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Abstract
Reward expectation and reward prediction errors are thought to be critical for dynamic adjustments
in decision-making and reward-seeking behavior, but little is known about their representation in the
brain during uncertainty and risk-taking. Furthermore, little is known about what role individual
differences might play in such reinforcement processes. In this study, it is shown behavioral and
neural responses during a decision-making task can be characterized by a computational
reinforcement learning model and that individual differences in learning parameters in the model are
critical for elucidating these processes. In the fMRI experiment, subjects chose between high- and
low-risk rewards. A computational reinforcement learning model computed expected values and
prediction errors that each subject might experience on each trial. These outputs predicted subjects'
trial-to-trial choice strategies and neural activity in several limbic and prefrontal regions during the
task. Individual differences in estimated reinforcement learning parameters proved critical for
characterizing these processes, because models that incorporated individual learning parameters
explained significantly more variance in the fMRI data than did a model using fixed learning
parameters. These findings suggest that the brain engages a reinforcement learning process during
risk-taking and that individual differences play a crucial role in modeling this process.
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INTRODUCTION
In order to maximize rewards during decision-making, organisms can estimate expected
rewards, or value, of various decision options and continually update their expectations
according to outcomes of their decisions. In the past half century, reinforcement learning theory
has emerged as a powerful tool to characterize how organisms acquire such reward expectations
and how they can use outcomes of their decisions to adjust those expectations (Sutton and
Barto, 1998;Camerer, 2003;Schultz, 2004). In typical reinforcement learning models,
‘weights’ represent expected outcomes of each decision option, and thus decision options with
stronger weights become preferred and are more likely to be chosen than are decision options
with relatively weaker weights. The difference between the expected outcome (e.g. reward)
and the received outcome is termed a prediction error, and can be used to adjust decision option
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weights so they better reflect the true reward value of the chosen decision. Thus, these two
variables—weights and prediction errors—are distinct but related, and together form a simple
mechanism by which organisms can dynamically adjust their decision-making based on
reinforcements (Cohen and Ranganath, under review).

Neuroscientists have suggested that reward prediction errors are encoded in structures
including midbrain dopamine regions, the cingulate cortex and ventral striatum. In particular,
phasic increases in activity are observed when reinforcements are better than expected (a
positive prediction error), and phasic decreases in activity are observed when reinforcements
are worse than expected or not given (a negative prediction error) (Schultz et al., 1997;Waelti
et al., 2001;Daw et al., 2002;Holroyd and Coles, 2002;O'Doherty et al., 2003;Schultz,
2004;Seymour et al., 2004; Rodriguez et al., 2005; Abler et al., 2006).

In contrast, neural representations of expected rewards (termed ‘weights’ in reinforcement
learning models) are thought to be housed in the orbitofrontal cortex and amygdala: activity
in these regions is sensitive to the relative preference of rewards, suggesting that these regions
might encode the expected values or relative motivational significance of different decision
options (Tremblay and Schultz, 1999;Hikosaka and Watanabe, 2000;Hollerman et al.,
2000;Kringelbach et al., 2003). Together, these findings suggest a neuroanatomical distinction
between prediction errors and expected rewards (Haruno and Kawato, 2006). Thus, the first
goal of this study was to test whether a reinforcement learning model could be used to uncover
representations of expected rewards and reward prediction errors in an environment that
involved decision-making under uncertainty.

The second goal of this study was to test the role of individual differences in these processes.
Specifically, reinforcement learning models have learning rates that describe how the
prediction error adjusts the weights (equations provided in the ‘Methods’ section): a large
learning rate means that the prediction error strongly influences the adjustment of the weight,
whereas a small learning rate (e.g. close to 0) means that the prediction error only slightly
influences the weights. These parameters are typically selected a priori and fixed across
subjects (e.g. O'Doherty et al., 2003;Seymour et al., 2004). These models have provided
powerful insights into the neural computations of a prediction error, although they are
traditionally tested either in passive learning or in simple choice tasks in which there is a ‘best’
or correct response. However, fixing these parameters to be constant across all subjects might
not be appropriate in more complex situations, such as those that involve decision-making
under uncertainty or risk, in which different individuals might interpret the same reinforcement
in different ways. For example, after losing a high-risk gamble, some people might avoid
another high-risk gamble, whereas others might continue seeking high-risk gambles (Cohen
and Ranganath, 2005). Reinforcement learning models with fixed learning parameters do not
capture this inter-subject variability because fixed learning parameters assume that all subjects
interpret and use reinforcements in the same way to update weights of decision options.
However, these parameters can be empirically estimated for each subject based on their
behavioral data and used to characterize behavioral and neural processes (e.g. Paulus and Frank,
2006). Here, the performance of models that used fixed or individually derived learning rates
to determine the importance of individual differences in reinforcement learning processes are
compared.

METHODS
Task

Seventeen subjects (aged 22–27 years, eight males) were scanned while engaged in a decision-
making task in which on each trial they chose either a high-risk (40% chance of $2.50 and 60%
chance of $0.00) or a low-risk (80% chance of $1.25 and 20% chance of $0.00) decision option.
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Subjects were told the probabilities and amounts of each decision option prior to the start of
the experiment, and they practiced for several minutes before scanning began. This training
minimized early learning and guessing processes that may have affected performance and brain
activity during the early phases of the task. Thus, this task is useful for studying how
reinforcements are used to adjust behavior on the trial-by-trial level rather than examining how
learning optimal response patterns occurs over a longer time scale.

On each trial, subjects first saw a visual cue for 400 ms that indicated that the trial began. They
indicted their decision to choose the high- or low-risk decision option either by pressing a
button or withholding a response, depending on the shape of the cue (press to indicate high-
risk decision if the cue was a square, or withhold a response to indicate a high-risk decision if
the cue was a circle). This was done to prevent subjects from planning their motor responses
before the trial began. Results did not differ according to this manipulation, and these
conditions were thus collapsed. Additional control trials were included in which subjects
simply made a response (i.e. no decision was involved). These trials are not discussed in the
present article. An inter-trial interval of 2–8 s (jittered) separated each trial. There were 300
trials spaced over eight scanning runs. Other, nonoverlapping results from this data set are
reported elsewhere (Cohen and Ranganath, 2005).

MRI acquisition and processing
MRI data were collected on a 1.5T GE Signa scanner at the UC Davis Research Imaging Center.
Functional imaging was done with a gradient echo planar imaging (EPI) sequence (TR = 2000,
TE = 40, FOV = 220, 64 × 64 matrix, voxel size = 3.475 × 3.475 × 5mm3, 22 oblique axial
slices). Coplanar and high-resolution T1 weighted images were acquired from each subject.
EPI data were realigned to the first volume, coregistered with the anatomical scan, spatially
normalized to Montreal Neurological Institute (MNI) space (Brett et al., 2002) resampled to
3.5 mm isotropic voxels, and spatially smoothed with an 8 mm FWHM kernel using SPM99
software.

Model
The model contains the following components: (1) Weights for each decision option
(whigh-risk and wlow-risk for high- and low-risk decision options). Weights are thought to index
expected rewards or subjective values, but are here termed weights for consistency with the
machine learning literature (Sutton and Barto, 1998); (2) A prediction error signal (δ) generator.
The prediction error node takes as input the weight of the chosen decision option and the actual
reward received, and sends the difference between these two as output back to the weights
(equation in the following paragraph). Thus, outcomes that are ‘better than expected’ yield
positive prediction errors and increase the weight of the chosen decision option, and outcomes
that are ‘worse than expected’ yield negative prediction errors and thus decrease the weight of
the chosen decision option.

The model adjusts its weights as follows: The weight on trial t+ 1 is the weight on trial t plus
the prediction error on trial t: w(t+ 1) = α × w(t) + η × δ(t). Thus, when the prediction error is
positive (which occurs after a reward is received), the weight on the next trial (w (t+ 1))
increases. Importantly, the weight is scaled by α, a discount parameter (sometimes called a
‘forgetting’ parameter), and the prediction error is scaled by η, the learning rate. These
parameters can be estimated based on subjects’ behavioral data (see the following text). The
learning rate associated with each weight can take on one of three values on each trial: 0 when
the decision option was not chosen, and, when the decision option was chosen, ηreward and
ηnon-reward for trials in which subjects received or did not receive a reward, respectively. Having
separate parameters provides flexibility for the model to respond to different outcomes in
different ways. In other words, high-risk wins need not be treated as equal to low-risk wins.
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Values of 1.25, 2.5 and 0 were used to represent low-risk rewards, high-risk rewards and non-
rewards, respectively. Although the relative scaling of the two rewards is important (because
the magnitude of the high-risk reward is twice as much as that of the low-risk reward), the
actual numerical values are arbitrary with respect to the fMRI analyses, and the results would
not be different if reward values were, for example, 125 and 250.

Three models were compared: a model in which all parameters were estimated individually
for each subject (the ‘individual differences’ model), a model that used the average parameters
across all subjects (the ‘group’ model) such that parameters were empirically estimated but
were fixed across all subjects (parameters were: high-risk/reward: 0.033; high-risk/nonreward:
0.213; low-risk/reward: 0.201; low-risk/nonreward': 0.137; discount: 0.753); finally, a model
that used fixed, a priori selected parameters for all subjects (the ‘fixed’ model). For the fixed
model, α was set to 0.99 and η was set to 0.7. These parameters have been used previously
(O'Doherty et al., 2003). The purpose of comparing these models was to evaluate the results
that would be obtained if one used the model in different ways.

To estimate these parameters for each subject, an iterative maximum likelihood minimization
procedure (Luce, 1999;Barraclough et al., 2004;Cohen and Ranganath, 2005) was
implemented in MATLAB. On each iteration, the model takes the behavioral choices and
outcomes for each subject and computes the probability of the subject choosing the high-risk
decision on each trial as the difference of the logarithm of the weights:

p(t)high−risk =
exp(w(t)high−risk)

exp(w(t)low−risk) + exp(w(t)high−risk) .

The procedure uses the nonlinear, unconstrained NelderMead simplex method (Lagarias et al.,
1998) to find values of the learning parameters that maximize the sum of p(t)high-risk or p
(t)high-risk across the experiment (depending on the decision made by the subject on trial t).
Learning parameters are adjusted on each iteration until further iterations and adjustments do
not improve the model. Weights are each set to 1 at the start of each iteration, and 0.5 is used
as starting values for all parameters, although the initial values had negligible effects on their
final estimates. There was an average of 479.2 iterations (SD: 259.8, range: 218–1034) until
convergence. Note that the criteria for optimizing learning rates does not involve directly
comparing weights or prediction errors and actual decisions made by the subjects, and is
completely orthogonal to the fMRI data, and so comparing results from the models is not
redundant with how the parameters were estimated.

FMRI analyses
To examine putative neural representations of prediction errors and weights, each model was
fed the unique history of decisions and reinforcements from each subject, and calculated a
reward prediction error and difference in the weights for the two decision options on each trial
of the experiment.1 In this study, the difference between the weights, rather than the weights
themselves, is used because decision options were not associated with unique behavioral
responses, and the brain likely does not house separable representations for ‘high-risk’ and
‘low-risk’ decision options. Because the two decision options have equal mathematical
expected values (i.e. the magnitude of reward times the probability of reward is one dollar for
each option), this difference term may correspond to trial-by-trial changes in relative subjective
value or motivational significance of the two decision options. These vectors of model outputs
were then convolved with each subject's empirically derived hemodynamic response function

1It would be ideal to separate the hemodynamic response from the decision and feedback phases of the trial, as prediction errors may be
differentially represented during these phases. Unfortunately, the rapid event-related design combined with the sluggishness of the
hemodynamic response precludes such a distinction from the present analyses. Thus, each trial was treated as a single event.
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(obtained from a separate visual-motor response task) (Aguirre et al., 1998;Handwerker et al.,
2004) to produce a unique expected blood oxygenation-level dependent (BOLD) response to
these terms for each subject. The procedure is illustrated in Figure 1. To the extent that the
BOLD response in a particular voxel correlates with this independent variable, the voxel covers
tissue in which activity may reflect or be modulated by prediction errors as defined by the
model. This method has been previously used to study the putative neural correlates of
prediction errors (O'Doherty et al., 2003;O'Doherty et al., 2004;Seymour et al., 2004;Tanaka
et al., 2004;Glascher and Buchel, 2005;Haruno and Kawato, 2006).

In the analysis, all of the task variables (combinations of high- and low-risk rewards and
nonreward and a no-decision control condition) and the vectors calculated by the model were
included as independent variables. The task variables were included to remove any possible
shared variance between normal task covariates and the prediction error and weight regressors.
All variables were centered on a mean of zero. Separate general linear models (GLMs) were
conducted for each model. Results of single-subject analyses were maps of statistical values,
where the value at each voxel is the parameter estimate (unstandardized β) of the relation
between the BOLD response in that voxel and the independent variable (e.g. prediction error).
In the present analyses, two maps were of interest: the prediction error and difference in
weights. Group-level analyses were conducted by entering these maps into a one sample t-test,
in which the β-estimate at each voxel across subjects was tested against zero, and subject was
treated as a random variable. Significant activations were identified with a two-tailed threshold
of P < 0.001 and a cluster threshold of five contiguous voxels. In the fMRI behavior correlation,
one subject was removed from analyses because the behavior β-value was over three SDs above
the mean (Figure 2c). However, results with this subject included were very similar.

Behavioral analyses
To examine the correspondence between the model and subjects' behavioral choices,
behavioral responses were compared with prediction errors and weights generated by the
individual differences and fixed models. Responses were coded as 0 (safe decision) or 1 (risky
decision) and were smoothed with a running-average filter with a 10-trial kernel to produce a
continuous vector that reflects the local fraction of choices selected. Such methods are often
used to examine correspondence between model predictions and behavioral selections (Sugrue
et al., 2004;Bayer and Glimcher, 2005;Samejima et al., 2005). Because of autocorrelations
induced by the smoothing, data were analyzed with autoregression, which estimates both the
autocorrelation coefficient [using AR(1)] and the regression parameters that are independent
of autocorrelation present in the data. Greenhouse–Geisser corrections to degrees of freedom
were used in ANOVAs of behavioral fits.

RESULTS
Behavioral results

If subjects chose the decision option with the stronger weight, as reinforcement learning theory
suggests, the model's calculated weights should correlate with subjects' trial-to-trial choices.
This was tested by computing the autoregression with each subject's local fraction of high-risk
choices and the model's calculated weight of the high-risk option for each trial. This β-
coefficient was significantly greater than zero across subjects (average β=0.20, t16=2.6,
P=0.01) (Figure 2a and c). The average β for the analysis with the fixed model was smaller,
although still significant across the group (average β=0.09, t16=2.5, P=0.01). The average β
for the analysis with the group model was not different from zero (average β=−0.08, t16=2,
P=0.054). A repeated-measures ANOVA on these β-values using ‘model’ as factor revealed
that these fits were significantly different (F1.4,22.8=7.04, P=0.008), such that the individual
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differences model yielded greater β-values than those of the group model (P=0.01) and the
fixed model yielded greater β-values that those of the group model (P=0.01).

It was further predicted that prediction error signals are used to guide decision-making (Cohen
and Ranganath, under review). In particular, if negative prediction errors indicate that
reinforcements are worse than expected, these negative prediction errors might signal a need
for adjustments in behavior; larger prediction errors should therefore signal greater need for
behavioral adjustments. If this is the case, the model's calculated prediction error on each
nonreward trial should predict subjects' choices in the subsequent trial. This was
operationalized as whether, following each nonreward, subjects chose the same vs the opposite
decision option on the following trial as on the current one (e.g. when not receiving a high-risk
reward on trial n, does the subject choose another high-risk reward or a low-risk reward on
trial n +1?). The β-coefficient between this trial-to-trial strategy and the model's calculated
prediction error on each of these trials was not significantly different from zero across subjects
(average β=0.78; t16=0.32). This occurred because for some subjects the β-coefficient was
positive and for other subjects this β-coefficient was negative (Figure 2b and c). That is, for
some subjects, larger prediction errors following nonrewards were associated with an increased
probability of behavioral switches, whereas for others the opposite was the case. This
seemingly counterintuitive variability is significantly related to individual variability in the
neural correlates of the prediction error, as described in the following section. The fixed model
also showed no significant β-coefficient across subjects (average β =−0.0003; t16=−0.0008).
The group model, however, showed a significant β-coefficient across subjects (average
β=0.581; t16=4.26, P=0.001). A repeated-measures ANOVA revealed that these fits were
significantly different (F1.3,21.4=5.8, P=0.017) such that the group model yielded greater β-
values than those of the individual differences model (P=0.037), and of the fixed model (P <
0.001).

FMRI results
Neural correlates of value (i.e. difference of weights)—For the individual
differences model, activations were observed in the right amygdala extending into the
hippocampus, right orbitofrontal cortex extending into the ventral striatum, bilateral caudate,
bilateral thalamus/putamen, bilateral dorsolateral prefrontal cortex and cerebellum (Figure 3d).
Figure 4a displays an example BOLD time course and weight vector (convolved with a
hemodynamic response) to illustrate the correlation. No deactivations (i.e. more activity for
the weight of the low-risk option compared to the high-risk option) were observed. Table 1
lists activation foci for this and all other analyses reported here.

The group model yielded activations that were largely overlapping with those observed for the
individual differences model: bilateral posterior orbitofrontal cortex/subgenual cingulate (BA
11/25) as well as anterior orbitofrontal cortex (BA 11), right ventrolateral prefrontal cortex
(BA 47), bilateral thalamus, bilateral dorsal prefrontal cortex (BA 44/45) and parietal cortex
(BA 39) (Figure 3e).

Finally, for the fixed model, activations were observed in right temporal cortex and left
dorsolateral prefrontal cortex (BA 46) and right middle temporal gyrus and superior parietal
gyrus.

Next, the performance of the models is formally compared by testing whether the difference
between β-values at each voxel produced by different models (e.g. group model results–fixed
model results) was significantly greater or less than zero. There were no differences between
the individual differences and group maps. Comparing the individual differences and fixed
maps revealed regions with significantly higher β's in the left cerebellum and right thalamus.
Comparing the group and fixed models revealed several regions with higher β-values for the
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group model, including bilateral caudate, posterior orbitofrontal cortex, cerebellum, thalamus
and bilateral prefrontal cortex (Figure 5a).

Neural correlates of reward prediction error signal—For the individual differences
model, activity in several regions was significantly positively correlated with the reward
prediction error signal, including the left midbrain (anatomically consistent with a source in
the substantia nigra), dorsal cingulate cortex, bilateral prefrontal cortex (BA 6) and right cuneus
(BA 18/19) (Figure 3a and b). Figure 4b displays an example BOLD time course and reward
prediction error vector (convolved with a hemodynamic response) to illustrate the correlation.
In addition to activations (i.e. positive correlations with the reward prediction error signal),
there were also deactivations (i.e. inverse correlations with the reward prediction error signal)
in the head of the right caudate, left middle temporal gyrus (BA 21) and left angular gyrus.

For the group model, activations were observed in bilateral amygdala, ventral striatum
extending in the caudate in the left hemisphere, anterior cingulate and medial supplementary
motor cortex, posterior cingulate and anterior prefrontal cortex (BA 10) (Figure 3c).

Finally, the fixed model produced no significant activations, but a deactivation was observed
in ventrolateral prefrontal cortex (PFC) (BA 47).

Next the performance of the models was directly compared. There were no differences between
the individual differences and group maps. However, comparing the individual differences and
fixed maps revealed regions with significantly higher β's in the dorsal cingulate and
ventrolateral prefrontal cortex (Figure 5c). Comparing the group and fixed models yielded
largely similar results, although additional regions exhibited higher β-values for the group
model including the right ventral striatum and orbitofrontal cortex (Figure 5b).

The variability in the relationship between prediction errors and behavioral strategies (Figure
2c) suggests that individuals differed in how they used the prediction error signal to guide
decision-making. Thus, these individual differences might reflect differences in the neural
representation of the prediction error signal. To test this, the β-value is used between the
prediction error term and the local fraction of stay/switch choices of the subjects (e.g. the
relationships depicted in Figure 2b) as an independent variable in a regression with the
statistical brain activation maps of correlates of the prediction error. Cross-subject variability
in each of these analyses reflects differences in the representation and use of prediction errors
during the task, and thus significant brain activations in this analysis indicate that differences
in how prediction errors guide behavior predict differences in how prediction errors might be
represented in the brain. As seen in Figure 6, the behavioral correlation significantly predicted
the model's fit to the fMRI data in bilateral ventral striatum, orbitofrontal cortex and prefrontal
cortex.2

Next, this individual differences correlation analysis was run using β-coefficients between the
group model's prediction errors and subjects' stay/switch behaviors. In contrast to the findings
obtained from the individual differences model, no activations were observed, even at a liberal
threshold of P < 0.01, uncorrected. Finally, no significant activations were observed for the
fixed model.

2This relationship could not be explained by the use of a win/stay–lose/switch strategy, because the probability of using this strategy did
not correlate with any of the learning parameters (all P > 0.05), nor did it correlate with activation in any of the regions identified in this
analysis (all P > 0.5).
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DISCUSSION
Here, evidence is provided suggesting that, during decision-making under uncertainty, two
variables predicted by reinforcement learning theory and estimated using computational
modeling—reward prediction errors and decision option weights—are encoded in a network
of cortical and subcortical brain structures and used to guide decision-making. Consideration
of individual differences proved central to elucidating the behavioral and neural correlates of
reinforcement learning because the individual differences and group models explained
significantly more variance in the fMRI data than did the fixed model.

Neural representation of value
Activity in several regions including the amygdala, orbitofrontal cortex/ventral striatum and
caudate nucleus correlated with the model-derived estimate of the difference in weights.
Neurons in these regions are known to encode the relative value of rewards as well as
expectations of rewards. For example, orbitofrontal and amygdala neurons show increased
firing rates to preferred rewards compared to less preferred rewards (Everitt et al.,
1991;Tremblay and Schultz, 1999;Hikosaka and Watanabe, 2000;Baxter and Murray,
2002;Gilbert et al., 2003). Thus, these regions may compute online assessments of the relative
value of competing decision options, and may guide behavior by indicating which option is
the most valuable or worthy of pursuit. Consistent with this interpretation, patients with damage
to orbitofrontal cortex and amygdala have impairments in reward-based decision-making and
often continue to prefer risky decision options even when this behavior leads to long-term
losses (Bechara et al., 1997,2000,2003). Among their impairments may be inability to compute
or utilize computations of relative value to guide their decision-making.

In this study, the difference between the weights of the high- and low-risk decision options is
used, rather than the weights themselves, because in this study there were no unique behavioral
responses associated with choosing high- vs low-risk decision options, and so specific motor
representations of the high- and low-risk decision options could not be formed. Thus, what is
represented by the difference vector, and what the brain activations may reflect, is not
representations of decision options or value per se but of the difference in value or motivational
significance between two competing decision options. Other studies have demonstrated that
when specific decisions are linked with specific behaviors (e.g. eye movements or left- vs right-
hand button presses), activity in neural structures that represent those behaviors is influenced
by the value of that decision option (Schall, 1995;Gold and Shadlen, 2000;Sugrue et al.,
2004;Samejima et al., 2005;Cohen and Ranganath, under review). Thus, value might be
encoded in the brain both as strength of action representations and as relative activation of
neurons in orbitofrontal cortex and amygdala, among other regions.

Neural representation of prediction errors
The prediction errors generated by the model correlated with activity in the midbrain, dorsal
cingulate cortex and prefrontal cortex for the individual differences model, and the ventral
striatum, amygdala, dorsal cingulate cortex and prefrontal cortex for the group model. These
activations confirm those reported in previous studies (Schultz et al., 1997;Waelti et al.,
2001;Daw et al., 2002;Holroyd and Coles, 2002;O'Doherty et al., 2003;Schultz, 2004;Seymour
et al., 2004; Rodriguez et al., 2005; Abler et al., 2006). Although precise localization of
activation in the midbrain is difficult, this activation appears to be centered in the substantia
nigra, the origin of the nigrostriatal dopamine pathway. The location of this activation is also
consistent with coordinates reported in previous fMRI studies of reinforcement learning
processes (Seymour et al., 2004;O'Doherty et al., 2006) and with direct recordings of single
unit activity in monkeys (Schultz, 1998;Bayer and Glimcher, 2005).
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In the individual differences model, a deactivation (i.e. inverse correlations with the prediction
error) was observed in the caudate nucleus. Although such deactivations have not been
previously reported, previous investigations of the neural bases of reward prediction error
signals did not test for deactivations, instead using one-tailed statistical tests that would only
reveal positive correlations with the prediction error signal (O'Doherty et al., 2003;Seymour
et al., 2004). Thus, deactivations would not have been identified even if they were present in
the data. However, this finding seems consistent with the presumed role of the caudate as the
‘actor’ in actor–critic models of reinforcement learning (Montague et al., 1996;O'Doherty et
al., 2004). Specifically, the ‘critic’ (thought to be the ventral striatum or midbrain) uses
prediction errors to associate reinforcements with events or actions that preceded them, and
the ‘actor’ uses prediction errors to guide appropriate behavioral responses. Thus, the actor
may use an inverse prediction error term to help motivate behavior (i.e. larger negative
prediction errors means more motivation to adjust behavior) (Joel et al., 2002;Worgotter and
Porr, 2005).

The variance in the relation between the prediction errors and stay/switch strategies following
losses suggested that different subjects used or calculated the prediction error differently. This
seems counterintuitive because reinforcement learning theory suggests that larger prediction
errors signal a greater need to change behavior. In other words, it appears as if in some cases,
observed behavior is ‘opposite’ to what the model suggests behavior should be. Given that
there is no optimal policy or correct strategy, it is possible that some subjects viewed choosing
a nonrewarded decision a second time as a strategy ‘switch’, which would mean they actually
were using prediction errors as reinforcement learning suggests, but that their conceptualization
of strategy was different from how it was modeled. This could occur, for example, if some
subjects thought that when a decision option did not provide a reward in the current trial, it
would in the next trial. Regardless, this variance proved to be meaningful because the prediction
error–behavioral strategy β-coefficients explained variance in the prediction error–brain
activation correlations. Such relationships were observed primarily in the ventral striatum and
orbitofrontal cortex, consistent with previous reports that these regions are sensitive to
prediction errors (McClure et al., 2003;O'Doherty et al., 2003;Abler et al., 2006;Haruno and
Kawato, 2006;Jensen et al., 2006). There were no similar correlations with the group and
fixed models, even at more liberal statistical thresholds. This dissociation suggests that models
incorporating individual differences provide maximal sensitivity to uncovering further
individual differences. Interestingly, the regions that exhibited significant correlations with the
individual differences model overlapped considerably with the regions identified in the
group analysis, in particular the ventral striatum.

The importance of individual differences naturally leads to the question of their origins.
Differences in risk-taking preferences have been linked to a number of neurobiological and
psychosocial factors such as the concentration of dopamine D2 receptors in the limbic system
(Noble, 1998,2003), socioeconomic status (Diala et al., 2004), or personality (Craig,
1979;Zuckerman and Kuhlman, 2000;Petry, 2001). Lee and colleagues (Barraclough et al.,
2004;Lee et al., 2005) found that reinforcement learning parameters in monkeys are highly
stable over many testing sessions of the same experiment, suggesting that these learning
parameters reflect stable individual differences. Stability of learning parameters across
multiple settings and over time is especially relevant to the present study, because the same
individuals might have different learning rates in different tasks, such as those in which some
strategies provide a greater cumulative reward in the long run. Regardless of their origins and
generalizability, however, characterizing how individual differences modulate these processes
may prove critical to elucidating the neural mechanisms of reinforcement learning and
decision-making.
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However, it is not suggested that choosing learning parameters a priori to be the same for all
subjects is incorrect or inappropriate. Indeed, without measuring choice behavior over time it
is impossible to empirically estimate learning parameters how they were estimated here. Fixed
parameters might be appropriate in passive learning experiments or in simple decision-making
situations in which the optimal response is always to maintain rewarded behaviors and avoid
punished behaviors. However, in more complex situations in which different individuals
evaluate and utilize reinforcements in different ways, models with a priori chosen parameters
may not adequately characterize reinforcement learning processes.

Relations to other reinforcement learning models
Nearly all reinforcement learning models contain the same basic components: representations
of each decision option or stimulus (weights, in this study), and a means to adjust those
representations (typically a prediction error). Many variants of reinforcement learning models
exist and could be related to behavioral and neuroimaging data, but differences between
different models are typically minor and more related to the experimental paradigm than to the
interpretation of model parameters and output (see Sutton and Barto, 1998, for an extensive
comparison of the similarities and differences between various reinforcement learning models).
The model used in the present study is of course not the only possible model that could be
applied to this data set; indeed, one could propose a new model specifically designed to capture
behavior in this task. However, the model used here was selected because (1) it is widely used
in neuroscience to study reinforcement learning (see Montague and Berns, 2002, for a review)
and (2) it has a proposed biological basis and is used to investigate neuroanatomical correlates
of reinforcement learning and decision-making (Schultz et al., 1997;Barraclough et al.,
2004;Montague et al., 2004). Typical uses of such models typically involve passive learning
(Seymour et al., 2004) or very simple decision-making situations in which one response is
optimal and another suboptimal (O'Doherty et al., 2004). The fact that this simple
reinforcement learning model is capable of modeling behavior and brain activity during more
complex situations that involve risk and uncertainty with no optimal response is a strength of
the reinforcement learning model approach to understanding dynamic changes in brain activity.
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Fig 1.
Illustration of prediction error independent variable used in fMRI GLM. (a) shows the unit-
length prediction errors across the entire experiment for one subject calculated by the model.
This vector of prediction errors is then convolved with the subject's hemodynamic response
HRF; (b) to create a vector of an expected hemodynamic response to prediction errors (c). This
vector is entered into the GLM analysis as an independent variable (see ‘Methods’ section).
(d) shows an enlarged section of the expected BOLD response to reward prediction errors.
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Fig 2.
Model outputs predict behavioral choice data. Plotted are the local fraction of choosing the
high-risk option (a) and choosing the opposite decision following nonrewards (b) represented
as the solid black line, and the difference in the model's high- vs low-risk decision option
weights (a) and the prediction error on each trial (b) represented as the dotted gray line. Results
are displayed from six separate subjects. (c) Displays the β-coefficients for each subject.
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Fig 3.
Group activation maps depicting brain regions in which activity correlated with the prediction
error term (a–c) and difference in weights (d,e) for the model using individual differences in
learning parameters (a,b,d) or group-defined parameters (c,e). Insets in (b) show precise
location of midbrain activation.
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Fig 4.
BOLD responses from a single subject correlate with variables predicted by the individual
differences model. (a) Correspondence between BOLD signal from the maximally significant
voxel in orbitofrontal cortex (OFC; solid black line) and the difference of the high- and low-
risk weights calculated by the model (dotted gray line). (b) The BOLD response from the
maximally significant voxel in dorsal cingulate cortex (dCC; solid black line) and the model's
prediction error, convolved with a hemodynamic response function (dotted gray line). Cross-
hairs in the T1 display the position of the voxel (MNI coordinates displayed under the T1).
BOLD responses are low-pass filtered for illustration purposes.
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Fig 5.
Regions in which the group (a–b) and individual differences (c) models provided significantly
higher parameter estimates than did the fixed model for neural correlates of a reward prediction
error (b–c) and the weights (a). Black circles enclose activations for ease in viewing.
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Fig 6.
The model fit to behavior predicted the model fit to brain activity in striatum and prefrontal
cortex. The top row displays a selection of brain regions in which this correlation was
significant. Scatter plots depict the relationship between model fit to behavior (unstandardized
β-coefficient between model's prediction errors and subjects' stay/switch decisions; X-axis)
and model fit to brain activity (average unstandardized parameter estimates from all voxels in
the indicated region; Y-axis) in selected regions. Note that the X- and Y-axes display
unstandardized β-coefficients and are thus their magnitudes are not directly comparable. L,
left; R, right; V, ventral; str., striatum; OFC, orbitofrontal cortex; PFC, prefrontal cortex.
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Table 1
List of activation clusters

Region X, Y, Z t Brodmann
Area (BA)

Difference of weights
Individual differences model
  R. amygdala/hippocampus 24, −13, −12 4.60
  R. posterior orbital gyrus 14, 14, −12 5.01 11
  L. putamen −24, −20, 12 4.90
  R. putamen 21, −14, 13 5.97
  L. caudate −17, 3, 14 4.28
  R. caudate 13, −14, 19 4.47
  R. dorsal cingulate 7, −27, 33 4.06 23
  L. superior frontal gyrus −43, 15, 43 4.67 9/44
  R. superior parietal gyrus 23, −64, 57 4.53 7
  L. superior parietal gyrus −26, −65, 53 4.50 7
  R. cerebellum 24, −70, −28 4.78
  L. cerebellum −24, −74, −34 4.60
  R. middle temporal gyrus 46, −58, −8 4.61 37
Group model
  L. posterior orbital gyrus −28, 11, −20 4.62 38
  R. posterior orbital gyrus 18, 12, −18 6.90 11
  R. caudate 10, 2, 7 4.07
  R. collateral sulcus 38, −56, −14 5.41 37
  R. inferior frontal gyrus 42, 50, −5 7.04 46
  R. anterior insula 29, 19, 7 6.66 48
  L. thalamus −11, −24, 12 5.17
  R. posterior cingulate 10, −44, 26 5.36 23/26
  R. medial frontal gyrus 36, 30, 34 4.83 46
  L. medial frontal gyrus −46, 19, 36 4.88 44/46
  R. superior frontal gyrus 21, −4, 66 5.36 6
  L. precuneus/angular gyrus −36, −64, 53 4.57 7
  R. precuneus/angular gyrus 38, −56, 53 5.24 40
  R. cerebellum 27, −77, −34 5.51
  L. cerebellum −21, −78, −31 4.43
Fixed model
  R. middle temporal gyrus 45, −54, −16 4.59 37
  L. middle frontal gyrus −46, 50, 4 4.60 46
  R. superior parietal gyrus 26, −64, 58 5.67 7
Individual differences–fixed
  R. thalamus −12, −19, 14 5.11
  R. cerebellum 38, −65, −35 5.78
Group–fixed
  R. cerebellum 14, −79, −33 5.55
  Cerebellar vermis 0, −54, −17 5.10
  R. posterior orbital gyrus 18, 12, −17 7.34 11
  L. posterior orbital gyrus −19, 8, −19 4.16 48
  R. middle frontal gyrus 42, 51, −6 6.19 46
  L. middle frontal gyrus −46, 50, −4 5.42 46
  R. collateral sulcus 42, −56, −12 5.04 37
  R. anterior insula 33, 22, 4 4.93 47/48
  R. caudate 10, −2, 12 5.95
  L. thalamus −14, 9, 12 5.55
  R. posterior cingulate 11, −48, 26 4.91 23
  L. middle frontal gyrus −36, 12, 40 6.77 44
  R. middle frontal gyrus 34, 9, 47 4.40 6
  L. precuneus/angular gyrus −35, −69, 55 5.09 7
  R. precuneus/angular gyrus 35, −61, 52 5.28 7/40
Prediction error
Individual differences model
  L. substantia nigra/midbrain −10, −18, −9 4.73
  L. dorsal cingulate −10, −24, 54 4.63 4/6
  L. middle frontal gyrus −40, −9, 54 4.94 6
  R. middle frontal gyrus 40, −11, 49 5.16 6
  R. superior frontal gyrus 14, −9, 71 4.67 6
  R. cuneus 15, −86, 19 4.53 18/19
  R. caudate 17, −16, 23 −4.49
  L. middle temporal gyrus −56, −44, −5 −5.43 21
  L. angular gyrus −46, −70, 33 −4.55 39
Group model
  L. hippocampus/amygdala −21, −13, −26 4.86 36
  R. amygdala 21, 0, −23 5.53 28
  R. ventral striatum 8, 2, −4 5.94
  L. ventral striatum −10, 3, −5 5.86
  R. middle occipital gyrus 39, −87, −11 5.16 19
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Region X, Y, Z t Brodmann
Area (BA)

  L. medial orbital gyrus −8, 36, 0 4.77 11
  L. middle occipital gyrus −38, 91, 5 4.58 18
  Posterior cingulate 5, −52, 28 5.11 23
  L. cingulate sulcus −7, 32, 29 5.08 32
  L. precentral sulcus −39, −13, 35 4.86 3
  L. superior frontal gyrus −10, 45, 47 6.25 9
  R. superior frontal gyrus 15, 35, 40 5.55 32/9
Fixed model
  L. middle frontal gyrus −48, 43, 1 −5.94 45
Individual differences–fixed
  L. dorsal cingulate −7, −27, 49 4.89 23
  L. middle frontal gyrus −45, −13, 55 4.37 6
  L. anterior insula −36, 22, 9 4.81 48
  L. superior frontal gyrus −7, 1, 61 5.05 6
  L. cuneus −13, 82, 16 4.29 19
  R. cuneus 14, −85, 19 4.17 18/19
Group–fixed
  L. posterior orbital gyrus −24, 17, 18 4.12 48
  L. middle temporal gyrus −62, −51, −18 4.91 37
  L. ventral striatum −10, 3, −4 5.51
  L. middle frontal gyrus −46, 9, 36 4.61 44
  L. superior frontal gyrus −21, 11, 66 6.88 6
  R. caudate 14, −5, 21 5.54
  R. angular gyrus 37, −78, 34 4.88 19
  R. superior frontal gyrus 8, 25, 46 7.10 8
Individual differences correlation with prediction error
Individual differences model
  L. lateral orbitofrontal cortex −31, 28, −23 5.97 47/11
  R. lateral orbitofrontal cortex 21, 25, −21 8.40 11
  R. ventral striatum 12, 19, 1 5.26
  L. ventral striatum −17, 26, −2 5.50
  L. thalamus −3, −16, 1 6.20
  R. superior frontal gyrus 17, 60, 22 7.84 10
  L. superior frontal gyrus −3, 63, 19 6.01 10
  Posterior cingulate 3, −27, 26 8.97 23
  R. middle frontal gyrus 27, 23, 55 7.37 8
  R. superior parietal gyrus 18, −78, 57 5.68 7
  L. superior parietal gyrus −25, −68, 64 6.43 7
  R. caudate 17, 8, 18 4.37
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