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Abstract

Crystallographic models of biological macromolecules have been ranked using the quality criteria 

associated with them in the Protein Data Bank (PDB). The outcomes of this quality analysis have 

been correlated with time and with the journals that published papers based on those models. The 

results show that the overall quality of PDB structures has substantially improved over the last ten 

years, but this period of progress was preceded by several years of stagnation or even depression. 

Moreover, the study shows that the historically observed negative correlation between journal 

impact and the quality of structural models presented therein seems to disappear as time 

progresses.
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Quality criteria are proposed to rank the macromolecular models in the Protein Data Bank (PDB) 

and the results are correlated with time and with the journals that published papers based on those 

models. The overall quality of PDB structures has substantially improved over the last decade and 

the negative correlation between journal impact factor and the quality of structural models 

presented therein seems to disappear as time progresses.

Keywords

PDB; structure quality; X-ray crystallography; proteins; nucleic acids

Introduction

Structural biology has fulfilled a history changing mission in science at the interface of 

physics, chemistry and biology when for over six decades it has maintained its leading role 

in providing the structural basis for our understanding of life [1–4]. Its results were always 

regarded as exceptionally solid, and created a gold standard in biological research, almost 

unattainable in many other areas of life sciences. This view has largely persisted until today, 

in part even fortified by the incredible technical advances in the generation and detection of 

X-rays, progress in computer software development, revolution in biotechnology, and 

innovations in crystallogenesis. However, with the expansion of the Protein Data Bank 

(PDB) [5] from merely seven structures at its inception in 1971 to ~160,000 today, it is 

inevitable that some of the macromolecular models will be subpar and sometimes even 

incorrect. Unfortunately, suboptimal structures have a tangible negative impact on 

biomedical research that relies on structural data [6]. However, crystallographers, who have 

always been in the forefront of structural biology, also in this regard seem to be setting 
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example of how to deal with suboptimal or irreproducible science. The protein 

crystallographic community has been made painfully aware of these problems [7–10], partly 

in the rising wave of concern about irreproducibility of scientific research and of biomedical 

research in particular [11]. This awareness has led to positive outcomes, such as, for 

example, development of structure validation criteria and protocols, or development of tools 

for the detection and correction of model errors [12].

The PDB itself, who is the chief custodian of the structural treasury amassed by structural 

biologists, has been developing tools and standards for the assessment of the quality of the 

structural models deposited in its archives [13,14]. Similarly, more and more journals are 

starting to require structural validation reports generated by the PDB upon manuscript 

submission. However, in some opinions these actions are still insufficient and many 

problems could be better checked at source rather than being tracked in time-delayed model-

correction actions [15,16], when the ripple effect of structural errors may have already taken 

its toll. Objectively speaking, however, in view of the immense scale of the PDB, one should 

be in fact grateful for all the effort already taken and the plans proposed for the future of the 

data bank. In particular, the PDB has been developing a consistent and informative set of 

quality indicators, which now accompany each new crystal structure deposition. These 

indicators have been recently used to assess the evolution of the quality of the PDB deposits 

with time [17].

However, it is not only the PDB that has the responsibility for maintaining high standard of 

the structural information generated by structural biology. The prime burden is of course on 

the authors, but this is usually the weakest link: rarely because of ill-intention or fraud and 

more frequently because of haste, lack of training, lack of supervision, or the delusive belief 

that the incredible recent progress has converted crystallography to a very easy and almost 

completely automatic analytical method. An important deal of responsibility rests with the 

referees and editors of the journals that publish those results, as the ripple effect of error and 

fatal contamination of science is most efficiently propagated through cited literature [18]. 

More than a decade ago Brown & Ramaswamy (hereinafter B&R) published a survey of the 

quality of crystallographic models of biological macromolecules [19], and correlated the 

results with the journals in which those models had been published. The results came as a bit 

of a shock to many because it turned out that the journals usually regarded as the most 

prestigious were found to publish worse than average structures when compared with other 

journals. The FEBS Journal was one of the first requesting structure validity reports and thus 

in the ranking list of B&R was among the top journals. Similar questions have been raised 

by Read & Kleywegt (hereinafter R&K), albeit using different statistical tools [20]. In 

contrast to the B&R study, R&K reported very small quality differences between structures 

published in high-impact journals and in other venues.

Nearly 13 years after the B&R study and with the PDB expanded nearly four times we 

decided to conduct a similar analysis to see if the community at large, or at least its journals, 

have improved. In our approach, we used the statistical methods of data imputation and 

Principal Component Analysis (PCA) of the model quality indicators recommended by the 

PDB. In contrast to previous studies, which focused on protein structures only, our analysis 

comprises all crystallographic structures in the PDB, i.e. also includes nucleic acids. 
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Moreover, we also consider models marked as To be published, which were not analyzed by 

B&R or R&K. Although the scope of data and the statistical tools we are using are different 

from those used by B&R in 2007, we are still able to compare the journal rankings of the 

two surveys because our approach may be easily adapted to a retrospective analysis of data 

from past versions of the PDB. It is important to clarify that omission of NMR and Cryo-EM 

structures was intentional. Considering the difficulties connected with estimation of quality 

of NMR and Cryo-EM structural models, and also the very small contribution of both these 

methods to the characterization of structures that contain ligands (and are thus most 

interesting and important), we decided to focus on models provided by X-ray 

crystallography, which represent 89% of all models currently deposited in the PDB.

Our results show that the overall quality of PDB structures has substantially improved over 

the last ten years. However, our study also shows that this period of improvement was 

preceded by several years of stagnation or, if one considers the improvement of software and 

hardware over time, even depression. Finally, the observation made by B&R that journal 

impact factor (reputation) is frequently negatively correlated with structure quality is no 

longer true.

Results

Measure of Overall Model Quality and Missing Data Imputation

The analysis included all X-ray structures available in the PDB as of December 10, 2019, 

totaling 141,154 deposits dating back as far as 1972. To assess the quality of structures 

published in particular journals, we initially attempted to use the Q1p measure proposed by 

Shao et al. [17]. Q1p is a measure of overall protein structure quality that combines into one 

number five different indicators: Rfree, RSRZ (normalized Real Space R-factor) outliers, 

Ramachandran outliers, Rotamer outliers, and Clashscore [21] using the following formula:

Q1p = PRfree + P%RSRZ + PPC1 geometry
3 (1)

where PRfree, P%RSRZ, and PPC1(geometry) are ranking percentiles (the higher the better), 

characterizing for a given structural model, respectively, its Rfree, percentage of RSRZ 

outliers, and the first principal component of the PCA of Ramachandran outliers, Rotamer 

outliers and Clashscore (see Methods section for details). Once Q1p is calculated, each PDB 

deposit is ranked within the population to obtain its final ranking percentile PQ1p, with the 

lowest (worst) value of Q1p at 0% and highest (best) at 100% [17]. We note, that in this 

paper we took an averaging approach to percentiles, i.e., a group of tied Q1p values was 

assigned the same percentile rank, one that is the average rank of the group. By combining 

five distinct quality measures, PQ1p provides a simple way of comprehensive comparison 

and ranking of many structural models.

The PQ1p metric was originally designed to assess protein structures only. For nucleic acid 

structures, which are also present in the PDB, Q1p cannot be used directly because the 

notions of Ramachandran and Rotamer outliers are not applicable to those structures. 

However, for proteins both missing elements are implicitly contained in PPC1(geometry). 
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Therefore, for nucleic acids we calculated analogous Q1n without the use of PCA, but 

applying the following simplified formula:

Q1n = PRfree + P%RSRZ + PClasℎscore
3 (2)

where PClashscore is the ranking percentile of Clashscore. In the following analysis, Q1p and 

Q1n (and, consequently, PQ1p and PQ1n) were computed separately for proteins and nucleic 

acids, respectively. This way, the percentiles used for Q1p and Q1n rank structures of the 

respective type. Protein-nucleic acid complexes were assigned to the protein group, since it 

is possible to calculate all quality metrics for such structures.

Since averaging of multiple quality metrics might potentially blur the spotlight on models 

with serious problems, an alternative aggregation method could involve taking only the 

minimum percentile of all the metrics used. In this approach, a structure is considered as 

good as its weakest feature, according to the following formulas:

Q1pmin = min PRfree, P%RSRZ, PPC1 geometry (3)

Q1nmin = min PRfree, P%RSRZ, PClasℎscore (4)

In the remainder of the paper, we will focus mainly on the averaging approach using Eq. 1 

and 2, but will also compare it with the minimum approach based on Eq. 3 and 4.

It must be emphasized that PQ1p can be computed only for those PDB structures that have all 
five (or in the case of PQ1n all three) component measures attached to them. The PDB has 

done an excellent job of calculating these metrics for most of the deposits, but not all 

structures have all the necessary data to perform these calculations. Overall, 12.7% of all 

considered deposits are missing at least one quality metric, with RSRZ being the dominating 

missing value (Table 1). Leaving this situation as is would effectively limit the analysis to 

structures published after 1992, i.e., to the time after Rfree was introduced [22]. To 

circumvent this dilemma and to perform a study encompassing the entire timespan of the 

PDB, we have developed a protocol for the estimation of the missing values based on a 

machine learning data imputation method.

The validity of the data imputation procedure was assessed on the complete portion of the 

PDB, to which artificially missing (i.e. deliberately removed) values were introduced at 

random following the missing data proportions of each metric. The missing values were then 

replaced using either the metric’s mean, median or by an iterative method called Multiple 

Imputation by Chained Equations (MICE) [23,24] with Bayesian linear regression [25]. 

MICE builds regression functions for subsequent metrics based on non-missing values from 

other variables. The variables used to aid imputation involved all the metrics in question, 

plus three supporting variables, not used in the assessment protocol: the R factor, data 

resolution (dmin), and year of deposition (Table 1). The results of 100 random experiments 

testing the imputation methods are presented in Table 2.
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It can be seen that MICE is superior to mean/median replacement for all metrics according 

to the Mean Absolute Error (MAE) and Root-Mean-Square Error (RMSE), and for all but 

two metrics according to the Median Absolute Deviation (MAD). All the differences 

between MICE and the remaining methods are statistically significant according to the 

Friedman and Nemenyi post-hoc tests [26] (p < 0.001). In terms of absolute values, the mean 

absolute error of MICE is usually two to four times smaller than the standard deviation of a 

given quality metric (Table 1, Supplementary Fig. S11). The results are particularly good for 

Clashscore and Rfree, owing to the small number of missing values and high correlation with 

R, respectively. In the remaining part of the paper, we discuss results obtained for the full 

PDB dataset with missing values imputed using the MICE method. We want to stress that in 

doing so our goal is to give an approximate overview of the average quality of structures in 

the early years of the PDB, and not to provide a way to assess individual deposits with 

missing quality metrics or to create nonexistent data.

Model quality at the Time of Deposition

Fig. 1 shows that PQ1p and PQ1n tend to gradually improve over the years. Almost identical 

trends can be noticed when looking at deposits without imputed data (Supplementary Fig. 

S2) and when using the minimum approach (Supplementary Fig. S3). Obviously, this trend 

is correlated with the advances in the generation of X-rays and in data collection procedures, 

with better computer hardware and software, with heightened structure validation standards, 

and with progress in crystallogenesis. If one were to use PQ1 (i.e., PQ1p or PQ1n depending 

on structure type) calculated over all the analyzed years to rank journals, then journals with 

longer history would be at a disadvantage because they contain old, quality-wise inferior 

structures. Thus, even though a structure might have been refined to an impressively high 

standard in its time, today it might be treated as a poorly refined case. One could, of course, 

recalculate the percentiles separately for each decade or even shorter time periods, but this 

might not be enough to cure this problem (see the rapid improvement in quality over the last 

10 years) or could drastically reduce the data volume and effectively make journal 

comparisons impossible. Therefore, we introduce here a new, time (t)-dependent PQ1(t) 
parameter, which corresponds to PQ1 calculated at the time of structure deposition. For 

example, the 1990 PDB deposition 2RSP [27] achieves an overall quality percentile PQ1 of 

36%, meaning that it is better than only 36% protein deposits that are currently held in the 

archive. Should the structure be ranked against the 416 structures deposited prior to 2RSP, it 

achieves PQ1(t) of 69%, meaning that it was significantly above-average at the time of its 

deposition.

Moreover, in view of the very high correlation between quality and resolution (Fig. 1, 

Supplementary Fig. S2 and S3), we propose yet another measure, called PQ1(t,d). PQ1(t,d) is 
the Q1 percentile calculated at the time of structure deposition (t) for a given resolution 

interval (d), where the resolution is rounded to the nearest 0.1 Å and capped at 1 Å and 4 Å. 

The 2RSP structure from the previous example scores a PQ1(t,d) of 75%. The advantage of 

using PQ1(t,d) is that data resolution will not affect the journal ranking list.

1Supplementary tables and figures are available at figshare.com: 10.6084/m9.figshare.11366222.
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Using PQ1p(t,d) and PQ1n(t,d) one can assess the quality of protein and nucleic acid models 

over time. The average PQ1p(t,d) for proteins in the PDB is 58.7%, whereas nucleic acids 

have the average PQ1n(t,d) of 59.9%. Fig. 2 shows how the model quality at the time of 

deposition of these two types of macromolecules has evolved over the years. For many years 

in the past, newly deposited nucleic acid models were usually of better quality than newly 

deposited protein models, especially between 1993 and 2004. However, the steady 

improvement of the quality of protein models in the last decade has made them currently to 

be on a par, if not better, than currently deposited nucleic acids models. Similar trends were 

observed using PQ1pmin(t,d) and PQ1nmin(t,d), i.e. the minimum approach (Supplementary 

Fig. S4).

In the following subsections, we will focus on ranking structures and their corresponding 

journals according to PQ1(t,d). The rankings associated with PQ1(t), PQ1min(t,d) and 

PQ1min(t) are available in the online supplementary materials for this publication. For the 

purposes of ranking journals, the percentiles for proteins and nucleic acids will be combined, 

and denoted jointly as PQ1(t,d) or PQ1(t).

All-time Journal Ranking

Out of 800 unique journals being the primary citations for the 141,154 deposits found in the 

PDB, we selected those that published papers presenting at least 100 macromolecular 

structures. We decided to limit the list of journals to such a subset, as we believe that it may 

be too early to assess journals with less than 100 described structures. The resulting 91 

journals were ranked according to average PQ1(t,d) (Table 3) as well as PQ1(t), PQ1min(t,d) 
and PQ1min(t) (Supplementary Tables S1–S3).

Surprisingly, the first place in all versions of the ranking is occupied by Tuberculosis, a 

venue that is not well known as a structural journal. However, this place is well earned since 

Tubeculosis has over 16 percentage points of advantage over the second ranked journal in 

terms of PQ1(t,d) and 12 percentage points of advantage in the PQ1(t) ranking. A closer 

inspection of the structures published in Tuberculosis reveals that the vast majority of 

structures refer to one publication titled “Increasing the structural coverage of tuberculosis 

drug targets” [28]. The publication and its corresponding structures are the result of the joint 

effort of various departments working in the Seattle Structural Genomics Center for 

Infectious Disease. This finding is in accordance with the conclusions of B&R [19] that 

structural genomics initiatives usually deposit structures of above-average quality [29,30]. 

Indeed, taking into account all 12,494 deposits attributed to structural genomics projects, 

they achieve a mean PQ1(t,d) of 63.7% and PQ1(t) of 64.3%, substantially above the average 

of the entire PDB (58.6% and 57.7%, respectively). These differences are statistically 

significant according to Welch’s t-test (p < 0.001) and are much more prominent than those 

reported in the R&K study [20]. This discrepancy most probably stems from the fact that in 

our study we used a relative measure that combines several quality metrics, and had 2.3 

times more structural genomics deposits at our disposal and 6.1 times more structures 

overall.

When looking at the most popular journals, i.e. those with more than 1000 structures (Table 

3, gray rows), the top three spots are occupied by Biochemical Journal, FEBS Journal, and 
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Nature Chemical Biology. At the other end of the spectrum, we have EMBO Journal, Cell, 
and Nature Structural & Molecular Biology, which were ranked last according to PQ1(t,d). It 
is worth noting that the latter three journals are the only journals that have average PQ1(t,d) 
below 50%. This means that, on average, at the time of deposition, the structures presented 

in these journals were already worse than over 50% of PDB structures of similar resolution. 

A similar ranking was obtained using PQ1(t) (Supplementary Table S1), the main difference 

being that journals publishing structures at superior resolution, such Chemistry or Acta 
Crystallographica D, achieved much higher positions in the journal ranking. Table 3 and 

Supplementary Table S1–S3 also identify journals whose average PQ1(t,d), PQ1(t), 
PQ1min(t,d), and PQ1min(t) are significantly different from the expected values of the entire 

PDB population.

It should be noted that the ranking presented in Table 3 takes into account over 45 years of 

structural data. This means that the ranking averages the entire lifespans of journals, which 

in their own individual history might have evolved over time. That is why in the following 

section we analyze how the ranking of the most popular journals has changed over the years.

Quality of Journals’ Structures Over Time

Owing to the fact that PQ1(t,d) assesses structures at the time of deposition, we also analyzed 

rankings of journals as a function of time. Fig. 3 presents the ranking of 25 all-time most 

popular journals in periods of five years. To minimize the effect of noise on the ranking, 

journals were assigned to a given five-year period only when they contained primary 

citations to at least 30 structures within that period.

As Fig. 3 shows, only six of the 25 journals published at least 30 structures before 1991, 

however, these six journals were the primary reference for 482 out of 666 PDB deposits 

from this period. Biochemistry remains one of the top journals in terms of structure quality 

to date, PNAS and J. Biol. Chem. are in the middle of the ranking, whereas Nature, Science, 

and J. Mol. Biol. occupy the bottom half of the ranking. A journal that has steadily remained 

at the top of the ranking list for most of the years is FEBS Journal. Apart from Biochemistry 
and FEBS Journal, Proteins can also pride itself with a solid presence in the top 10 of the 

ranking throughout the years. It is worth noting that these three journals were also highly 

ranked in the study of B&R [19].

Disappointingly, the relatively poor ranks of highly reputable venues are not a new concern, 

but rather have been a steady trend for many years. It must be noted, however, that the 

overall structure quality of practically all 25 of the most popular journals has greatly 

improved in the last ten years, with Science and Nature noting the most positive trends 

(Supplementary Fig. S5). Similar observations were made when the journals were ranked 

according to PQ1(t) (Supplementary Fig. S6, S7).

A separate comment is required for the “venue” To be published, most frequently found in 

PDB deposits. This category of PDB entries, omitted in the studies of B&R [19] and R&K 

[20], presents a very interesting pattern over the years. For several decades, unpublished 

structures (because staying in the “to be published” state for several years in practice means 

“unpublished”) noted a steady upward trend, coming as far as the second place among the 
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most popular venues between 2011 and 2015. The low position in the latest ranking period 

(2016-today) may stem from the fact that many of the recently deposited To be published 
structures from this time range still have a chance of being published and are under peer 

review. The retrospective pattern is that structures in the To be published category have 

higher PQ1(t,d) (61.4%) than structures that are presented in concrete journals (58.0%) 

(Welch’s t-test, p < 0.001). Moreover, 8,543 out of 12,494 structural genomics structures 

remain unpublished even as structure notes, constituting over 66% and 33% of all 

unpublished structures in the 2005–2010 and 2011–2015 periods, respectively. With fewer 

structural genomics depositions in the last four years (only 15% of all unpublished structures 

for this period), the To be published category currently has a lower ratio of high-quality 

structures. This, combined with the observed constant improvement of published structures, 

may further contribute to the drop of the To be published category in the ranking.

Retrospective comparison with the results of Brown & Ramaswamy

The journal rankings presented in this work were inspired by the study of Brown and 

Ramaswamy (B&R) [19]. Although the methodologies used in these two analyses are 

different (most notably because of incorporation of nucleic acids and the use of data 

imputation in the present work), it is worth verifying how the two approaches compare, and 

what has changed since the original B&R study. To help answer these questions, Table 4 

presents the journal ranking reported by B&R in 2007 together with two lists of the same 

journals ranked according to PQ1(t,d): based on PDB deposits available in 2007, and based 

on all currently available data.

It can be noticed that the rankings bare several similarities, although they are not identical. 

Journals that were at the top of the B&R ranking generally remain highly ranked according 

to PQ1(t,d). Similarly, the bottom regions of the rankings are occupied by the same group of 

journals. However, there are some notable differences. For example, Bioorg. Med. Chem. 
Lett. is ranked 19 places lower according to PQ1(t,d), whereas J. Biol. Inorg. Chem., FEBS 
Lett. and Nucleic Acids Res. are ranked 11 places higher. These differences may be the 

result of the number of structures taken into account by each ranking. Compared to the time 

of the B&R study, significantly more precomputed quality metrics are now available, even 

for older PDB deposits. Moreover, the methodology proposed in this work imputes missing 

values, allowing for inclusion of 12.7% additional structures. As a result, the rankings based 

on PQ1(t,d) were compiled using much more data, occasionally changing a journal’s rank 

substantially.

Correlation between structure quality and journal impact

The low-ranking of high impact journals in the current study raises the question of whether 

structure quality is negatively correlated with journal impact. The study of B&R [19] 

strongly suggested that this was the case, whereas the slightly more recent work of R&K 

[20] showed that the differences in structure quality between high-impact and other venues 

were relatively small. However, both studies manually categorized journals as high- or low-

impact venues rather than investigating actual impact metrics for a large set of journal titles.

Brzezinski et al. Page 9

FEBS J. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this study, we decided to measure journal impact quantitatively and correlate it with our 

quantitative measure of structure quality. For this purpose, we used two metrics: Impact Per 

Publication (IPP) and Source Normalized Impact per Paper (SNIP) [31]. IPP is calculated 

the same way as 3-year impact factor (IF3) but using only publications that are classified as 

articles, conference papers, or reviews in Scopus. SNIP is a modification of IPP that corrects 

for differences in citation practices between scientific fields [31]. Both journal metrics have 

20 years (1999–2018) of publicly available statistics and are based on the same source data.

Fig. 4 shows the relation between PQ1(t,d) and the journal impact over time (separate plots 

for each year are presented in Supplementary Fig. S8). It is evident that structure quality has 

substantially improved over the last decade and that the negative correlation between journal 

impact and the quality of structural models presented therein seems to disappear as time 

progresses. This observation is confirmed when the relation between journal impact (IPP, 

SNIP) and structure quality (PQ1(t,d)) is gauged using Spearman’s rank correlation 

coefficient. Fig. 5 shows that even though structure quality and journal impact were indeed 

negatively correlated 20 years ago, currently there is no correlation between these two 

criteria.

Fig. 4 also shows a very interesting situation in the low-IF range, namely that low-IF 

journals publish just about anything: the most fantastic work as well as structures beneath 

contempt. On the other hand, medium-IF journals used to be primary citations of mostly 

poor structures in the past. At present, however, they are doing a much better job, publishing 

mostly better-than-average structures.

Discussion

Our analysis confirms recent reports that the quality of crystallographic macromolecular 

structures has improved over the last years [17]. However, we also found out that at the time 

of the B&R analysis the quality of PDB structures temporarily stopped improving, and that 

this is most likely why B&R did not report any correlation between quality and time [19]. In 

addition to confirming earlier findings, by using a data imputation algorithm we were able to 

put into context the quality of structural models going back in time as far as 1972. As 

convincingly illustrated by Figs. 1 and 2, the quality of PDB structures had rapidly improved 

over the first two decades of the database.

The ability to analyze quality over time using the proposed PQ1(t,d) measure (Fig. 3) shows 

that there is tight competition among journals as their number increases. Quite interestingly, 

it is also evident that the PDB treasures many good quality structures that do not have 

primary citations. The fact that a structure remains To be published indicates that it is getting 

more and more difficult to publish papers based solely on crystallographic results, even if 

they are of high quality. Indeed, our study shows that structures without primary citations are 

on average of higher quality than structures published in many popular journals. Therefore, 

although many structures do not have any accompanying journal publications, they present a 

substantial value in their own right. As each PDB deposit has its own digital object identifier 

(DOI), citation of structures should be acknowledged not only by PDB IDs but also by 
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DOIs. Full implementation of this mechanism would allow for easy estimation of the impact 

of To be published structures.

The proposed PQ1(t,d) and PQ1(t) measures manifest the overall attitude of authors towards 

the quality of the PDB: each next deposited structure should be better than the average 

previous deposit. Each new quality metric [21], visualization technique [32], set of restraints 

[33], validation algorithm [34], hardware improvement [35] or software update [36], make it 

easier to produce good quality structures and to avoid simple mistakes. In an effort to 

promote constant improvement of overall PDB quality it would be a desirable ideal to expect 

that newly added models are above the current average. However, such a recommendation 

should be applied judiciously as each case is different and should be always judged in a 

context-dependent manner. It is gratifying to see that almost all journals publish structures 

that are, on average, better than most of the previous ones while those that are not at that 

level yet, seem to be heading in the right direction.

Methods

Data collection and cleaning

To provide a comprehensive analysis of structure quality over time, we examined all X-ray 

structures available in the PDB that included 141,154 deposits between 1972 and 2019. The 

data were downloaded by performing an SQL query on PDBj [37,38] as of December 10, 

2019.

In order to perform an analysis of structure quality in correlation with the primary citations, 

journal names had to be extracted from PDB files, cleaned and unified. Initially, the dataset 

contained 1,342 unique values describing the primary citation journal. After eliminating 

typos, unifying punctuation and ISSNs, and taking into account that some journals have 

changed their titles over time, the number of unique journal names dropped down to 800.

Bibliometric indicators of journals (IPP, SNIP) were downloaded from the Leiden University 

CWTS website (https://www.journalindicators.com/) and joined with the PDB data using 

ISSNs. Both indicators were calculated based on the Scopus bibliographic database 

produced by Elsevier.

Missing data imputation

To fill in missing data, three approaches were tested: filling missing values with the metric’s 

mean value, the metric’s median, and using the Multiple Imputation by Chained Equations 

algorithm (MICE) [23,24] with Bayesian ridge regression [25] as the predictor.

To see how well each of the three methods performed, the non-missing (i.e. complete) 

portion of the PDB data was used as the basis for creating a test set. We randomly 

introduced missing values to the complete portion of the data in the same proportions as 

those present in the actual dataset. As a result, the test dataset had the same proportion of 

deposits with at least one missing value and the same percentage of missing values per 

metric as the original (full) dataset. Next, these randomly introduced missing values were 

imputed and compared against the values originally present in the dataset. To quantify the 
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imputation error we used the median absolute deviation (MAD), mean absolute error 

(MAE), and root-mean-square error (RMSE) [39]. The procedure was repeated 100 times 

with different subsets of values randomly eliminated from the complete dataset in each run. 

Imputed missing values were clipped when they were outside the range of possible values of 

a given metric.

Principal component analysis

The principal component analysis (PCA) required to calculate Q1p was performed as 

described by Shao et al. [17]. The PCA was performed on three quality metrics: Clashscore, 

Ramachandran outliers, and Rotamer outliers. Since Ramachandran outliers and Rotamer 

outliers are meaningful only for proteins, the PCA analysis was performed for protein 

structures only. In the assessment of the quality of nucleic acid structures, the PCA step was 

not needed, as Clashscore was the only geometry-related quality index.

Upon visual inspection of the metrics’ values (Fig. S9), structures were marked as outliers 

and removed when the following criteria were reached: Rotamer outliers > 50% or 

Ramachandran outliers > 45% or Clashscore > 250. In total, 16 structures were marked as 

outliers: 1C4D, 1DH3, 1G3X, 1HDS, 1HKG, 1HPB, 1PYP, 1SM1, 2ABX, 2GN5, 2OGM, 

2Y3J, 3ZS2, 4BM5, 4HIV, 5M2K. These structures were temporarily removed prior to PCA 

to decrease the effect of outlying values on the principal components, but they were not 

removed from the quality analysis. After removal of outstanding outliers, the input data for 

PCA were standardized by setting the mean to be 0 and standard deviation to 1. Running 

PCA on the standardized data resulted in three principal components: PC1, PC2 and PC3, 

explaining 78%, 14% and 8% variance, respectively. The coefficients of PC1 were: 0.60, 

0.58, 0.56, indicating nearly equal contribution of Clashscore, Ramachandran outliers and 

Rotamer outliers. The explained variance of each principal component and the coefficients 

of PC1, were practically identical to those reported by Shao et al. [17].

As noted by one of the reviewers, the PC1 coefficients (0.60, 0.58, 0.56) are almost identical 

and roughly equal 1
3 , making the respective weights of these contributions near equal for all 

three of them. This means that approximately the Q1p measure could be presented as:

Q1p =
PRfree + P%RSRZ + 1

3 PClasℎscore + PRamacℎandran + PRotamers
3

(5)

The above formula provides a simple metric that can be used without performing PCA. 

However, this approximate formula assumes that the relations between Clashscore, 

Ramachandran outliers and Rotamer outliers are fixed and will not change. For this reason, 

we chose to use the exact formula (1) as proposed by Shao et al. [17]. Nevertheless, the 

approximate formula (5) may be considered a simpler solution for less technical studies.

Computation

Data were extracted directly from PDBj using its SQL interface. All computations were 

performed with Python 3.7 using the scipy [40] and scikit-learn [41] libraries. The SQL 
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query used, the resulting dataset, and fully reproducible analysis scripts in the form of a 

Jupyter notebook are available at https://github.com/dabrze/pdb_structure_quality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. PQ1 analysis.
Variation in the mean PQ1 percentile (higher is better) over time (top) and as a function of 

resolution (bottom) for proteins (left) and nucleic acids (right). Error bars indicate estimated 

unbiased standard errors of the mean.
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Figure 2. Comparison of PQ1(t,d) of protein and nucleic acid structures over time.
Variation in mean PQ1(t,d) quality percentile (y-axis, higher is better), comparing nucleic 

acid and protein structures (color) over time (x-axis). Error bars indicate estimated unbiased 

standard errors of the mean.
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Figure 3. Journal ranking over time according to PQ1(t,d).
The plot shows the journal’s rank (y-axis) in a given time period (x-axis). The ranking 

includes 25 most popular journals, i.e. journals with most structures, ranked based on 

structures deposited within 5-year windows. A point appears only if a journal published at 

least 30 structures in a given 5-year interval.
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Figure 4. Scatterplot of mean journal PQ1(t,d) and the journal’s impact over time.
Variation in mean journal PQ1(t,d) (y-axis) in a given year (color) plotted against the journals 

Impact Per Publication (IPP). IPP uses the same formula as the 3-year Impact Factor, but is 

based on publicly available Scopus data. The two regression lines show linear trends for 

1999 (indigo) and 2018 (yellow) along with 95% confidence intervals (gray areas).
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Figure 5. Correlation between structure quality and journal impact.
The plot shows Spearman’s rank correlation (y-axis) over time (x-axis) between structure 

quality measured by PQ1(t,d) and journal impact measured using the IPP and SNIP metrics. 

IPP uses the same formula as the 3-year Impact Factor but is based on Scopus data, whereas 

SNIP additionally takes into account the scientific field.
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Table 1.

Quality metric means, standard deviations, and fractions of missing values in the PDB.

Metric Mean Standard deviation Missing values [%]

Clashscore 8.05 9.11 0.10

Ramachandran outliers [%] 0.49 1.26 1.69

Rotamer outliers [%] 3.26 3.65 1.72

RSRZ outliers [%] 4.05 4.06 9.56

Rfree [%] 23.35 3.82 4.29

Supporting metrics

R [%] 19.31 3.25 2.39

Resolution [Å] 2.13 0.56 0

Year of deposition - - 0
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Table 2.
Evaluation of data imputation methods.

Mean results of 100 random experiments with standard deviations given in parentheses, in units of the last 

significant digit of the mean. MAD: Median Absolute Deviation, MAE: Mean Absolute Error, RMSE: Root-

Mean-Square Error.

Error Method Clashscore RSRZ outliers [%] Ramachandran outliers [%] Rotamer outliers [%] R free [%]

MAD

MICE 2.5(3) 2.01(2) 0.21(1) 1.23(3) 1.02(2)

Mean 4.4(3) 2.30(2) 0.49(1) 2.11(4) 2.50(4)

Median 2.9(3) 1.86(2) 0.04(1) 1.39(4) 2.50(4)

MAE

MICE 3.7(4) 2.54(3) 0.41(2) 1.77(4) 1.31(2)

Mean 5.7(6) 2.74(3) 0.61(2) 2.56(6) 3.00(3)

Median 5.1(7) 2.60(3) 0.49(3) 2.34(7) 3.00(3)

RMSE

MICE 5.7(15) 3.84(15) 0.84(11) 2.64(10) 1.77(3)

Mean 8.9(23) 4.04(14) 1.24(16) 3.65(14) 3.82(4)

Median 9.3(24) 4.17(14) 1.32(16) 3.85(15) 3.82(4)
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Table 3.
All-time journal ranking according to PQ1(t,d).

The ranking includes all the journals that had at least 100 primary citations of structures in the PDB. PQ1(t,d) 

higher than 50% means that the structures published in a given journal were, on average, better than 50% of 

structures of similar resolution present in the PDB at the time of deposition. Journals with more than 1000 

structures are highlighted in gray. The most frequent venue (To be published) is highlighted in bold.

Rank Journal
Mean 

PQ1(t,d) [%]
Mean 

resolution [Å]
G-Mean 

resolution [Å]
V-Mean 

resolution [Å]
Structure 

count

1 TUBERCULOSIS (EDINB)* 87.38 2.02 2.00 1.92 132

2 EUR J MED CHEM* 71.05 2.03 1.97 1.81 418

3 ACS CATAL* 69.25 1.94 1.88 1.70 241

4 ACS INFECT DIS* 68.32 1.95 1.90 1.78 153

5 CHEMBIOCHEM* 68.30 1.92 1.87 1.71 527

6 IUCRJ* 67.76 1.95 1.88 1.69 281

7 ORG BIOMOL CHEM 67.42 1.88 1.82 1.64 167

8 MBIO 66.72 2.24 2.15 1.91 169

9 ARCH BIOCHEM BIOPHYS* 66.13 2.08 2.03 1.89 276

10 INT J MOL SCI 65.77 2.12 2.04 1.81 103

11 CHEMISTRY 65.66 1.82 1.77 1.62 242

12 BIOCHEM J* 65.42 2.11 2.06 1.89 1,033

13 FEBS J* 65.11 2.02 1.97 1.81 1,539

14 CELL HOST MICROBE 64.85 2.50 2.43 2.20 107

15 PLOS PATHOG* 64.72 2.25 2.17 1.96 656

16 NAT MICROBIOL 64.69 2.32 2.25 2.04 111

17 CHEM COMMUN 64.58 1.81 1.75 1.59 280

18 VIROLOGY 64.38 2.44 2.37 2.18 126

19 NAT CHEM BIOL* 64.12 2.19 2.12 1.92 1,013

20 APPL ENVIRON MICROBIOL 64.00 2.01 1.96 1.83 112

21 ACS CHEM BIOL* 63.83 2.04 1.98 1.83 1,104

22 ACTA CRYST F* 63.59 2.09 2.02 1.81 1,466

23 SCI REP* 63.39 2.16 2.09 1.88 1,847

24 ANGEW CHEM* 63.25 1.92 1.85 1.64 1,065

25 J INORG BIOCHEM 62.82 1.78 1.73 1.57 171

26 J BIOL INORG CHEM 62.61 1.88 1.82 1.64 265

27 ACS OMEGA 62.60 1.81 1.77 1.64 102

28 J COMPUT AIDED MOL DES 62.39 1.88 1.86 1.77 115

29 CHEM SCI 61.98 1.87 1.83 1.68 268

30 MABS 61.91 2.35 2.29 2.14 115

31 J SYNCHROTRON RADIAT 61.75 1.79 1.73 1.56 147
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Rank Journal
Mean 

PQ1(t,d) [%]
Mean 

resolution [Å]
G-Mean 

resolution [Å]
V-Mean 

resolution [Å]
Structure 

count

32 PLOS ONE* 61.57 2.15 2.09 1.92 2,057

33 GLYCOBIOLOGY 61.48 1.96 1.90 1.74 188

34 CHEMMEDCHEM 61.40 1.94 1.88 1.69 556

35 TO BE PUBLISHED* 61.39 2.03 1.98 1.81 22,421

36 NAT COMMUN* 61.37 2.21 2.11 1.86 3,538

37 FEBS LETT 61.30 2.10 2.04 1.85 814

38 NAT CHEM 61.11 1.95 1.85 1.65 173

39 ANTIMICROB AGENTS 
CHEMOTHER 61.10 1.96

1.88
1.65 309

40 ACS MED CHEM LETT 61.01 2.12 2.06 1.88 1,062

41 RNA 60.95 2.44 2.32 1.97 245

42 J AM CHEM SOC 60.89 2.00 1.93 1.74 2,369

43 PROTEIN ENG DES SEL 60.59 2.05 2.00 1.84 294

44 CELL CHEM BIOL 60.17 2.08 2.03 1.88 902

45 ACTA CRYST D 60.06 1.99 1.91 1.70 4,952

46 MOL PHARMACOL 59.99 2.35 2.27 2.02 129

47 BMC STRUCT BIOL 59.56 2.08 2.02 1.84 228

48 BIOCHEMISTRY 59.45 2.05 2.00 1.84 8,896

49 MOL MICROBIOL 59.41 2.16 2.09 1.87 412

50 BIOCHIMIE 59.04 2.07 2.02 1.81 128

51 J BIOCHEM 59.01 2.05 2.01 1.88 279

52 FASEB J 58.88 2.03 1.98 1.86 161

53 NUCLEIC ACIDS RES 58.77 2.28 2.21 1.98 2,127

54 STRUCTURE 58.53 2.20 2.11 1.86 5,348

55 PROTEIN SCI 58.46 2.07 2.02 1.85 2,235

56 J MED CHEM 58.29 2.07 2.02 1.86 5,525

57 J VIROL 58.24 2.34 2.26 2.06 957

58 PLANT CELL 58.00 2.21 2.17 2.05 138

59 BIOCHIM BIOPHYS ACTA 57.99 2.09 2.04 1.87 600

60 SCI ADV 57.95 2.33 2.22 1.85 182

61 J BIOL CHEM 57.91 2.12 2.06 1.89 11,055

62 J STRUCT BIOL 57.49 2.15 2.08 1.90 1,038

63 J BACTERIOL 57.37 2.22 2.16 2.01 371

64 BIOORG MED CHEM 57.28 2.10 2.04 1.88 659

65 PROTEINS 57.09 2.07 2.01 1.84 1,999

66 CELL REP 56.55 2.52 2.42 2.16 399

67 J EXP MED 56.35 2.34 2.28 2.08 121

68 BIOCHEM BIOPHYS RES 
COMMUN 56.28 2.18

2.11
1.92 976

69 PNAS* 55.79 2.27 2.19 1.94 7,376

70 INT J BIOL MACROMOL 55.51 2.05 2.00 1.80 168

71 PLOS BIOL 55.43 2.35 2.25 2.01 336
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Rank Journal
Mean 

PQ1(t,d) [%]
Mean 

resolution [Å]
G-Mean 

resolution [Å]
V-Mean 

resolution [Å]
Structure 

count

72 ELIFE 55.40 2.41 2.30 2.03 869

73 BIOPHYS J 55.36 1.92 1.85 1.66 199

74 J MOL BIOL* 55.25 2.13 2.06 1.88 9,507

75 CELL RES 54.60 2.42 2.36 2.20 189

76 J STRUCT FUNCT GENOM 54.30 2.07 2.03 1.92 168

77 NATURE* 53.84 2.52 2.42 2.12 3,060

78 PROTEIN CELL 53.44 2.26 2.21 2.04 178

79 GENES DEV 53.44 2.41 2.33 2.11 279

80 SCIENCE* 53.15 2.50 2.39 2.10 1,949

81 NAT IMMUNOL 52.94 2.52 2.45 2.22 119

82 EMBO REP 52.92 2.35 2.28 2.09 211

83 J IMMUNOL 52.10 2.26 2.19 2.02 296

84 NEURON 51.35 2.63 2.41 2.08 149

85 IMMUNITY 51.10 2.44 2.37 2.18 265

86 COMMUN BIOL 51.01 2.39 2.31 2.00 104

87 MOL CELL* 50.38 2.45 2.37 2.14 1,599

88 BIOORG MED CHEM LETT* 50.19 2.19 2.16 2.05 1,590

89 NAT STRUCT MOL BIOL* 49.78 2.40 2.31 2.07 2,915

90 CELL* 49.38 2.54 2.45 2.20 1,563

91 EMBO J* 49.15 2.37 2.30 2.10 1,910

*
Denotes journals that have average PQ1(t,d) significantly different than the average PQ1(t,d) of the entire PDB, according to Welch’s t-test with 

Bonferroni correction at significance level α=0.001. Mean denotes the arithmetic mean, G-mean denotes the geometric mean (log-average), V-

mean denotes the mean in Å−3.
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Table 4.
Comparison of journal ranking by Brown and Ramaswamy [19] with rankings of the 
same journals created using PQ1(t,d).

Numbers of structures considered from a given journal are shown in parentheses. The top three journals 

according to B&R are highlighted in green, the bottom three journals are highlighted in red.

B&R ranking [19]
(Year < 2007)

Ranking according to PQ1(t,d)
(Year < 2007)

Ranking according to PQ1(t,d)
(current)

FEBS J*(159) J BIOL INORG CHEM (114) BIOCHEM J* (1033)

PROTEIN ENG DES SEL (96) FEBS J*(356) FEBS J*(1539)

BIOCHEMISTRY*(3346) PROTEIN ENG DES SEL (173) J BIOL INORG CHEM (265)

CELL CHEM BIOL (154) ACTA CRYST D* (1766) FEBS LETT* (814)

PROTEINS (398) BIOCHEM J (165) J AM CHEM SOC* (2369)

J MOL BIOL (3855) FEBS LETT (232) PROTEIN ENG DES SEL (294)

ACTA CRYST D (1074) CELL CHEM BIOL (204) CELL CHEM BIOL (902)

PROTEIN SCI (771) PROTEIN SCI* (1104) ACTA CRYST D* (4952)

BIOORG MED CHEM LETT (195) BIOCHEMISTRY*(4564) BIOCHEMISTRY*(8896)

J STRUCT BIOL (83) J MOL BIOL* (5497) NUCLEIC ACIDS RES (2127)

BIOPHYS J (71) BIOPHYS J (95) STRUCTURE (5348)

J BIOL INORG CHEM (81) PROTEINS (993) PROTEIN SCI (2235)

BIOCHEM J (67) J AM CHEM SOC (459) J MED CHEM (5525)

J BIOL CHEM (2849) BIOCHEM BIOPHYS RES COMMUN (167) J VIROL (957)

J AM CHEM SOC (324) NUCLEIC ACIDS RES (288) J BIOL CHEM (11055)

STRUCTURE (1412) J BACTERIOL (141) J STRUCT BIOL (1038)

FEBS LETT (173) BIOORG MED CHEM (59) J BACTERIOL (371)

J BACTERIOL (111) J BIOL CHEM (4090) BIOORG MED CHEM (659)

BIOORG MED CHEM (53) J STRUCT BIOL (117) PROTEINS (1999)

J MED CHEM (450) J MED CHEM (605) BIOCHEM BIOPHYS RES COMMUN (976)

NAT STRUCT MOL BIOL (768) STRUCTURE (2017) PNAS (7376)

PNAS (1324) PNAS* (1839) BIOPHYS J (199)

J VIROL (86) J VIROL (141) J MOL BIOL* (9507)

BIOCHEM BIOPHYS RES COMMUN 
(103) SCIENCE*(712) NATURE* (3060)

EMBO J* (768) EMBO J* (1135) SCIENCE*(1949)

NUCLEIC ACIDS RES (199) NAT STRUCT MOL BIOL* (1342) MOL CELL*(1599)

NATURE* (807) NATURE* (976) BIOORG MED CHEM LETT* (1590)

MOL CELL*(422) BIOORG MED CHEM LETT* (323) NAT STRUCT MOL BIOL* (2915)

SCIENCE*(571) CELL*(647) CELL*(1563)

CELL*(488) MOL CELL*(571) EMBO J* (1910)

*
Denotes journals whose quality was determined to be significantly different from the average quality of structures the entire PDB, at significance 

level α=0.001.
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