (2) Current or past psychiatric disorders on the basis of clinical psychiatric
evaluation. (3) History of significant perinatal difficulties or abnormal developmental
milestones. In addition to the above inclusion and exclusion criteria, due to the effects of
progesterone on the menstrual cycle, all female participants were scanned in the follicular
phase when the progesterone level is low and stable. The follicular phase was estimated
from the participants’ history of menstrual cycles. All subjects were physically healthy post-
pubertal adults.

Socio-communicative functioning was assessed by the AQ, Ritvo Autism Asperger’s
Diagnostic Scale — Revised (RAADS-R),38 and SRS-2.39 Based on a recent systematic
review of screening and diagnostic tools for adults with ASD of mean normal intelligence,
AQ and RAADS-R were found to provide the most satisfactory psychometric properties.*0
Therefore, we have focused on these two measures in this report. Other emotional domains
were measured by using the Berkeley Expressivity Questionnaire (BEQ)*! and Social
Phobia Anxiety Inventory (SPAI).#2 Repetitive behaviors were assessed by the Repetitive
Behavior Scale — Revised (RBS-R).#3 The RBS-R is a rating scale completed by parents.
Sensory differences were assessed by Sensory Profile Questionnaire (SPQ).*4
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Among the 28 participants with ASD, 20 were taking at least 1 psychotropic medication,
including serotonin reuptake inhibitors (N=13), stimulants (N=8), atypical antipsychotics
(N=4), non-stimulants (N=3), and other medications (melatonin (N=3), bupropion (N=2),
oxcarbazepine (N=2). duloxetine (N=1), hydroxyzine (N=1)). Among the 29 TD
participants, one was taking melatonin; another participant was taking a stimulant. Because
of this group difference, psychotropic medication usage was included as a binary co-variate
in generalized linear model (GLM) analyses (see “Statistical Analysis” section). No
participants took benzodiazepines or other medications that directly modulate the binding of
GABA receptor within 4 weeks of the study.

Power Analysis

When the present study was first designed, there was no available [18F]FMZ-PET data
measuring GABAA, receptor BPyp in the DLPFC or thalami of individuals with ASD.
However, postmortem examination of the superior frontal cortex revealed lower levels of y
subunit of GABAA receptors in adults with ASD (0.255+0.137), compared to neurotypical
controls (0.198+0.050).12 Using these results and assuming an a value of 0.05, 30 subjects
per group would be needed to yield a power of 70% in a 1-way analysis of variance
(ANOVA). Based on GABA data reported by Harada et al,23 the GABA levels in the frontal
lobe were 1.1+0.23 and 1.5+0.25. Using these results and assuming an a value of 0.05, 6
subjects per group will be needed to yield a power of 80% in a 2-way ANOVA. This number
of needed participants was much lower than that estimated for the PET component of this
study (n = 30 per group). Overall, we predicted that 30 participants would be needed to
demonstrate significant group differences in BPyp and GABA concentrations in the DLPFC.

Neuroimaging Data Acquisition

Acquisition of PET data with concurrent 1H-MRS and structural MRI was performed using
a state-of-the-art simultaneous hybrid PET/MR imaging system (SIGNA PET/MR, GE
Healthcare, Waukesha, WI1).4%: 46 The radiotracer employed for binding GABAA receptors
was [18F]Flumazenil ([18F]FMZ).4” Dynamic PET data were used in combination with 3D
T1-weighted structural MR data to acquire the BPyp of [L8F]JFMZ for the GABAA
receptors.?” The Ichise’s Original Multilinear Reference Tissue Model (MRTMO)*8 was
employed for Kinetic modeling. More detailed information on the synthesis of clinical grade
[18F]FMZ, dynamic PET image acquisition, and PET data analyses can be found in
supplementary materials.

In addition to region-based PET data analyses, we also performed whole-brain analyses.
During PET data acquisition, a series of MR sequences were run, including a 3D T1-
weighted protocol [repetition time (TR)=7.9ms; echo time (TE)=2.9ms; field of view
(FOV)=240mmx192mm; matrix=220x160; flip angle (FA)=12°; axial plane; slice thickness
(TH)=1.4 mm; 128 slices] and two single-voxel 1H MRS sequencing prescribed at the left
DLPFC and bilateral thalami (Supplementary Figure 1). The T1 was used for planning the
positioning of the target voxels. The determination of brain levels of GABA and other
metabolites were achieved by an Improved MEGA-SPECIAL sequence [TE=80ms;
TR=2000ms; voxel size ~15cm3; 15 min acquisition time].4° Based on 1D Image-Selected
in Vivo Spectroscopy (ISIS) spatial localization and single spin echo, this editing technique
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allows much longer (30ms) and more selective editing pulses than used in MEGA-PRESS,
enabling BO-inhomogeneity-insensitive GABA editing with macromolecule suppression. To
reduce susceptibility and motion artifacts in the ISIS direction, out-of-voxel suppression was
achieved using a 1D echo planar (EP) gradient during readout.*® A full optimization of the
acquisition of H-MRS data using Improved MEGA-SPECIAL performed in a 3T MR
scanner without PET detector was recently reported.*® This method was demonstrated to
effectively suppress the macromolecule signal that typically interferes with the GABA
signal. In the present study, we employed the Improved MEGA-SPECIAL as the pulse
sequence to acquire 1H-MRS data in the hybrid PET-MR scanner. In contrast to standalone
MR scanners where the bed position is fixed within a pulse sequence but can be moved
between pulse sequences, simultaneous PET and MR data acquisitions require that the
position of the scanner bed be fixed during the PET scan.

Spectra of editing ON and editing OFF were reconstructed and the GABA edited spectrum
was obtained by subtracting the editing OFF spectrum from the editing ON spectrum.*®
Total Cr (Cr+PCr), NAA, Cho, myoinositol (ml), sum of glutamate (Glu) and glutamine
(GIn) [GIx=Glu+GIn] were quantified from the editing OFF spectrum using LCModel and
referenced to both the total Cr (Cr+PCr) and the unsuppressed water. Only spectra with
CRLB lower than or equal to 20% for Cr+PCr, NAA and Cho were included in the analysis.
GABA levels were estimated from the integration of the 3ppm peak in the edited spectrum
and were also referenced to both the total Cr (Cr+PCr) and the unsuppressed water.

The percentages of white matter, gray matter and cerebrospinal fluid between ASD and TD
groups were statistically indistinguishable (Supplementary Table 1); therefore, we chose to
report concentrations of the metabolites without adjusting for tissue composition.

Primary Hypotheses

We hypothesize that both BPyp and GABA concentration in the DLPFC and thalamus will
be reduced in ASD. We also hypothesize that there exists a correlation between both of these
parameters and ASD symptom severity that may be modified by sex.

Statistical Analysis

All analyses were run in R version 3.5.3. Participants’ demographic and neuropsychological
assessment data were compared between the four Diagnosis + Gender groups—TD Male,
ASD Male, TD Female, ASD Female—with one-way analysis of variance (ANOVA).
Significance was set at £< 0.05. Demographic variables with significant group differences
were identified as possible confounders and included as co-variates in subsequent analyses.
Post-hoc comparisons to identify specific group-mean differences were performed using
Tukey’s HSD test, with significance set at adjusted £ < 0.05. To assess whether group
differences in socio-communicative function could be driven by mood and anxiety
differences in those same groups, Pearson’s correlations were run between AQ/RAADS-R/
SRS-2 total scores and BEQ/SPAI scores.

For the MRS data, quality control parameters for magnetic resonance spectra determined
from LCModel were compared between ASD and TD groups with Welch two-sample T-
tests. Mean GABA/Water concentration at each of the two MRS voxels—bilateral thalami
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and left DLPFC—was compared between groups with two-way ANOVA that used Diagnosis
and Gender as between-subject variables. Post-hoc analysis was run with a GLM at each of
the voxels, using the significant Diagnosis, Gender, and/or interaction terms, as well as the
demographic co-variates, as independent variables, and mean GABA/Water concentration as
the dependent variable. Significance of the main effects or interaction effects was set at P<
0.05.

For the PET data, in an exploratory fashion, the mean non-displaceable binding potentials
(BPNp) Of [18F]FMZ at every PET region were compared between groups with the same
two-way ANOVA as above. Findings from the PET regions that correspond to the MRS
voxels—Ileft thalamus, right thalamus, and left middle frontal gyrus—are reported.

To investigate possible correlations between MRS measurements of GABA levels and PET
measurements of receptor density, Pearson’s correlation analysis was run between thalamic
GABA/Water concentrations and [18F]JFMZ BPyp of both sides of the thalamus, as well as
between GABA/Water at the left DLPFC and [18F]JFMZ BPyp of the left middle frontal

gyrus.

To investigate associations of GABA concentrations with AQ and RAADS-R total scores,
participants were stratified by Diagnosis, then GLMs were run for the regions of interest that
were identified by MRS to have significant group differences in GABA concentrations. The
independent variables were Gender, GABA/Water concentration, the interaction term
between Gender and GABA/Water concentration, and the demographic co-variates; the
dependent variables were AQ and RAADS-R total scores. Significance was set at a £ value
less than 0.0125 to correct for 4 GLMs. Simple correlation coefficients (7) for each of the
four Diagnosis + Gender groups’ trendlines are reported.

Demographics and clinical assessments

Table 1 shows the demographics of the participants and findings from neuropsychological
assessments. Using one-way ANOVASs to compare means between the four groups separated
by diagnosis and gender, we found significant group differences in age (A3,53) = 4.69, P=
0.006) and non-verbal 1Q (A3,49) = 4.54, P=0.007), as well as a near-significant group
difference in full-scale 1Q (A3,49) = 2.39, A= 0.080). To account for possible confounding
factors, we included age and full-scale 1Q, along with medication usage, as co-variates in
subsequent GLM analyses. Post-hoc comparisons with Tukey HSD demonstrated that ASD
males were significantly younger than ASD females (P = 0.003); no other group differences
in age were significant. Furthermore, ASD males had significantly lower non-verbal 1Q than
TD males (P = 0.008); no other group differences in non-verbal 1Q were significant.

As expected, one-way ANOVA also revealed significant group differences in socio-
communicative function (P< 0.0001 for AQ, RAADS-R, and SRS-2 total scores and almost
all sub-scales). Post-hoc comparisons with Tukey HSD demonstrated that these significant
group differences were not attributable to gender. There were no significant differences
when comparing ASD males with ASD females, or when comparing TD males with TD
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females, with the one exception of AQ: Imagination (TD male vs. TD female adjusted P=
0.034). Instead, the diagnosis of ASD drove group differences. TD females differed
significantly from ASD males and ASD females on all AQ, RAADS-R, and SRS-2 subscales
(adjusted P< 0.01), except for AQ: Attention to Details and Imagination. TD males differed
significantly from ASD males and ASD females on all AQ, RAADS-R, and SRS-2 subscales
(adjusted P< 0.05), except for AQ: Attention to Details, Imagination, and Attention
Switching.

In terms of other co-morbid symptoms, mood and anxiety were associated with both gender
and diagnosis. Preliminary ANOVA identified significant group differences in BEQ: Impulse
Strength (A3,53) = 6.88, A= 0.0005) and BEQ: Emotional Expressivity (A3,53) = 3.62, P=
0.019). Post-hoc comparisons with Tukey HSD demonstrated that ASD females scored
significantly higher on Impulse Strength than TD males (P< 0.001) and ASD males (P=
0.006), as well as significantly higher on Emotional Expressivity than TD males (= 0.037).
No other significant group differences on the BEQ were found. ANOVA also identified
significant group differences in SPAI: Social Phobia (A3,45) = 3.78, P=0.017) and SPAI:
Difference (H3,45) = 3.54, P=0.022). Using Tukey HSD, we found only one significant
difference in means: ASD females scored significantly higher on SPAI: Difference than TD
females (P=0.045).

To assess whether differences in socio-communicative function in ASD females could be
driven by their underlying mood and anxiety differences, we used Pearson’s correlations to
investigate if BEQ: Impulse Strength, BEQ: Emational Expressivity, and SPAI: Difference
scores correlated with the total scores of AQ, RAADS-R, and SRS-2. Importantly, we found
no significant correlations (P> 0.10 for all). Therefore, any brain correlates of socio-
communicative function in individuals with ASD described below were specific and not
driven by underlying anxiety.

1H MRS GABA concentrations

Figure 1 and Supplementary Figure 1 show the location of voxel placements in the bilateral
thalami and left DLPFC, as well as their corresponding proton magnetic resonance spectra.
The mean concentrations of GABA/Water measured by 1H MRS in these two regions are
graphed by diagnosis and gender. In addition to GABA/Water, the concentrations of all other
MRS-measured metabolites are presented in Table 2.

In the thalami, two-way ANOVA using diagnosis and gender as between-subject variables
did not identify a significant interaction, but did identify an effect of gender (A3,36) = 2.78,
P=0.049). Post-hoc GLM analysis that included gender, age, medication usage, and FSIQ
as the independent variables identified significantly higher GABA/Water in males than in
females (A4,34) = 2.19, P=0.043).

In the left DLPFC, two-way ANOVA identified a significant Diagnosis x Gender interaction
effect (A3,34) = 4.18, P=0.041) and a significant main effect of diagnosis (£ = 0.027).
Post-hoc GLM analysis adjusting for medication usage and 1Q retained the significance of
the interaction (A5,30) = 2.39, P=0.046); however, including age in the model made the
term insignificant.
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PET GABAA, receptor densities

We investigated GABAA receptor densities, as represented by BPyp of [L8F]JFMZ, in both
left and right thalami, as well as left middle frontal gyrus (within which lies the left
DLPFC), using two-way ANOVA. We found no significant differences between participants
grouped by diagnosis and gender (Figure 2b).

The BPnp’s of other regions of interest were also compared between groups with
exploratory two-way ANOVA, and no significant differences were found (Supplementary
Table 2). Whole-brain voxel-based analysis of BP\p’s also revealed neither any significant
main effects in Diagnosis (Figure 2a) and Gender, nor a Diagnosis x Gender interaction
effect.

Possible correlations between MRS measurements of GABA levels and PET measurements
of receptor density at the thalami and left DLPFC / left middle frontal gyrus were
investigated using Pearson’s correlation analysis. No significant correlations between
GABA/Water concentrations and [18F]JFMZ BPyp were found at these regions.

Gender modifies thalamic GABA—-symptom severity relationship

Having shown that thalamic GABA/Water concentrations differ between genders, we tested
the hypothesis that thalamic GABA correlates with ASD symptom severity in gender-
specific ways. Stratifying by diagnosis—the dominant predictor of AQ and RAADS—we
used four total GLMs covarying for age, medication usage, and 1Q in order to investigate the
interaction between gender and thalamic GABA/Water in predicting AQ and RAADS-R
total scores.

For ASD participants, a significant interaction effect was noted between gender and thalamic
GABA in predicting AQ total score (H6,12) = 4.76, £=0.00071) and RAADS-R total score
(F(6,12) = 4.76, P=0.0019). For TD participants, on the other hand, there were no
significant interaction effects for either behavioral measure. Figure 3 presents scatterplots of
the relationships between AQ total score and thalamic GABA/Water concentrations, with
participants separated by diagnosis and gender.

Discussion

In a comprehensive manner, we studied both GABA receptor densities and GABA
concentrations in the left DLPFC and bilateral thalami in HFA with ASD. Our results
provide evidence for region-dependent and gender-specific differences in GABA
concentrations, but not GABA, receptor binding densities, between HFA with ASD and TD
adults. The latter result further replicated the findings in a recent report,16 which examined
GABA receptor densities but not GABA concentrations.

While previous studies have reported lower GABA levels in cortical regions (frontal lobes,
19, 23 auditory cortex, 2L 22 and motor cortex2) in children and adolescents with ASD as
compared to age-matched TD controls, the present study found higher GABA levels in the
left DLPFC of HFA with ASD as compared to TD adults. It is not clear what contributes to
the discrepancy in GABA levels in the cortical regions. However, higher resting levels of

Mol Psychiatry. Author manuscript; available in PMC 2021 May 31.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Fung et al.

Page 10

GABA have been shown to negatively correlate with the BOLD response in various brain
regions,59-52 including the DLPFC.53 Increased GABAergic (inhibitory) tone in the DLPFC
could thus explain why this region exhibits decreased activation during working memory
tasks in adults with ASD.1#4 We also speculate that higher cortical GABA levels may be the
result of compensation for primary defects occurring elsewhere in the GABAergic signaling
pathway. Compensatory models have been proposed to explain why, for instance, despite
having alterations in the E-I ratio, several mouse models of ASD have relatively normal
synaptic depolarization and spiking.>* One possibility is that increased neurotransmitter
production could compensate for abnormalities in GABA receptor function or localization
rather than density, as seen in cerebellar basket cells in ASD.5® Although we did not find
group differences in GABA receptor density, our study cannot rule out that GABAA
receptors are functionally impaired in ASD, as prior studies have suggested.12 Furthermore,
our study does not examine GABAGR receptors, and several studies have indicated that this
receptor subtype may be dysfunctional in ASD.8 13,56

Compared to the cortical regions, sub-cortical brain regions have been studied much less.
Harada et al reported that the GABA levels in the lenticular nucleus of the basal ganglia of
children and adolescents with ASD and age-matched controls were statistically
indistinguishable.23 The current study represents the first study investigating the GABA
levels in the thalami of adults with ASD. When all participants were included, we found no
group difference in thalamic GABA levels. It is interesting to find region-specific differences
in GABA levels. We speculate that cortical regions tend to be more plastic and are therefore
more able to compensate for the deficits in GABAergic tone by increasing the levels of
GABA over time. However, the thalami may not be as plastic as the cortical regions.

In addition to region-dependent GABA concentration alterations, we also found region-
dependent and gender-specific correlations between GABA concentrations and socio-
communicative function. Our findings complement previous research on the relationship
between GABA in the right superior temporal sulcus (STS) and socio-communicative
function.34 Specifically, Kirkovski et al found a significant positive correlation between
GABA concentrations at the right STS and social relatedness subscale of RAADS-R in
females with ASD but not in males with ASD.

The gender difference in the correlations between thalamic GABA levels and socio-
communication function (negative correlation in ASD males and positive correlation in ASD
females) may translate to different pharmacologic effects and behavioral outcomes between
males and females with ASD. Our results suggest that medications that modulate GABA
levels throughout the brain will normalize the GABA levels in some brain regions but
potentially disturb the GABA levels in other brain regions, depending on gender. Such an
idea is consistent with studies that show ASD symptomatology can vary by gender.5’
Potential mechanisms to explain these differences remain speculative, but evidence suggests
that females with ASD may have distinct neuroanatomical and neurophysiological
signatures.>8 59 For instance, Kirkovski et al found decreased activity in the superior
temporal sulcus in ASD males compared to controls while processing social information, but
no difference when comparing ASD females to controls.5% Furthermore, the direction of the
relationship between GABA and social impairments in ASD has been shown to vary by
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gender in previous literature, consistent with our own findings. In a separate study
examining GABA and social functioning in ASD, Kirkovski found a positive relationship
between GABA concentrations at the superior temporal sulcus and social impairment in
females with ASD, but not males.34 In contrast, Brix et al. found a negative relationship in
boys when assessing GABA levels in the anterior cingulate cortex.51 Collectively, these
results, in conjunction with our current findings, indicate the importance of investigating
gender differences in future ASD studies.

Our study has several limitations. One major limitation of this study is that the age between
males and females with ASD was not well matched. ASD females were, on average, 10
years older than ASD males. Second, the FSIQ for the ASD group is lower than the TD
group; this difference is more pronounced in males. Third, although our overall sample size
is larger than most studies involving PET, it is relatively small when we separated males
from females in our investigation on gender effects. (However, at a level of 0.05, we did
achieve 94% power when comparing left DLPFC GABA/Water levels between ASD males
and TD males.) Fourth, some participants in this study were taking medications. For
example, some antipsychotic medications are known to modulate the GABAergic system.
(This is unlikely to affect the results significantly, as only four participants took
antipsychotics. Furthermore, no participants took benzodiazepines.) Finally, the success rate
for GABA concentration determination by 1H-MRS was only about 70% in the PET-MR
scanner; therefore, we did not have measurable GABA concentrations for every participant.
Given these limitations, in order to further translate the findings in this study to the clinic,
we will need to replicate the results in a larger sample with improved matches in age and 1Q.

Conclusions

To our knowledge, this is the first study to examine both GABA concentrations and GABAA
receptor binding densities simultaneously in any psychiatric population. It is also the first
neuroimaging study to investigate the role of the GABAergic system in regions of the
thalamocortical network, as it relates to HFA with ASD. We show that, despite no group
differences in GABA, receptor densities, GABA concentrations in the left DLPFC are
higher in HFA with ASD, compared to TD controls. Furthermore, GABA concentrations in
the thalami correlate with AQ and RAADS-R scores in a gender-specific manner in HFA
with ASD, but not in TD controls. Remarkably, higher thalamic GABA concentrations are
associated with lower socio-communicative symptom severity in males with ASD, and with
higher symptom severity in females with ASD. We conclude that thalamic and prefrontal
GABA levels are altered in a region-dependent and gender-specific manner in HFA with
ASD. Our findings are important steps toward identifying molecular neuroimaging markers
of socio-communicative function in individuals with ASD, thus aiding the development of
assessment tools to evaluate neural circuits and interventions targeting core symptoms of
ASD.
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Fig. 1.

Location of proton magnetic resonance spectroscopy (H-MRS) voxel placement at the (A)
bilateral thalami and (B) left DLPFC. Improved MEGA-SPECIAL spectra and
corresponding edited spectra are shown for the (C) thalami and (D) left DLPFC. Group-
mean GABA/Water concentration by diagnosis and gender are shown for the (E) bilateral
thalami and (F) left DLPFC. Error bars represent £1 SEM. Significant main effects of
diagnosis or gender (£ < 0.05 in primary two-way ANOVAS) are starred (*). After covarying
for age, psychotropic medication usage, and 1Q, the gender difference in thalamic GABA
remained significant. The TD vs. ASD difference in DLPFC GABA remained significant
after covarying for medication usage and 1Q, but not after adjusting for age.
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Fig. 2a.
Group-mean parametric maps derived from positron emission tomography data in standard

MNI space. Color bar represents BPyp of [8F]flumazenil. Mean parametric maps do not
differ significantly between groups.
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Fig. 2b.
Group-mean non-displaceable binding potentials (BPyp) of [18F]flumazenil in the thalami

and left DLPFC, as detected by positron emission tomography (PET). Error bars represent
+1 SEM. Mean BPyp in these regions of interest do not differ significantly between groups.
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Fig. 3.

Sc%tterplots, stratified by diagnosis, of AQ total score versus thalamic GABA/Water
concentration, with trendlines for each gender. A significant interaction effect for ASD
participants, but not TD participants, was found between gender and GABA in predicting
AQ (P=0.00071). Reported rvalues are simple correlation coefficients for each trendline.
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