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SUMMARY

DNA methylation plays an important role in both normal human development and risk of disease. 

The most utilized method of assessing DNA methylation uses BeadChips, generating an 

epigenome-wide “snapshot” of >450,000 observations (probe measurements) per assay. However, 

the reliability of each of these measurements is not equal, and little consideration is paid to 

consequences for research. We correlated repeat measurements of the same DNA samples using 

the Illumina HumanMethylation450K and the Infinium MethylationEPIC BeadChips in 350 blood 

DNA samples. Probes that were reliably measured were more heritable and showed consistent 

associations with environmental exposures, gene expression, and greater cross-tissue concordance. 

Unreliable probes were less replicable and generated an unknown volume of false negatives. This 

serves as a lesson for working with DNA methylation data, but the lessons are equally applicable 
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to working with other data: as we advance toward generating increasingly greater volumes of data, 

failure to document reliability risks harming reproducibility.

In Brief

DNA methylation is an important mechanism of gene regulation. The most popular method to 

measure methylation is to use BeadChips that contain probes to index hundreds of thousands of 

methylation sites at once. However, these probes are not equally reliable. In blood DNA, 

unreliable probes were less heritable and less likely to index gene expression, and associations 

were less replicable. This has serious downstream consequences for reproducible science and 

should serve as a caution for all data scientists regardless of discipline.

Graphical Abstract

INTRODUCTION

DNA methylation is an epigenetic mechanism that occurs by the addition of a methyl (CH3) 

group to DNA, resulting in modification of genetic function without changes to DNA 

sequence. This mechanism plays an important role in human development and disease, 

primarily by regulating gene expression.1 Because of the modifiable nature of epigenetic 

influence, research into DNA methylation has heralded a new era in the elusive search for 

the route by which the external world might “get under the skin.”2 By its very nature, this 

question spans multiple disciplines; geneticists,3 biologists,4 computational scientists,5 
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neuroscientists,6 social scientists,7 and philosophers8 have been drawn to massive new data 

about the epigenome with an eye toward how it might explain health, disease, and our very 

nature. The promise of the epigenetics revolution has been sweeping.

In humans, DNA methylation occurs at specific sites across the genome (almost exclusively 

CpG sites, where a cytosine nucleotide is located next to a guanidine nucleotide), and there 

exist hundreds of thousands of such sites. Advances in technologies for quantifying site-

specific DNA methylation have aided an explosion of research aimed at identifying 

associations between numerous environmental exposures, disease processes, and 

methylomic variation.9–12 One such measurement technology, the Infinium BeadChip 

produced commercially by Illumina, has fueled much of the research in epigenetic 

epidemiology. This platform was developed to simultaneously assay thousands of DNA 

methylation targets in the genome. The relative ease of use, low cost, and modest sample 

requirements of this technology have enabled a new generation of researchers to add DNA 

methylation to their research programs, which only a few years ago would have posed an 

insurmountable challenge. We are among this new generation. This article reports our 

experience, excitement, and frustration, as a team of multidisciplinary scientists, trying to 

understand and use these data.

When we began to produce DNA methylation data, we reviewed the literature for best-

practice information and guidelines to ensure the highest validity and downstream 

reproducibility. It was at this point we realized there was no consensus. We had generated 

data using the Infinium Methylation450 (450K) BeadChip, the gold standard for epigenome-

wide DNA methylation data. This provides ∼450,000 measurements per individual subject. 

However, we learned that a significant proportion of the thousands of data points do not 

yield the equivalent value when quantified twice from the same DNA sample.13,14 This 

situation is compounded by the nature of our work, which involves repeated measurement of 

individuals studied longitudinally. This in itself raises an additional complication: 

measurement methods become obsolete and are superseded by new, improved products. In 

this case, the 450K BeadChip was recently replaced by the Infinium MethylationEPIC 

(EPIC) BeadChip, which contains most of the content (approximately 93%) of the 450K 

BeadChip augmented with probes covering an additional ∼400,000 CpG sites. Published 

research has suggested that at the array level, DNA methylation values generated using both 

iterations of Illumina DNA methylation BeadChips are highly correlated, yielding 

correlations >0.9;15–18 however, the reliability of individual-level probe measurements 

between the two arrays varies substantially. Using DNA derived from blood collected from 

145 adults, one study17 observed that reliability correlations between probes on the 450K 

and EPIC BeadChip ranged from −0.34 to 0.95 with a median value of 0.15, and only 2.6% 

of the ∼420,000 probes assayed had reliability correlations above 0.8. Using DNA derived 

from blood collected from 109 newborns and 86 adolescents, a second study18 observed 

similarly low correlations (median r = 0.23, only ∼10% of probes with correlations >0.8).

These aforementioned reports documented patterns of uneven reliability in the repeated 

measurement of DNA methylation.13,14,17,18 However, we were not prepared for the scarcity 

of information documenting the consequences of these patterns; consequences that, if shown 

to affect inferences made from DNA methylation data, would have widespread implications 
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for reproducibility. Most research studies treat the ∼450,000 observations as “equals,” each 

as likely as the next to report true biological differences from a statistical point of view. 

However, to uncover consistent, replicable signals of DNA methylation dynamics, be it over 

time, between populations, or between exposures, measurement reliability is crucial. 

Analysis of probes that cannot be repeatedly measured with precision has the potential to 

yield irreproducible findings borne from spurious associations, and, just as importantly, may 

miss discoveries.

Here we share how we went about learning of the cross-disciplinary data challenges of high-

throughput DNA methylation data and discuss the implications of these challenges for data 

processing, analysis, algorithm generation, and interpretation. Our goal is to promote 

communication about careful practices for working with the new data being generated in this 

important field.

We first performed test-retest measurement assessments to quantify the reliability of DNA 

methylation data. We assessed probe reliability between the two types of BeadChips using 

data on 350 DNA samples measured twice; once using the 450K BeadChip and again using 

the EPIC BeadChip. The individuals are participants in the E-Risk Study, a birth cohort of 

2,232 twins born in 1994–1995 in the United Kingdom. DNA methylation was measured at 

age 18 years, when participants contributed whole blood for DNA analysis. Probe reliability 

was defined as the intraclass correlation (ICC) between repeat measures of individual probe 

β values measured on the two BeadChips. We then assessed the impact of differential 

reliability on numerous lines of enquiry of interest to many researchers, ourselves included. 

First, we tested how reliability influenced the ability to detect genetic and environmental 

effects on the epigenome through (1) analysis of heritability in the E-Risk twin sample and 

(2) analysis of methylation quantitative trait loci (mQTLs) identified in genome-wide 

association studies (GWAS) of DNA methylation. Second, we tested the implications of 

differential reliability for association testing by analyzing results of epigenome-wide 

association studies of tobacco smoking, one of the most harmful health risks in the modern 

world.19 Third, we tested the implications of differential reliability for epigenetic biomarker 

development by analyzing multi-probe-algorithm-based measurements that are intended to 

capture information about aging (i.e., “DNA methylation clocks”). Finally, we tested the 

implications of differential reliability in ascribing biological function to DNA methylation 

by assessing the impact of reliability on (1) correlations between DNA methylation and gene 

expression and on (2) correlations between levels of DNA methylation measured in blood 

tissue and brain tissue.

RESULTS

Reliability of CpG Probes Is Low and Highly Variable

We use “reliability” to refer to the reproducibility of methylation probes’ values. We 

measured probe values twice from the same DNA source (DNA was sourced from a single 

blood draw via a single extraction). One set of measures was made using the 450K 

BeadChip, the other set using the EPIC BeadChip. Our analysis was restricted to probes 

found on both platforms (438,593 probes).
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Probe reliabilities were computed using ICCs calculated for each of the 438,593 autosomal 

probes present on both the EPIC and 450K BeadChips that passed quality control. ICCs are 

an oft-used metric to assess reliability in test-retest situations,20 and many different models 

exist depending on the way in which the test-retest data are generated. Here, we calculated 

ICCs based on a mean-rating (k = 2), absolute-agreement, 2-way random-effects model. We 

chose this model using the guidelines outlined by Koo and Li,20 where mean-rating (k = 2) 

relates to the number of repeated measures (i.e., BeadChips per sample); absolute agreement 

requires that not only do the values across BeadChips correlate but that values are in 

agreement; and 2-way random effects relates to the generalizability of the ICCs to any 

subsequent similarly characterized rater (where rater = BeadChip probe).

ICCs between probes ranged from −0.28 to 1.00 (Supplemental Information, Section 1.1; 

Figure S1; Data S1). Probe reliabilities were skewed toward zero, with a mean of 0.21 

(median = 0.09). This is low reliability considering that, in the context of establishing 

reliable measurement, ICCs below 0.4 are considered “poor,” those between 0.4 and 0.6 are 

considered “fair,” between 0.6 and 0.75 “good,” and above 0.75 “excellent.”21

The reliabilities that we observed in our data were highly correlated with the reliabilities 

observed by Logue et al.,17 who also compared probes across 450K and EPIC BeadChips (r 

= 0.86, p < 0.01, Supplemental Information, Section 1.1; Figure S2). This suggests that the 

low reliabilities that we observed across the arrays are reproducible in other datasets. 

Importantly, the low reliabilities that we observed were unlikely to be solely due to 

differences between 450K and EPIC BeadChip probes. First, previous studies have 

documented similar low reliabilities in 450K-450K probe comparisons13,14 and EPIC-EPIC 

probe comparisons.17 Second, we conducted EPIC-EPIC array comparisons for a subset of 

Dunedin Study samples (n = 28) (for comparison purposes, we restricted analysis to the 

∼440,000 probes overlapping with the 450K array as described throughout this paper). 

Several noteworthy details emerged. (1) The median reliability in our EPIC-EPIC 

comparison was 0.26. This is higher than the median reliability (0.09) observed in our 450K-

EPIC comparisons, but still falls squarely in what is considered to be “poor” reliability.21 (2) 

It is not clear what accounts for the higher EPIC-EPIC reliability; it could be due to 

consistency of the platform or it could be due the fact that, unlike probes for the 450KEPIC 

comparisons, probes for the EPIC-EPIC were assayed at the same time, using the same 

reagents, equipment, and so forth. (3) The correlations between the EPIC-EPIC reliabilities 

estimated by us in the Dunedin Study with the 450K-EPIC reliabilities (estimated by us in 

the E-Risk Study) was 0.77 (Figure S3). (4) When performing the analyses set forth in this 

manuscript using EPIC-EPIC ICCs rather than 450K-EPIC ICCs, we arrive at the same 

conclusions: we found that, like between-array reliability, within-array reliability is low, 

skewed toward zero, and has detrimental effects on research findings, and that differences in 

450K and EPIC BeadChip probes are unlikely to be the sole cause of between-array 

unreliability (Supplemental Information, Section 1.1).

As a sanity check, we also sought to replicate previously observed associations between 

reliability and (1) the mean and standard deviation (SD) of methylation levels (β 
values)13,14,17 (Supplemental Information, Section 1.2) and (2) the genomic annotation 

(location) of probes13,18 (Supplemental Information, Section 1.3). We observed the same 
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associations as previously reported. Taken together, this suggests BeadChip-wide differential 

reliabilities are reproducible and systematic in pattern.

Previous methodological studies have drawn attention to three factors that might 

compromise the quality of methylation BeadChip data: probe invariance,22–24 potential 

probe hybridization problems,25 and skewness.26 We tested whether these features are 

sufficient to capture unreliability. They are not. Probe unreliability exists in probes that are 

variable or do not have potential probe hybridization problems, and probe reliabilities 

calculated on β values resemble the reliabilities of M values, a method for transforming 

skewed probe distributions26 (Supplemental Information, Section 1.4).

In summary, we replicated previous reports of low reliability across probes common to the 

450K and EPIC BeadChips, demonstrating that, paradoxically, poor reliability is 

reproducible. Moreover, factors commonly thought to account for unreliability (such as 

invariance) do not provide a satisfactory account of its ubiquity.

Evaluating the Consequences of Unreliable Probe Measurements

Our data suggest that the majority of probes we tested have low test-retest reliability. We 

now examine the practical implications of this observation for epigenetic research by 

applying our 450K-EPIC reliabilities to the results of previously published epigenetic 

studies. In all cases, these previously published studies were based on data derived using 

450K BeadChips because (1) the EPIC BeadChip is relatively new, and most published 

research is based on the 450K BeadChip, (2) the probes common to the EPIC and 450K 

BeadChips reflect almost all (∼93%16) of the probes unchanged from the 450K BeadChip, 

and (3) earlier 450K-450K comparisons showed patterns of reliabilities similar to those of 

the 450K-EPIC comparison.13,14

Estimates of Genetic and Environmental Effects on DNA Methylation Are Affected by 
Unreliable Measurement

Genetic and environmental effects on a phenotype can be estimated by comparing the 

relative phenotypic differences between monozygotic (MZ) and dizygotic (DZ) twins. The 

assumptions behind this model are that additive genetic factors are perfectly correlated 

between MZ twins (i.e., genetic correlation = 1) but are only 50% correlated between DZ 

twins (i.e., genetic correlation = 0.5) and that shared non-heritable influences are equally 

similar between MZ and DZ twin pairs. We previously reported the probe-specific genetic 

and environmental architecture of DNA methylation.24 Using our twin design, we 

decomposed variation in each probe into three variance components: additive genetic effects 

(labeled “A”), shared environmental effects (“C”; environmental effects that each twin in a 

twin pair share, making twins more similar to each other), and non-shared (or unique) 

environmental effects (“E”; environmental effects that are specific to each twin within a pair, 

making twins less similar to each other). Figure 1 shows the association between probe 

reliability and estimates of A (Figure 1A), C (Figure 1B), and E (Figure 1C). Reliability was 

significantly correlated with higher heritability (r = 0.70, p < 0.01, Figure 1A). In contrast, 

low-reliability probes tended to be suffused with more non-shared environmental variance (r 

= −0.58, p = 1.00, Figure 1C). Given that the non-shared environmental variance component 
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in biometric models also includes measurement error, these probes are possibly less likely to 

reflect true environmental effects than they are to reflect unreliable measurement. (The 

correlation between reliability and estimates of shared environmental variance [C] was low, r 

= −0.07, possibly reflecting the fact that the classical twin design has limited power to 

identify precise estimates of shared environmental influence.27)

We further examined how unreliability affects discovery research about the genetic etiology 

of DNA methylation. A recent GWAS of DNA methylation identified ∼55,000 methylation 

mQTLs, DNA sequence variants that are associated with differential DNA methylation.28 

Figure 2 shows that the reliability of probes indexed by mQTLs in our data (N = 50,900) is 

higher than the reliability of probes that are not (N = 387,693).

In summary, given that a significant proportion of probes are suffused with unreliability (as 

indicated by poor test-retest reliability and as further indexed by high E-components in 

biometric models), the ability to detect associations between DNA methylation levels and 

genetic influences will be compromised.

Probe Reliability Affects Association Testing

We hypothesized that reliability is related to the likelihood that associations between 

environmental exposures and specific probes would replicate across independent studies. To 

test this, we focused on one of the most robust findings in epigenetic epidemiology: the 

effect of tobacco smoking on DNA methylation. We identified 22 studies that reported an 

epigenomewide analysis of current versus never smoking using the 450K BeadChip 

platform12,29–34 (Table S4). For each study, we obtained lists of probe IDs and direction of 

effect for probes that were significantly associated with current smoking (as determined by 

the study authors; total number of probes = 3,724; number of probes per study = 84–2,441). 

We then determined the extent to which individual probes replicated across the 22 studies by 

summing the number of times each probe was listed with consistent direction of effect (i.e., 

consistent cross-study increases or decreases in methylation in response to smoking). The 

number of individual replications across studies was associated with reliability (r = 0.52, p < 

0.001, Figure 3). The mean number of replications for low-reliability probes (here defined as 

reliability <0.4) was 6.84 (median = 1, SD = 6.78, n = 1,630 probes), whereas the mean for 

high-reliability probes (reliability >0.75) was 13.1 (median = 15, SD = 5.11, n = 391 

probes).

In summary, the likelihood of replicating associations between exposures and DNA 

methylation probes is significantly greater when studying reliable probes. Unreliable probes 

are likely to generate false positives and to mask true associations and are less likely to be 

reproducible.

Publicly Available DNA Methylation Aging Algorithms Contain Unreliable Measurements

There is enormous interest in developing and applying algorithms that use DNA methylation 

to index biological aging.35 A critical component of the success of these “DNA methylation 

clocks” is that probes comprising the algorithms are reliably measured so that they might be 

applied to any external dataset. We tested the hypothesis that these algorithms are more 

likely to capture reliable probes than unreliable probes. Figure 4 shows the distribution of 
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probe reliabilities for three established DNA methylation aging-associated clocks: (1) the 

“Hannum clock,”36 (number of probes = 63), (2) the “Horvath clock”37 (number of probes = 

334), and (3) the “Levine clock”38 (number of probes = 512; the number of probes reflects 

those available in our data). Each aging algorithm had median probe reliabilities higher than 

that of the background distribution. However, the distribution for all three algorithms was 

not solely composed of reliable probes; each algorithm contained many probes whose β 
values were unreliable.

In summary, externally validated DNA methylation algorithms are generally composed of 

reliable probes. However, their performance could be improved by utilizing more reliable 

DNA methylation measurements. This perhaps emphasizes the point that algorithms of this 

type necessitate careful, extensive external validation; we hypothesize that algorithms over-

represented by unreliable probes will, by their very nature, fail to perform well under varied 

testing situations.

Reliability Influences the Association between DNA Methylation and Gene Expression

A goal of epigenetic discovery is to assign biological meaning to the observed patterns of 

DNA methylation (e.g., Schubeler2 and Teschendorff and Relton39). To this end, we tested 

the hypothesis that DNA methylation probes with higher reliability were more likely to 

index variation in gene expression, the process by which the information encoded in a gene 

is used to direct the assembly of a protein molecule. We used two approaches.

First, we used the results of global DNA methylation-gene expression correlation patterns 

described by Kennedy et al.,40 wherein 36,485 and 114,536 unique DNA methylation probes 

were associated with gene expression across two cohorts (GTP and MESA, respectively; p < 

1 × 10−5). Figure 5A shows that these significantly correlated methylation probes were more 

likely to be reliable (median reliability in GTP = 0.21, proportion of these probes with 

reliability >0.75 = 11.2%; median reliability in MESA = 0.20, proportion of these probes 

with reliability >0.75 = 10.1%; gene set enrichment analysis [GSEA] enrichment p < 1 × 

10−4 in each) than methylation probes that were not discovered to be related to gene 

expression. Furthermore, probes that were significantly correlated with gene expression in 

both datasets had higher reliabilities than those identified in only one dataset (median 

reliability = 0.36 versus 0.17, proportion of probes with reliability >0.75 = 14.7% versus 

9.4% for both datasets versus one dataset, respectively; GSEA enrichment p < 1 × 10−4). 

This suggests that reliability of DNA methylation probes influences the ability to detect 

correlates of biological function in a reproducible manner.

Second, using gene expression data available in the Dunedin Study, we calculated the 

correlation between gene expression probeset values with DNA methylation β values for 

every CpG probe localized to the transcription start site (TSS) of that gene. We restricted 

analysis to probes within the TSS, as these are hypothesized to have direct effects upon 

expression of the localized gene. As shown in Figure 5B, DNA methylation probes that 

significantly correlated with expression probesets (α = 1 × 10−7, n = 278) had significantly 

higher reliabilities than DNA methylation probes that did not (n = 23,261; median reliability 

of correlated probes = 0.64, proportion of these probes with reliability >0.75 = 36.0%; 
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median reliability of non-correlated probes = 0.04, proportion of these probes with reliability 

>0.75 = 3.4%; Figure 5C).

In summary, DNA methylation probes were more likely to correlate with transcriptional 

variation if they were reliably measured. Reliable probes are more likely to index 

reproducible biological correlates, whereas unreliable probes may mislead about biological 

function.

Reliability Influences the Concordance of Blood and Brain Methylation Levels

Most epidemiological investigations into exposure-related differential DNA methylation are 

undertaken using DNA derived from whole blood. This is an expedient choice due to the 

relative ease of collecting blood in population-based studies. However, many exposures in 

which epidemiologists are interested are hypothesized to have their effects (or 

consequences) in other tissues, such as the brain, raising the question of whether peripheral 

blood is a problematic surrogate tissue. Previously, we evaluated the similarity of 

methylation levels between blood DNA and DNA from four brain regions (prefrontal cortex, 

entorhinal cortex, superior temporal gyrus, and cerebellum) using the 450K BeadChip, and 

showed that only a small proportion of probes measured in blood correlate with methylation 

levels in the brain.41

We hypothesized that these small numbers of probes that register similar levels of DNA 

methylation in blood and brain tissue would be over-represented by high-reliability probes. 

To test this, we cross-referenced the correlations between DNA methylation levels in blood 

and each of four brain regions (“blood-brain concordance”) with our 450K-EPIC probe 

reliabilities. Blood-brain concordance was related to reliability (rho = 0.22–0.38, p < 0.01 

across the four brain regions). Figure 6 shows the distribution of reliability across low- 

(<0.4), mid- (0.4–0.75), and highconcordance (>0.75) probes in four brain regions. Median 

reliabilities for probes with low blood-brain concordance were 0.08 regardless of brain 

region, while median reliabilities for probes with high blood-brain concordance were 0.90 

across the four brain regions. Moreover, probes that showed high blood-brain concordance 

in all four brain tissues were the most reliable (median reliability = 0.92, number of probes = 

6,774, proportion of these probes with reliability >0.75 = 78.7%) while probes that had low 

blood-brain concordance in each of the four brain tissues were the least reliable (median 

reliability = 0.08, number of probes = 397,091, proportion of these probes with reliability 

>0.75 = 3.1%).

In summary, reliable probes are more likely to exhibit cross-tissue concordance in DNA 

methylation. Unreliable probes may be less likely to prove useful in developing blood-based 

biomarkers of brain dysregulation.

DISCUSSION

The reliability of probe-level DNA methylation measurement is highly variable across the 

∼440,000 sites indexed on the 450K and EPIC BeadChips. This differential reliability has 

detrimental downstream implications: it undermines published research and masks potential 

new discoveries.
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First, we demonstrated that detection of both environmental and genetic effects on DNA 

methylation is related to differential probe reliability. The extent to which DNA methylation 

responds to environmental influences is under intense investigation and is thought to be one 

route via which environmental exposures “get under the skin.”2 There is also much interest 

in the relationship between DNA sequence variation and DNA methylation.23,24 Here, we 

showed that the most reliable probes tend to be under significant genetic influence, whereas 

the least reliable probes are suffused with non-shared environmental variation (which also 

includes variation arising due to measurement error). These findings suggest that for a 

proportion of sites that indicate high sensitivity to environmental input, identification of true 

signal might be hindered by the relatively higher probability of imprecise measurement and 

that insights into the genetic basis of methylation may be missed due to the poor reliability 

of DNA methylation.

Second, we demonstrated the implications of differential reliability for epigenome-wide 

association testing. To achieve this we focused on tobacco smoking, one of the most 

replicable findings in epigenetic epidemiology. Here we showed that the likelihood of 

replication across studies increases with probe reliability. We also showed how unreliable 

probes may slow biomarker discovery. Arguably, “DNA methylation clocks” have been one 

of the major success stories of epigenetic epidemiology.36–38 We found that these clocks are 

enriched for reliable probes but that the algorithms also contain noisy measurements, and it 

is possible that applying machine learning to uniformly reliable data will improve precision 

in this and other areas.

Third, we demonstrated the implications of differential reliability for integrating DNA 

methylation data with sequence and transcriptomic data. Here we showed that probe 

reliability is necessary to accurately estimate genetic contributions to DNA methylation, to 

identify gene expression correlates, and to detect correlated DNA methylation signatures 

across tissues. If the goal is robust and replicable biological inference from site-specific 

DNA methylation, it is necessary to restrict analysis to those probes that can be reliably 

measured.

There are some caveats to this study. First, these findings are restricted to DNA derived from 

blood. However, findings described here will be of use to the majority of researchers in 

epigenetic epidemiology and to researchers looking for clinical application of epigenetic 

findings, since blood is the most common substrate from which DNA is derived and 

biomarkers are developed. Second, our study comprises young adults; it is possible that age-

related change in DNA methylation at certain sites in the genome influences the pattern of 

reliability. That said, the pattern of reliability coefficients observed in our study is consistent 

with that seen in newborns,18 14-year-olds,18 and ∼30-year-olds.17 Third, findings are 

restricted to the ∼440,000 probes common to both the 450K and EPIC BeadChips. However, 

Logue et al.17 reported similar reliability distributions for EPIC-EPIC comparisons in 11 

individuals and we found better, but overall poor reliability for EPIC-EPIC comparisons in 

our data as well. Moreover, for the probes overlapping the two arrays, the EPIC-EPIC 

reliabilities were highly correlated with the 450K-EPIC reliabilities. The reason we 

emphasize between-array probe comparisons is that the goal of many researchers’ work is to 

both make discoveries and replicate discoveries made by others. Given rapid advances in 
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technologies and the proliferation of available data, it is increasingly the case that 

researchers need to integrate data that have been created using different arrays; indeed, 

although the 450K chip is no longer available, the vast bulk of DNA methylation research to 

date has used this array. As such, an important challenge for data scientists is how to 

integrate data from different arrays, whether this is in the service of evaluating targets for 

further scientific interrogation or in meta-analysis (e.g., one needs to know whether 

published results generated by 450K data are generalizable to new EPIC data and, 

ultimately, whether EPIC data will be generalizable to new technologies in future). In this 

case, between-array reliability is the relevant metric.

Taken together, at the very least unreliable probes are uninformative. At worst, they hinder 

scientific progress. In the GWAS world, much has been done to improve replicability of 

research, from increasing sample sizes to standardizing data pipelines (e.g., Visscher et al.
42). In the epigenetic world, researchers have adopted many similar considerations (e.g., 

Lehne et al.43 and Yan et al.44), but unreliability in the quantitative measurement of DNA 

methylation is a unique challenge. We list possible responses below.

First, to approximate reliable measurements, it is possible to filter data based on intrinsic 

properties of probes, such as invariance or hybridization properties. However, restricting 

analysis to variant probes or to probes without sequence-related performance issues is not 

sufficient to guarantee reliability; we found that these probes were not uniformly reliable 

(Supplemental Information, Section S1.4). Furthermore, restricting analysis to only variant 

probes conveys no enhancement of power to detect associations between reliability and (1) 

estimates of genetic and environmental influences on DNA methylation, (2) mQTL probes, 

and (3) concordance in DNA methylation levels between blood and brain tissue 

(Supplemental Information, Section S2). Second, it is possible to return to the practice, once 

routine, of using alternative technologies such as pyrosequencing to perform post-analysis 

validation of positive DNA methylation findings. This approach comes with two caveats, 

one of which is that it can only detect false positives; false negatives would remain 

undetected. A second caveat is that as science is shifting toward a culture of open-access and 

publicly available data, more and more researchers are becoming endpoint data users and as 

such are not involved in experimental data production. In this scenario, the task of 

experimental validation of individual findings, potentially in the thousands, is resource 

heavy, logistically impractical, and financially prohibitive. A third response is to generate 

pre-analysis reliability metrics, as we did in this report. Indeed, for publicly available data, 

this is currently the only feasible method of providing individual probe reliability metrics to 

end-users. To aid standardization, we have made available our reliability metrics for all 

measured probes (Data S1). Going forward, we suggest that researchers make the 

assessment of reliability standard practice when designing and measuring DNA methylation. 

This is because, despite evidence that our individual probe reliabilities correlate highly with 

those reliabilities reported previously,17 we do not yet know the full extent to which 

demographic (e.g., age), measurement (e.g., batch), and source (e.g., tissue) factors may 

influence measurement reliability. Additionally, specific experimental designs (e.g., 

longitudinal designs and meta-analyses requiring incorporation of data from different 

sources, array types and batches, or cross-sectional single time-point designs) would 

determine which type of reliability metric to employ (e.g., within-array versus between-
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array); the reliability metrics reported here might not be the most suitable. By subsetting our 

repeated samples and calculating reliability, we determined that running just 25 replicates 

will identify 80% of the reliable probes (reliability >0.75) identified when using 350 

replicates (Supplemental Information, Section S3.2). Fulfilling this recommendation would 

require additional investments during project planning along with commitment of support 

from funding agencies. The effort associated with incorporating reliability assessment into 

routine quality control, as we propose, is far outweighed by the benefits to science from 

improved replicability. The goal would be, at the very least, to report the reliability 

associated with any probe for which conclusions are drawn; this will allow readers to make 

independent assessments of the confidence in the probe measurements. Even better would be 

to filter data, before analysis, on the basis of reliability metrics. Subsetting data in this way 

should help reduce false positives (by reducing the probability of spurious associations) and 

possibly false negatives. Although familywise error-rate corrections would not be greatly 

affected (e.g., within the data we present here, Bonferroni correction would reduce the 

testing threshold from α = 1.14 × 10−7 for ∼440,000 probes to α = 1.77 × 10−6 for ∼28,000 

probes with reliability >0.75), false-discovery-rate corrections may be affected.

Researchers from diverse disciplines have been drawn by the promise of DNA methylation 

as a convenient vector by which the social environment might exert its effects on an 

organism’s biology. They are also drawn to the relative simplicity of Illumina BeadChip data 

in both content and comprehensiveness. Anecdotally, we have encountered two reactions to 

the phenomenon of differential reliability. First, some researchers have expressed little 

surprise at its existence, coupled with a belief in the self-correcting power of the field to 

purge false negatives and positives over time. Our response to this is that better use of 

intellectual and financial resources might be made in analysis of data that are pre-validated, 

rather than cycling through replication attempts using unreliable measures that are bound to 

fail. Second, others have expressed shock and alarm that this phenomenon exists at all; these 

researchers are often new to the field and are not intimately familiar with the nuances of how 

data are produced or their biological meaning. Our response here is that DNA methylation 

data are not universally unusable—their suitability for analysis is contextual. Determination 

of reliability gives researchers confidence in the data they are using, be they new adopters, 

end-users, or seasoned experts.

Open-access availability of data is accelerating with encouragement from journal publishers 

and funding agencies. More and more researchers are using these big data; DNA 

methylation data are only one example of such. End-users rely on providers to verify the 

integrity of data, but just because data are massive in scale does not preclude the need for 

careful evaluation of their precision. The reproducibility crisis in science has drawn attention 

to two Rs: reproducibility (the extent to which consistent results are obtained when an 

experiment is repeated with the exact same inputs) and replicability (the extent to which 

consistent results are obtained when an experiment is repeated with the same design but with 

inputs from other sources). Here, we highlight a potential third “R,” reliability. Reliability is 

a fundamental aspect of replicability. If desired inputs do not yield the same value when the 

source differs, replication is impossible. In this sense, test-retest reliability is a tool that has 

widespread applicability to the entire data-science community, especially where big data are 

used. The National Academies of Sciences, Engineering, and Medicine recently published a 
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report45 on the state of reproducibility and replicability in science, along with suggestions 

for improvement: “…[(r]esearchers should, as applicable to the specific study, provide an 

accurate and appropriate characterization of relevant uncertainties when they report or 

publish their research …”. Unreliable probe measurement is one such uncertainty. We hope 

that our findings will improve the integrity of DNA methylation studies and serve as a 

cautionary reminder for those generating and implementing big data of any type.

EXPERIMENTAL PROCEDURES

Full details are provided in Supplemental Information, Section S3.

Samples

We report data from two samples. The Environmental Risk (E-Risk) Longitudinal Twin 

Study tracks the development of a 1994–1995 birth cohort of 2,232 British children followed 

to age 18 years.46 The Dunedin Study tracks the development of a 1972–1973 birth cohort of 

1,037 New Zealand children followed to age 45 years.47

DNA Methylation

In E-Risk, DNA was derived from peripheral blood drawn at age 18 years. In Dunedin, 

peripheral whole blood was drawn at 38 and 45 years. In E-Risk, DNA from 350 study 

members was selected for analysis using both Infinium MethylationEPIC (EPIC; Illumina, 

CA, USA) and Illumina Infinium HumanMethylation450 BeadChip (450K BeadChip; 

Illumina). The remainder of the cohort (n = 1,308) was assayed using the 450K BeadChip 

only, as previously described.48 In Dunedin at age 38, DNA from 819 study members was 

assayed using the 450K BeadChip, as previously described.48 In Dunedin at age 45, DNA 

from 28 study members was assayed twice using the EPIC BeadChip. E-Risk DNA 

methylation assays were run by the Complex Disease Epigenetics Group at the University of 

Exeter Medical School (UK) (www.epigenomicslab.com), and Dunedin assays were run by 

the Molecular Genomics Shared Resource at the Duke Molecular Physiology Institute, Duke 

University (USA).

Gene Expression

RNA was derived from peripheral blood drawn into PAXGene RNA tubes at age 38 years in 

Dunedin. Expression data were generated from RNA using the Affymetrix PrimeView 

Human Gene Chip (Affymetrix, CA, USA) by the Duke University Microarray Core 

Facility. Data quality control and RMA (robust multichip average) normalization were 

carried out using the affy Bioconductor package in the R statistical programming 

environment. After quality control, expression data were available for 836 individuals.

Probe Reliabilities

Probe reliabilities are computed using intraclass correlation (ICC) estimates, calculated for 

each autosomal probe present on both the EPIC and 450K BeadChip (N = 438,593). ICCs 

are an oft-used metric to assess reliability in test-retest situations,20 and many different 

models exist depending on the way in which the test-retest data are generated. Here, we 

calculated ICCs based on a mean-rating (k = 2), absolute-agreement, 2-way random-effects 
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model. To compare whether test-retest model choice had an effect on reliability estimates, 

we also computed Pearson product-moment correlation coefficients. Pearson correlation 

coefficients and ICC estimates of reliability were highly similar (r = 1.00, p < 1 × 10−4; 

Figure S9).

Statistical Analysis

All analyses were performed in the R statistical programming environment, often using 

Bioconductor packages. Unless otherwise noted, correlations are reported as Pearson 

correlation coefficients. Summary statistics, such as probe mean and SD, were based on the 

350 samples processed on the 450K array. GSEA was performed using the fgsea 
Bioconductor package49 with 10,000 permutations. The proportion of variance in DNA 

methylation explained by heritable (A), shared environmental (C), and unshared or unique 

environmental (E) factors was estimated using structural equation modeling implemented 

with functions from the OpenMx R package.50

DATA AND CODE AVAILABILITY

E-Risk 450K DNA methylation data are accessible from the Gene Expression Omnibus 

(accession code GEO: GSE105018). Data from the Dunedin Study are not publicly available 

due to lack of informed consent and ethical approval for open access, but are available on 

request by qualified scientists. Requests require a concept paper describing the purpose of 

data access, ethical approval at the applicant’s institution, and provision for secure data 

access. We offer secure access on the Duke University, Otago University, and King’s 

College London campuses. All data on probe reliability and characteristics for the 450K-

EPIC comparison (Data S1) are available at https://osf.io/83ucs/. The data underlying 

analysis of consequences of unreliability on heritability and blood-brain concordance are 

available from https://www.epigenomicslab.com/online-data-resources/. Code is available on 

request from the corresponding author.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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THE BIGGER PICTURE

Although DNA methylation data are used widely by researchers in many fields, the 

reliability of these data are surprisingly variable. Our findings remind us that, in an age of 

increasingly big data, research is only as robust as its foundations. We hope that our 

findings will improve the integrity of DNA methylation studies. We also hope that our 

findings serve as a cautionary reminder for those generating and implementing big data 

of any type: reliability is a fundamental aspect of replicability. Conducting analysis with 

reliable data will improve chances of replicable findings, which might lead to more 

actionable targets for further research. To the extent that reliable data improve 

replicability, the knock-on effect will be more public confidence in research and less 

effort spent trying to replicate findings that are bound to fail.
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Highlights

• Measurements of DNA methylation made using BeadChip probes are 

differentially reliable

• Unreliable probes were less heritable, less replicable, and less functionally 

relevant

• This has serious implications for reporting and evaluating DNA methylation 

findings

• Reliability joins replicability and reproducibility to make three fundamental 

Rs of STEM
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Figure 1. Density Heatmap of Probe Reliability Plotted against Estimates of Genetic and 
Environmental Effects on DNA Methylation
(A) Additive genetic effects (denoted as “A”), (B) shared environmental effects (denoted as 

“C”), and (C) non-shared (or unique) environmental effects (denoted as “E”). The variance 

component is plotted on the x axis and the reliability is plotted on the y axis. Probes with the 

highest reliability have the highest value of A and lowest value of E. Density is depicted on a 

spectral scale from low (dark blue) to high (red).
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Figure 2. The Distribution of Reliabilities of Probes Identified in a Large-Scale mQTL Analysis 
Compared with Non-mQTL Probes
Distributions are depicted as box-and-whisker plots of the reliability coefficients of the 

probes identified as having mQTLs (“mQTL”) and the remainder not included in the mQTL 

list (“no mQTL”). Boxes correspond to interquartile range (IQR), and whiskers extend to 1.5 

× IQR. Observations beyond the whiskers (outliers) are represented by individual points. As 

a reference, the distribution (pink bars) and median (vertical dashed line) of all ∼440,000 

probe reliabilities in the E-Risk dataset is shown above the box-and-whisker plots. The text 

box shows the results of gene set enrichment analysis (GSEA; NES, normalized enrichment 

score; N, number of probes); probes associated with mQTLs are enriched for reliable probes, 

suggesting that reliable probe measurement is important for uncovering genetic effects on 

methylation.
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Figure 3. Probes Consistently Associated with Smoking across Studies Have Higher Reliabilities 
Than Probes that Are Not
We identified 22 epigenome-wide association studies of smoking and DNA methylation. For 

ease of visualization, probes have been binned into three groups representing 1–7 

replications (pink), 8–14 replications (green), and 15–22 replications (blue). The values 

above the x axis represent the number of probes per group. In the 1–7 replication bin, the 

highest density of probes was at the low-reliability end of the distribution, and the median 

reliability (as depicted by the median line of the box plot within the violin) was the lowest of 

the three groups. Boxes correspond to IQR and whiskers extend to 1.5 × IQR.
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Figure 4. Reliabilities of Probes Included in Established, Publicly Available DNA Methylation 
Algorithms (“Clocks”)
Distributions are depicted as box-and-whisker plots of the reliability coefficients of the 

probe constituents of the Hannum et al.36 aging clock (63 probes), Horvath37 DNAmAge 

clock (334 probes), and Levine et al.38 biological aging clock (512 probes). Boxes 

correspond to IQR and whiskers extend to 1.5 × IQR. Observations beyond the whiskers 

(outliers) are represented by individual points. As a reference, the distribution (pink bars) 

and median (vertical dashed line) of all ∼440,000 probe reliabilities in the E-Risk dataset is 

shown above the box-and-whisker plots. The aging clocks are enriched for reliable probes 

(values to the right of the figure; NES, normalized enrichment score; N, number of probes). 

Median reliabilities of probes included in aging clocks are higher than those of the general 

distribution; however, each algorithm contained many unreliable probes.
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Figure 5. Reliabilities of Probes Significantly Correlated with Gene Expression Have Higher 
Reliabilities Than Non-correlated Probes
(A) Distributions of the reliability coefficients of the probes identified as correlated with 

gene expression by Kennedy et al.40 in the GTP and MESA cohorts (N probes = 36,485 and 

114,536, respectively). Probes that are correlated with gene expression in both cohorts are 

shown in the bottommost box-and-whisker plot. Boxes correspond to IQR and whiskers 

extend to 1.5 × IQR. As a reference, the distribution (pink bars) and median (vertical dashed 

line) of all ∼440,000 probe reliabilities in the E-Risk dataset is shown above the box-and-

whisker plots. The text box shows the results of GSEA for the GTP cohort, MESA cohort, 

and the intersection of both cohorts (NES, normalized enrichment score; N, number of 

probes). Each cohort’s set of significantly correlated DNA methylation probe-gene 

expression pairs is enriched for reliable probes; pairs that are significantly correlated in both 

datasets are further enriched.

(B) TSS-localized DNA methylation probe-gene expression probeset correlation (x axis) 

plotted against DNA methylation probe reliability (y axis) in the Dunedin Study dataset. 

Probes that were significantly correlated with gene expression are shown in pink (n = 278) 

and those not correlated are shown in blue. (C) Distribution of reliabilities of these 

significantly correlated DNA methylation probes as a box-and-whisker plot. The text box 

shows the results of GSEA (NES, normalized enrichment score; N, number of probes); DNA 

methylation probes that were significantly correlated with expression probesets are enriched 

for reliable probes.
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Figure 6. Violin Plots of the Distribution of Reliability in Probes with Low (<0.4, Pink), Medium 
(0.4–0.75, Green), and High (>0.75, Blue) Blood-Brain Correlation in DNA Methylation
Distributions are shown across four brain regions: prefrontal cortex (A), entorhinal cortex 

(B), superior temporal gyrus (C), and cerebellum (D). Number of probes per group is listed 

above the x axis. Box-and-whisker plots of the distribution are plotted within violin plots. 

Values below each violin correspond to the number of probes in that group. Probes with high 

blood-brain concordance are concentrated at the high-reliability end of the distribution. 

Boxes correspond to IQR and whiskers extend to 1.5 × IQR.
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