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Abstract

Sliding window correlation (SWC) is utilized in many studies to analyze the temporal 

characteristics of brain connectivity. However, spurious artifacts have been reported in simulated 

data using this technique. Several suggestions have been made through the development of the 

SWC technique. Recently, it has been proposed to utilize a SWC window length of 100 sec given 

that the lowest nominal fMRI frequency is 0.01 Hz. The main pitfall is the loss of temporal 

resolution due to a large window length. In this work we propose an averaging sliding window 

correlation (ASWC) approach that presents several advantages over the SWC. One advantage is 

the requirement for a smaller window length. This is important because shorter lengths allow for a 

more accurate estimation of transient dynamicity of functional connectivity. Another advantage is 

the behavior of ASWC as a tunable high pass filter. We demonstrate the advantages of ASWC over 

SWC using simulated signals with configurable functional connectivity dynamics. We present 

analytical models explaining the behavior of ASWC and SWC for several dynamic connectivity 

cases. We also include a real data example to demonstrate the application of the new method. In 

summary, ASWC shows lower artifacts and resolves faster transient connectivity fluctuations 

resulting in a lower mean square error than in SWC.
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Introduction

Functional magnetic resonance imaging (fMRI) (Friston et al., 1995) allows for a non-

invasive way of investigating temporal changes of localized brain activations (Friston et al., 

1998; Friston et al., 1999). Since its early years, event related neural activations have been 

detected using fMRI in response to varied types of stimuli and task based experiments 

(Friston et al., 1999; Josephs and Henson, 1999). In addition, spontaneous activations 
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occurring while subjects are not engaged in goal-directed external tasks (also known as 

resting state) have been consistently observed through the brain (Biswal et al., 1995; Cordes 

et al., 2000). These resting state activations were discovered in localized brain areas forming 

a consistent set of resting state networks (RSNs) with highly replicable activation patterns 

(Damoiseaux et al., 2006). One of the first and most widely used methods to study the 

relationship between RSN activations is temporal correlation which is considered as an 

assessment of functional connectivity (FC) between two RSNs (Allen et al., 2011; Biswal et 

al., 1995; Horwitz, 2003; Toro et al., 2008). These ideas lead to the discovery of FC 

abnormalities in brain function linked to neuropsychiatric disorders (Calhoun et al., 2008; 

Greicius, 2008; Woodward and Cascio, 2015).

Many studies make one FC assessment for the whole duration of the fMRI scan assuming 

static FC or the assumption of a constant FC. This view has been challenged by evidence 

that FC does fluctuate with time even in resting state experiments when no particular 

external attention is required (Chang and Glover, 2010; Sakoğlu et al., 2010) and that resting 

state FC changes are related to a succession of mental states occurring within the duration of 

an fMRI scan (Allen et al., 2014; Chang et al., 2013). Two major measures can be 

considered: static functional connectivity (sFC) or dynamic functional connectivity (dFC) 

that considers the existence of spontaneous fluctuations of FC. One of the main differences 

among these two FC assessments is the time scale employed. Functional connectivity 

estimated over a long period of time (generally above 5 minutes) corresponds to sFC while a 

relatively short time window between 30 and 100 sec has been proposed as a comparatively 

good window length for dFC (Wilson et al., 2015). Temporal variation in dFC is commonly 

obtained by sliding the time window (advancing the position) at a regular interval of 

typically one step which has been used in other fields previously (Schulz and Huston, 2002), 

a procedure commonly known as sliding window correlation (SWC). Other window-based 

methods of dFC estimation have been developed, however, there is evidence that their 

performance is similar to SWC for typical window lengths (larger than 30 sec) (Hua Xie et 

al., 2018). In addition to its acceptable performance in dFC analysis, SWC has become a 

common technique to assess dFC (Hutchison et al., 2013; Sakoğlu et al., 2010; Shakil et al., 

2016) offering both easy implementation and easy interpretation.

In spite of evidence for the existence of temporal FC fluctuations, an important concern in 

the field is to identify whether estimated dFC is effectively due to real changes of FC or 

corresponds to a static signal corrupted by unrelated nuisances and artifacts. The relatively 

short temporal span of SWC makes it particularly sensitive to nuisances such as scanner 

drift, head motion, and physiological noise (Hutchison et al., 2013). Statistical tests for the 

detection of dynamicity in estimated time series of FC have been proposed based on 

different factors such as variance (Hindriks et al., 2016; Sakoğlu et al., 2010), Fourier-

transformed time-series (Handwerker et al., 2012) and non-linear statistics (Zalesky et al., 

2014). Most statistical procedures look to test the null hypothesis H0 that FC does not 

change with time. Once H0 has been rejected, the next important step is to reduce variability 

due to random noise and nuisances without compromising the estimation of the true dFC.

In addition to scanner drift, head motion, and physiological noise (Hutchison et al., 2013), 

SWC outcomes can be affected by the selection of the window length parameter (Sakoğlu et 
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al., 2010; Shakil et al., 2016). Window length is expected to be large enough to allow for a 

robust estimation of the correlation coefficient, but also small enough to detect transient 

variations (Hutchison et al., 2013; Sakoğlu et al., 2010). Some studies warn about the 

existence of spurious fluctuations in the SWC method proposing a rule of thumb to reduce 

these nuisances that sets the SWC window length to 1/f0 sec or larger, where f0 corresponds 

to the smaller frequency in the spectrum (Leonardi and Van De Ville, 2015; Zalesky and 

Breakspear, 2015). The spectrum of interest for fMRI has been proposed to start at 0.01 Hz 

after studying frequencies dominated by neuronal activity and away from physiological 

noise such as cardiac and respiratory activity (Chen and Glover, 2015; Fransson, 2005). 

Because of the rule of thumb 1/f0, it has been suggested that dFC will suffer from spurious 

artifacts unrelated to the true signal if the window length is chosen below 100 sec (Leonardi 

and Van De Ville, 2015). Although choosing larger window lengths is an option, time scales 

well beyond a minute (i.e. including the 100 sec mark) may suppress frequency content that 

characterizes dFC (Zalesky and Breakspear, 2015). Instead of a large time scale, this work 

proposes to perform an average SWC (ASWC) seeking a better dFC estimation and reducing 

the window length. In general, averaging repeated measures of correlation coefficients is a 

way of increasing the accuracy of estimated correlation (Corey et al., 1998; Silver and 

Dunlap, 1987). This idea derives from the basic statistical principle that the standard error of 

the average decreases as the number of observations gets larger. The proposed procedure is 

to average a predefined number of consecutive SWCs, then advance one step and average the 

next set of SWCs. Through theoretical mathematical characterization and simulation 

experiments, we demonstrate that ASWC time scales of about 94 sec (windowing plus 

averaging) are enough to reduce spurious artifacts and account for the 0.01 Hz frequency 

cut-off. Optimal SWC and ASWC configurations are compared and the effect of reduced 

sensitivity to dFC variations is demonstrated through simulations.

Analysis of Averaged Sliding Window Correlation

Background

Leonardi and Van De Ville (Leonardi and Van De Ville, 2015) proposed an approximate 

model to warn about the presence of artifacts in the SWC approach. Their theoretical 

development utilizes properly normalized cosines x k = 2cos ωkTR  and 

y k = 2cos ωkTR + θ  of angular frequency ω = 2πf (where the frequency f is measured in 

Hertz) and phase difference θ. The two cosines are evaluated at time points kTR where 

constant TR is specific to the fMRI scanning protocol and k ∈ {0,1,2, …}. The purpose of 

factor 2 is to normalize variances Cxx and Cyy to one. Under the condition that Cxx = Cyy = 

1, it follows that covariance equals correlation ρxy = Cxy/ CxxCyy = Cxy. Furthermore, the 

phase difference θ is related to correlation by ρxy = cos θ if the correlation is calculated over 

a window length 1/f, i.e. over a period of the cosines. To study the effects caused by other 

windowing conditions, the SWC length is defined by h = (2∆ + 1)TR where ∆ is a 

predefined number of time points. Defining x n  and y n  as the cosine averages at point n 
over the interval [n − ∆, n + ∆], the covariance at each point n can be written as
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Cxy n = TR
ℎ ∑

k = n − Δ

n + Δ
x k y k − x n y n (1)

A closed-form equation for the covariance term was then obtained after approximating the 

sum using integrals resulting in (Leonardi and Van De Ville, 2015)

Cxy n = cosθ + 1
ℎωcos 2ωnTR + θ sin 2ωΔTR

− 8
ℎ2ω2cos ωnTR cos ωnTR + θ sin2 ωΔTR

(2)

The results of the model are summarized in Figure 1. Figure 1a shows two properly 

normalized cosines used for further simulation. Figure 1b displays the outcome of varying 

the SWC length h and sliding the window at different time points nTR replicating the same 

simulation experiments found through the literature (Leonardi and Van De Ville, 2015; 

Zalesky and Breakspear, 2015). As the SWC length h increases the terms at the right of cos 

θ in (2) vanish and the covariance approaches the correlation. The suggestion of limiting h 
to 1/fmin can be understand by recognizing that artifacts have their largest dynamic range in 

the interval 0 < h < 1/f (between 0 and 40 sec in Figure 1b). Notice that larger window 

lengths, i.e. 1/f < h, result in smaller artifact fluctuations. Also notice that in spite of artifact 

reduction, the observed nuisance fluctuations are not guaranteed to disappear for 1/f < h. 

This fact is demonstrated by the second artifact lobe, occurring at h = 50 sec in Figure 1b. In 

this work, we propose the use of ASWC to further reduce artifacts. Averaging has been 

performed in Figure 1c for the second lobe of artifacts in Figure 1b (h = 50 sec) briefly 

illustrating how artifacts can be reduced through ASWC. In the following sections, we will 

make a theoretical characterization of the artifact reduction shown in Figure 1c to better 

explain the effects of ASWC.

Mathematical Characterization of ASWC

As displayed in Figure 1, mismatches between window length h and frequency f introduce 

spurious fluctuations unless tuning h = 1/f is achieved. Since the frequency spectrum of real 

data is generally not composed of a singleton frequency, imperfect tuning is likely to exist 

along with spurious fluctuations from untuned frequencies. Given that spurious fluctuation 

artifacts might be unavoidable, the next option is to minimize the impact of artifacts. One 

possibility to address the lack of tuning is to consider large window lengths given the factor 

1/h in (2) which predicts improved estimation accuracy as h increases. This procedure is not 

convenient as larger window lengths decrease the sensibility of detecting transient 

fluctuations of FC (Hutchison et al., 2013). Instead of increasing h as a method of 

decreasing artifacts, we consider the option of taking g consecutive SWCs and averaging 

them to improve the estimation of correlation. To mathematically characterize ASWC, we 

define the averaging interval g = 2∇TR from m − ∇ to m + ∇ (where ∇ is a parameter used to 

select the averaging length) and perform a similar integral approximation as that proposed in 
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(Leonardi and Van De Ville, 2015). We thus define the average correlation Cxy m  at a time 

point defined by m over the averaging interval [m − ∇, m + ∇]TR as

Cxy m = TR
g ∑

m − ∇

m + Δ
Cxy m ≈ 1

g ∫
m − ∇ TR

m + ∇ TR

Cxy t dt (3)

The integral (3) is applied to each of the three terms in (2). The first term cos θ in (2) is 

unaffected by the integral averaging.

1
g ∫

m − ∇ TR

m + ∇ TR

cosθ dt = cosθ

For the second term of (2), i.e. 1
ℎωcos 2ωnTR + θ sin 2ωΔTR , only the factor cos(2ωnTR + 

θ) is time dependent and requires a simple integration. A full description of the integral of 

cos(2ωnTR + θ) is described in the Supplementary Material. The averaging integral of the 

second term in (2) is

1
gℎωsin 2ωΔTR ∫

m − ∇ TR

m + ∇ TR

cos 2ωt + θ dt = 1
gℎω2sin 2ωΔTR sin 2ω∇TR cos 2ωmTR + θ .

The third term 8
ℎ2 − ω2cos ωnTR cos ωnTR + θ sin2 ωΔTR  in (2) has two time dependent 

cosines to be included, but using the identity 

2cos ωnTR cos ωnTR + θ = cosθ + cos 2ωnTR + θ  and given that we already have the 

integral of cos(2ωt + θ) (see Supplementary Material) we can write

8
gℎ2ω2sin2 ωΔTR ∫

m − ∇ TR

m + ∇ TR

cos ωt cos ωt + θ dt

= 4
ℎ2ω2sin2 ωΔTR cosθ + 4

gℎ2ω2sin2 ωΔTR ∫
m − ∇ TR

m + ∇ TR

cos 2ωt + θ dt

= 4
ℎ2ω2sin2 ωΔTR cosθ + 2

gℎ2ω2sin2 ωΔTR sin 2ω∇TR cos 2ωmTR + θ .

Arranging terms, the solution to the integration from (3) can be written as

Cxy m = cosθ 1 − 4
ℎ2ω2sin2ωΔTR

+ cos 2ωmTR + θ 1
gℎω2sin 2ω∇TR sin 2ωΔTR − 2

ℎωsin2 ωΔTR .
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The final averaging equation can then be written using the identity 

sin 2ωΔTR = 2sin ωΔTR cos ωΔTR  as

Cxy m = cosθ K ℎ, ω, TR + cos 2ωmTR + θ Ψ g, ℎ, ω, TR (4)

where

K ℎ, ω, TR = 1 − 4
ℎ2ω2sin2ωΔTR

and

Ψ g, ℎ, ω, TR = 2
gℎω2sin 2ω∇TR sin 2ωΔTR cos ωΔTR − sin ωΔTR

ℎω

The first term cosθ Κ(h, ω, TR) of (4) describes the effects that are independent of averaging 

length g and averaging position m since none of the factors cos θ and Κ(h, ω, TR) include g 
or m. On the other hand, the second term of (4) cos(2ωmTR + θ) Ψ(g, h, ω, TR) describes 

sinusoidal type artifacts containing a frequency 2ω twice higher than that of the original 

signal. This term can be zeroed by setting sin(2ω∇TR) = 0, which results in Ψ(g, h, ω, TR) 

= 0. This condition can be met if 2ω∇TR = jπ where j ∈ {…, −2, −1,0,1,2, …}. Since g = 

2∇TR and ω = 2πf, solving for g results in g = j/2f. Figure 1c shows an averaging 

simulation where the different points of sin(2ω∇TR) = 0 can be observed. This means for 

example that if TR = 1 and f = 0.025 Hz the specific averaging length is g = 1/(2 * 0.025) 

sec = 21 sec to zero the second term in (4). Although a similar analysis could be applied to h 
by forcing sin(2ω∇TR) = 0 in (4), setting h = 1/2f causes estimation inaccuracies due to 

effects described by Κ(h, ω, TR) that will be explained in the next section. In addition, 

Figure 1d illustrates how all estimation variability is eliminated once g = j/2f including the 

range h ≥ 1/f. Notice that Figure 1d replicates the simulation experiment from Figure 1b, but 

including an averaging step of length g = 1/2f = 20 sec, zeroing all artifacts for h ≥ 1/f. Since 

we have set Ψ(g, h, ω, TR) = 0 in Figure 1d, the observed behavior corresponds to Κ(h, ω, 

TR) where the estimation inaccuracy follows a monotonic trend in the range h ≤ 1/f.

Equations developed in this section predict a series of advantageous effects after averaging. 

The SWC artifact fluctuations due to lack of the tuning h = 1/f illustrated in Figure 1b can be 

completely obliterated by the implementation of the ASWC method with appropriate tuning 

g = 1/2f as predicted by (4) and simulated in Figure 1d. While it is true that frequency and 

averaging length are not guaranteed to match in real data, there is an important reduction of 

artifacts even for non-matching averaging lengths. This reduction is illustrated in Figure 1c 

where a wide range of averaging lengths were tested resulting that artifacts are the strongest 

for the no averaging case (g =0). The equations we present show that ASWC have weaker 

artifacts than SWC because of two important factors. First, the strongest SWC artifacts 

diminish at a rate of 1/h as shown in the second term of (2). In contrast, it is predicted by (4) 

that artifact reduction in ASWC is stronger through a quadratic factor 1/h2 and a factor with 

combined window and averaging lengths 1/gh. Also, in both SWC and ASWC it is expected 

that artifact fluctuations diminish as the frequency increases. However, ASWC artifacts 
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decrease quadratically through the factor 1/ω2 (ω = 2πf) compared with the SWC artifacts 

with a slope that depends on 1/ω. Equations also predict an ASWC with advantages over 

SWC even for non-ideal matching between configured parameters and frequency. It is 

evident at this point that studying the effects of frequency is one important next step in this 

development since real signals likely contain complex frequency content.

Asymptotic Analysis of Artifacts and Frequency

Our discussion will now move away from the averaging artifact term Ψ(g, h, ω, TR) 

discussed in the previous subsection and focus on the term Κ(h, ω, TR) that has a strong 

dependence with frequency. As previously explained, factor Ψg, h, ω, TR) can be zeroed out 

by tuning the averaging length, but also by taking the asymptote g → ∞. For the current 

presentation, we introduce the use of the function sinc x = sin πx/πx to simplify Κ(h, f, TR) 

= (1 − sinc2 fh). When the averaging length approaches the values of interest g → ∞ and g 
→ 1/2f leading to Ψ(g, h, ω, TR) = 0 this produces the frequency dependent limit

lim
g ∞

or
g 1/2f

Cxy m = cosθ 1 − sinc2fℎ
(5)

For the purpose of simplifying the exposition, we will call (5) the asymptotic behavior of 

(2). Notice that the results from averaging over a long time scale (i.e. g → ∞) is more 

compatible with real data than tuning g → 1/2f. For the moment, we assume that either 

asymptote will be achieved and Cxy m  can be fully described by cos (1 − sinc2 fh). 

Mathematically, the function is an inverted sinc2 x where the highest variability occurs at its 

main lobe with some small side lobes for values x > 1. Figure 2a displays the inverted lobe 

behavior of (1 − sinc2 x) for the product x = fh. Notice that achieving Κ(h, f, TR) = (1 − 

sinc2 fh) = 1 in (5) allows for a perfect estimation. In this case, deviations from Κ(h, f, TR) = 

1 describe the estimation error. The maximum error occurs at the first side lobe of (1 − sinc2 

fh) after the point where fh = 1 and reaches a value of 0.9528 representing the largest 

estimation error for the range fh ≥ 1. Under the studied conditions, this estimation error is 

less than a 5% error. The effect of this asymptotic behavior for different values of f and h is 

illustrated in Figure 2b where the neighborhood of fh = 1 (the first wide white band after the 

dark red area in Figure 2b) results in an exact estimation while some small vanishing lobes 

(less than 5% error as discussed) are observed for fh > 1.

The next step in our analysis focuses on the interplay between frequency ω = 2πf and 

window length h. As a first sanity check, let h → ∞ or ω → ∞ to see that Κ(h, ω, TR) 

approaches 1, i.e. perfect asymptotic estimation according to (5). For the other direction h 
→ 0 or ω → 0, Figure 2a illustrates how small values of h or ω fall within the main inverted 

lobe with a behavior given by the limit lim
ℎ ∞

K ℎ, ω, TR = lim
ω ∞

K ℎ, ω, TR = 0. Thus, the 

power for low frequencies is reduced all the way down to zero similar to a high pass filter. 

The point of perfect estimation is defined by sinc2 fh = 0, or fh = 1 → h = 1/f, providing a 

second sanity check point. Notice that all described conditions h = 1/f, h → ∞ and ω → ∞ 
agree with the SWC features previously predicted for SWC, see (2) and (Leonardi and Van 
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De Ville, 2015). In contrast to SWC, the ASWC equations predict a high-pass filter 

behavior. We theoretically demonstrate that resulting ASWC filter can be tuned to remove 

low frequency content allowing the removal of frequencies below 0.01 Hz.

ASWC Filtering

For now, we refocus our attention on the analysis of the ASWC/SWC problem from the 

frequency perspective. The approximation in (5) allows tracking the magnitude of 

covariance for a singleton frequency given that the sliding window length h is constant. This 

assumption is more relevant in practice since the window length is commonly chosen and 

left unchanged through the analysis of real data (Allen et al., 2014). For the moment, we will 

continue assuming the asymptotic behavior (5) where Cxy m = cosθ 1 − sinc2fℎ . Setting h 

constant leaves frequency f as the only variable of interest. Figure 2c illustrates how 

equation (5) describes a high pass filter type relationship between averaged covariance and 

frequency with approximate solution as follows:

f0 ≈ 1
ℎ

10
π2 1 − 1 − 6

5 1 − 1 − α ≈ 0.4441
ℎ α = 1/2

(6)

The approximation (6) can be obtained using the Taylor expansion of 

x ≈ 1 − π2x2/6 + π2x4/120 and its derivation is displayed in the Supplementary Material. We 

present the whole approximation for the general case where a covariance threshold 

Ctℎ α = Ctℎ/Cmax  is required. For the purposes of filter design, the cut-off frequency is the 

point where the filter cuts frequency power in half, thus the value 

αcut − off = Ctℎ/Cmax = 1/2. Equation (6) was evaluated for α = 1/2 to provide a simple way 

of tuning the ASWC window length to the required frequency response.

Comparing Tuned SWC and Tuned ASWC

In wide band signals, both techniques SWC and ASWC will suffer from spurious 

fluctuations due to the existence of non-tuned frequencies. The important concern we must 

answer next is if there are values satisfying the inequality gASWC + hASWC < hSWC with 

reduced power of unavoidable artifact fluctuations. We did this comparison using a 

simulation spanning frequencies from 0 to 0.08 Hz. Before estimating the SWC we applied a 

typical high pass fifth-order Butterworth filter, but did not use the filter for the ASWC. With 

this procedure we are using the natural filtering characteristics of ASWC shown in Figure 

2c. The Butterworth filter order in the SWC simulation is the same as that recommended in 

(Allen et al., 2011). Since we are interested in a cut-off frequency of f0= 0.01 Hz, we set 

hSWC = 1/f0 = 100 sec. Following the recommendation in equation (6) we set hASWC = 

0.4441/f0 ≈ = 44 sec. As illustrated in Figure 1, the averaging length should be gASWC = 

1/2f0, but adjusting to the current frequency of interest (i.e. 0.01 Hz) gives gASWC = 50 sec. 

Notice that selected values comply with the inequality gASWC+ hASWC < hSWC. Figure 3 

displays the simulation outcomes where hSWC = 100 sec, hASWC = 44 sec and gASWC = 50 

sec. According to equation (6), larger window lengths decrease the ASWC cut-off, but we 

need to keep low frequencies of no interest controlled by fixing the cut-off at 0.01 Hz. 

Shorter window lengths will move the ASWC cut-off above 0.01 Hz thus removing 
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important frequency content. We compared the power of artifact fluctuations by estimating 

their standard deviations σSWC and σASWC for each corresponding method. Figure 3 

displays the ratio σSWC/σASWC for each frequency. The plots for SWC and ASWC show 

similar trends for low frequencies, but this trend is in part related to the fifth-order filter. The 

frequency cut-off in ASWC can be clearly observed in Figure 3b at 0.01 Hz where the 

predicted covariance is 0.5. At higher frequencies, the fluctuations in ASWC look smaller 

compared to those from the SWC. The plot for σSWC/σASWC in Figure 3 further confirms 

this observation. Starting from the cut-off 0.01 Hz we can see that ASWC has a clear 

advantage over SWC. At higher frequencies, the ratio σSWC/σASWC peaks close to 210 

indicating that the standard deviation of SWC fluctuations could be as high as 1024 times 

larger as in ASWC.

Sharp Phase Transitions

Sliding windows are used in the context of dynamic changes of coherence, but equations so 

far have been applied to a static constant phase. This is not practical as the focus of dynamic 

connectivity is to study the temporal changes of correlation ρxy. Correlation dynamics can 

be characterized in the single frequency covariance model by temporal variations of the 

cosine phase difference θ. The following development presents theoretical development 

based on a simple and tractable case of a sharp cosine phase transition and also generalizes 

to describe a more practical situation.

The next stage is to mathematically characterize phase transitions. The simplest of these 

transitions is a sharp change at a given time point t0 = 0. Before t0 let the two cosines x[k] 

and y[k] have phases γ and θ respectively, and after t0 let the phases update to φ and ϕ. We 

first reformulate the SWC analysis from (2) in a way that includes the four phases (γ, θ, φ 
and ϕ) resulting in

Cxy n = TR
ℎ ∑

k = n − Δ

n + Δ
x k y k

≈ 2
ℎ ∫

n − Δ TR

0

cos ωt + γ cos ωt + θ dt + ∫
0

n + Δ TR

cos ωt + φ cos ωt + ϕ dt

= Δ − n TR
ℎ cos γ − θ + Δ + n TR

ℎ cos φ − ϕ

+ 1
ℎ ∫

n − Δ TR

0

cos 2ωt + γ + θ dt + ∫
0

n + Δ TR

cos 2ωt + φ + ϕ dt

To go from the first line to the second, we used the identity 

cosa + bcosa + c = 1
2 cos b − c + cos 2a + b + c . The covariance then approximates a weighted 

sum of the cosines of phase differences plus a term ℶh that depends on 1/h. The covariance 

term can be expressed as

Cxy n = Δ − n TR
ℎ cos γ − θ + Δ + n TR

ℎ cos φ − ϕ + ℶℎ (7)
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Figure 4b displays a simulation result where the influence of term ℶh is evident from the 

observed spurious fluctuations. To obtain the ASWC version, averaging reduces the spurious 

artifacts as shown in Figure 4b. The equation looks similar except that in ASWC the artifact 

term has been averaged ℶℎ, g, but the first two terms defining the weighted averaging in (7) 

remain unaltered. In addition, the artifact term ℶℎ, g depends on both 1/h and 1/g, hence 

generally exhibiting a weaker strength than ℶh which only depends on 1/h. For a more 

formal analysis see the Supplementary Material.

Cxy m = Δ − m TR
ℎ cos γ − θ + Δ + m TR

ℎ cos φ − ϕ + ℶℎ, g (8)

Although the closed form of the artifact terms ℶh and ℶℎ, g were not developed due to their 

complexity, we can expect that averaging reduces artifacts following a similar behavior as 

that described in (2) and (4). We will call the first two terms in (7) and (8) the estimation 

terms since they allow tracking the covariance variation of the sharp phase transition. Figure 

4 displays a sharp phase transition simulation for SWC and ASWC versions of the 

covariance estimation assuming a perfect tuning for 2 intervals where correlation is constant. 

As in the static case of (2) and (4), averaging in Figure 4b decreased the artifact fluctuations 

present in SWC. The most important result from (8) is that averaging does not change the 

estimation terms of the sharp edge equation (8). Thus, the averaging length does not affect 

the estimation terms and only decreases the strength of the artifact term ℶℎ, g. This is 

illustrated by Figure 4b and Figure 4c where there are small changes in fluctuation, but not 

in the overall estimation when averaging length is doubled. On the contrary, the window 

length has a key role defining the weights within the estimation terms. Thus, the window 

length has a large influence on the estimation. Figure 4d illustrates the loss of estimation 

sharpness due to doubling the window length. These results indicate that it is more important 

to reduce the window length h than reduce the averaging length g since h has greater 

influence in the estimation.

A Moving Average Model (Beyond Sharp Phase Transitions)

Figure 4 shows the complete obliteration of ASWC sinusoidal artifacts as predicted by (4) 

for properly tuned window and averaging lengths. The sharp edge transition explains how 

the selection of a window length can have a large impact in resolving transient changes in 

phase. Despite predicting artifact reduction after averaging, the sharp phase transition is 

limited to one phase transition between two constant phase intervals. Nonetheless, the trend 

of reduced artifacts can be expected to be similar for more complex configurations. For 

example, two sharp transitions will eventually be characterized as the weighted sum of the 

three different phases plus the artifact term which in our case will depend on the choice of 

SWC or ASWC. Furthermore, increasing the number of sharp transitions can characterize 

increasingly smooth changes of phase and correlation through time. After considering a 

sufficiently large number of transitions, SWC can be described by the weighted average over 

a large number of time intervals, each with a weight wk and a given phase difference θk plus 

an artifact term such that
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Cxy n = ∑
k

wkcosθk + ℶℎ′ (9)

Similar as in equation (7), weight values will depend on the size of intervals between sharp 

transitions. However, let’s assume that all sharp edge transitions are equal and of the same 

length of 1 TR. In these conditions, all weights are of the same value and the equation above 

describes a moving average (MA) system plus the corresponding artifact term ℶℎ′ . In the 

frequency domain, MA systems behave like a low pass filter. Since the frequency response 

of MA systems is well known (Oppenheim and Schafer, 2010), it is convenient to continue 

analyzing (9) in the frequency domain without loss of generality. Denote the MA 

corresponding frequency response as ℎ
SW CH f , whereas before h = 2∆TR, and by Θ(f) the 

frequency content of cos θk. Equation (9) can then be expressed as

Cxy f = ℎ
SW CH f Θ f + ℶℎ′ f (10)

where the MA frequency response can be written for any 0 < f < 1/2 as (Oppenheim and 

Schafer, 2010)

ℎ
SW CH f = 1

2Δ + 1
sinπTRf 2Δ + 1

sinπTRf (11)

The MA frequency response has a low pass response and it is zero at any point where sin 

πTRf (2Δ + 1) = 0. Using the approximation hSWC ≈ 2Δ + 1, the first zeroing is obtained at 

1/hSWC. This is illustrated in Figure 5a where the frequency response for the nominal value 

hSWC = 100 sec has been plotted. At frequency 1/hSWC it will not be possible to measure 

any signal since ∑kW kcosθk = 0 and the only surviving term ℶℎ′  represents the artifact 

fluctuations. Thus, it is of interest to set hSWC as small as possible to resolve faster 

fluctuations of correlation.

Up to this point, we have not established ASWC as a simple MA of SWC because the MA 

concept was not needed to develop the ASWC equations for the static correlation case of (4). 

In the more general case of the SWC in (10), ASWC can be described by applying an 

additional MA to SWC in (9). The frequency response of the ASWC can be obtained by 

multiplying a second MA response gASW CH f  corresponding to the averaging part by the 

first MA response ℎ
ASW CH f  corresponding to the sliding window part resulting in

Cxy(f) = gASW CH(f) ℎ
ASW CH(f)Θ(f) + ℶℎ, g′ f (12)

Equation (12) exhibits two zeroing frequencies 1/hASWC and 1/gASWC. The larger of the two 

parameters hASWC and gASWC will determine the characteristics of resolving high frequency 

content.
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The goal of finding settings gASWC + hASWC < hSWC has yet another advantage since SWC 

will be more restrictive with a first zeroed frequency at 1/hSWC lower than those obtained in 

ASWC with a less restrictive characteristics given by 1/hASWC or 1/gASWC. Figure 5 shows 

the comparison for the nominal setting previously suggested where hSWC = 100 sec, hASWC 

= 44 sec and gASWC = 50 sec. Based on these nominal values, ASWC will be able to resolve 

frequencies in Θ(f) up to 0.02 Hz which is a higher limit to that in SWC (up to 0.01 Hz). 

Higher frequencies than the first zeroing correspond to side lobes exhibiting decreasing 

magnitude as the frequency increases.

Wide Band Frequency Data

All the numerical simulations presented in the previous section were based on single 

sinusoidal signals, covariance measurements and designed to aid interpreting covariance-

based derivations. The objective now is to simulate the effectiveness of the presented 

development for more realistic cases with a wide-band frequency content. Thus, we applied 

SWC and ASWC to simulated data with wider spectrum signals and using Fisher 

transformed correlations instead of covariance. Code and basic data for all simulations and 

examples are open and can be downloaded at http://mialab.mrn.org/software.

Simulation

In contrast to the single frequency analysis used in (2) and (4), this particular analysis used a 

wide frequency band signal simulated by simply adding several cosines with selected 

frequency, amplitude and phase. We followed the Fourier series approach in the sense that 

any signal can be represented as a sum of several sinusoidal components. This procedure is 

especially useful since our purpose is to configure the frequency spectrum to produce 

controlled changes of correlation through time. The frequency spectrum of interest can be 

set to be from 0.01 to 0.1 Hz which is often suggested in literature (Damoiseaux et al., 2006; 

Fransson, 2005). Although other researchers have found important higher frequency content, 

such frequencies have lower magnitude power thus contributing weakly to the signal (Chen 

and Glover, 2015). We will consider frequency spectrums below 0.1 Hz with no limitation at 

the lower end. Simulated signals will then be high-pass filtered at 0.01 Hz using a fifth-order 

Butterworth filter which is a procedure recommended for real data. In addition, the 

frequency spectrum was modulated such that lower frequencies exhibited higher amplitude 

than higher frequencies similar to observations of spectrums from real data (Kiviniemi et al., 

2004; Mantini et al., 2007). Four different correlation dynamic scenarios were simulated: 1) 

a static correlation with no changes through time; 2) a transition from positive to negative 

[−0.9 to 0.9]; 3) a single period sinusoidal correlation behavior; and 4) a sinusoidal dynamic 

correlation with a period of 100 sec. These controlled correlations were implemented by 

changing the phase of each Fourier component at each time point. Sliding window 

correlation was then calculated using a rectangular window on each simulated case followed 

by the application of Fisher’s Z transform. In the case of ASWC, Fisher’s transformation 

was applied before averaging. We set a constant window length of 100 sec for the SWC 

method while comparing different window lengths ranging from 10 to 100 seconds for the 

ASWC method. The averaging length was set to half the window length plus one TR 

following the mathematical tuning suggested in Figure 1.
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Simulations were performed for ASWC window/averaging lengths 10/50, 20/50, 44/50, 

50/50 and 100/50 sec. We included a 44 sec window length value from solving (6) for 

frequency of 0.01 Hz (cut-off frequency f0 = 0.4441/(0.01 Hz) = 44.41 sec). Averaging 

length was set using the recommended length g = 1/2f0 = 50 sec. While the magnitude of 

each frequency was constant, the phases were chosen at random for one of the time courses. 

For the other time course, the phases were shifted on each time step following the ground 

truth connectivity dynamics. Since we are interested in tracking deviations from ground 

truth, we calculated the mean square error (MSE) over the time range of the simulation for 

ASWC and SWC. We measured the MSE one hundred times with a different selection of 

random phases per iteration and plotted the MSE. Results are displayed in Figure 6 where 

the plotting areas have been divided in two regions: one where ASWC MSE > SWC MSE 

and the other one where ASWC MSE < SWC MSE.

Simulation results are displayed in Figure 6 and Figure 7. Figure 7 displays the actual 

estimation at each time point for SWC and ASWC for one of the 100 iterations from Figure 

6. A look at the actual estimation in Figure 7 complements the outcomes presented in Figure 

6. When the connectivity remains constant (the first row in Figure 6 which is the static case), 

ASWC with window lengths of 44 sec and above achieve better performance than a tuned 

SWC with a window length of 100 sec. The case of hASWC = 44 sec and hASWC = 50 sec 

corresponds to ASWC tuned to 0.01 Hz also illustrated in Figure 3 where it was shown to 

provide better performance than tuned SWC. For this static case, larger window lengths help 

improving the estimation in ASWC. The first row of Figure 7 allows visualizing how shorter 

window lengths produce stronger artifacts until ASWC gets properly tuned, i.e. a point 

where the ASWC artifacts are weaker than SWC. For the static case, increasing the window 

length improves the estimation.

In all other rows of Figure 6, the tuned ASWC case (hASWC = 44 sec and hASWC = 50 sec) 

outperforms SWC. We can explain this by two factors. First, we have shown than tuned 

ASWC has weaker artifacts than tuned SWC. For the second explanation, we need to take a 

look at Figure 5 where the phase frequency spectrum response of tuned ASWC with shorter 

window lengths can resolve higher frequencies than tuned SWC which requires a larger 

window length. In other words, as the correlation fluctuates faster, the estimation worsens 

with a rate that depends on the window length. ASWC has smaller window length and thus 

results in better performance than SWC.

The last row in Figure 6 shows the results for a dynamic correlation varying with a 

frequency of 100 Hz. In this case, ASWC outperforms SWC except at the point where SWC 

and ASWC have the same window length in the last column (hASWC = 100 sec and hSWC = 

100 sec for the last row and last column panel). At shorter window lengths there is more 

temporal resolution power. The outcome of the last row in Figure 7 shows how the artifacts, 

although present, are weak for the ASWC method with 10 sec window length. As the 

window length increases, the capability of resolving the 100 Hz frequency diminishes. At 

the point where hASWC = 100 sec, both SWC and ASWC show similar performance. This is 

explained by (10), (12) and Figure 5 predicting that a correlation frequency of 0.01 Hz 

cannot be we accurately estimated if the window length is 100 sec. The last row of Figure 7 

illustrates the signal obliteration due to the 100 sec window length configured for tuned 
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SWC. Since the estimation term ℎ
SW CH f Θ f  in (10) is zero at 0.01 Hz, all that we can see 

during the last row of Figure 7 is the artifact term ℶℎ′  of the SWC. When the window length 

is set to 100 sec in the last column and last row of Figure 7, ASWC also exhibit a zero 

estimation term gASW CH f ℎ
ASW CH f Θ f  from (12) and all that remains is the 

corresponding artifact term ℶℎ, g′ .

Real Data Example

Data for this example was borrowed from a previous dynamic connectivity study on 

polysubstance addiction. We will briefly describe data essentials, but a more detailed 

description can be found in (Vergara et al., 2018). Resting state fMRI data were collected on 

a 3T Siemens TIM Trio (Erlangen, Germany) scanner. Participants kept their eyes open 

during the 5-minute resting scan. Echo-planar EPI sequence images (TR = 2,000 ms, TE = 

29 ms, flip angle = 75°) were acquired with an 8-channel head coil. Each volume consisted 

of 33 axial slices (64 × 64 matrix, 3.75 × 3.75 mm2, 3.5 mm thickness, 1 mm gap). After the 

necessary preprocessing steps explained in (Vergara et al., 2017) and group independent 

component analysis, time courses for thirty nine resting state networks were estimated. All 

time courses were filtered using a Butterworth band-pass filter 0.01 to 0.15 Hz. The SWC 

technique was then applied with a window length of 40 sec. For the 39 retained resting state 

networks, a total of 741 dynamic functional network connectivity (dFNC) values were 

estimated for each window. Finally, a k-means procedure was applied to detect 6 different 

dFNC states in order to identify dFNC state duration, beginning and ending points. We 

utilized the k-means clustering outcome to explore difference between SWC and ASWC. We 

used the dFNC states sequence to get an approximation of temporal changes in dFNC. Such 

changes are not the result of a single SWC from a pair of brain areas, but were detected 

using a whole brain analysis including 741 pairs of SWC per time point. We assume that 

dFNC changes from analyzing the whole set are rooted on temporal dFNC variations of the 

individual SWCs. The dFNC analysis allowed us to find different patterns of temporal dFNC 

transients to be used as examples.

We pick the three most relevant cases simulated in Figure 6 and Figure 7: static FNC (first 

row), relatively sharp transition from one dFNC level to a different one (second row), a 

relatively rapid and periodic dFNC transient (fourth row). Interestingly, each one of these 

three cases were found more than once through the available set of dFNC data. We picked 

one subject from each case and one of the 741 FNCs that closely fit the detected dFNC 

transients. Next, we reran the dFNC framework for well-tuned SWC (nominal value hSWC = 

100 sec) and ASWC (nominal values hASWC = 44 sec and gASWC= 50 sec). The results are 

presented in Figure 8 where several observations can be spotted in each case. The standard 

deviation in the static case is lower in ASWC than SWC similar to the simulation in Figure 

3. This outcome in real data is similar to what was observed in the first row of Figure 7 

except that true constant correlation is not guaranteed. Yet, fluctuations are weaker for tuned 

ASWC indicating a better estimation for this quasi-static FNC. The transition case in the 

second row of Figure 8 exemplifies how these transitions are sharper and suffering from 

weaker artifacts in ASWC. These results closely resemble the outcomes in Figure 4 where a 

sharp transition was enforced as the ground truth. The last case of rapid fluctuations also 
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shows the advantage of ASWC over SWC. Transient fluctuations were detected with a 

higher magnitude as predicted by the frequency responses of the MA model. In the real data, 

the dFNC state fluctuation changes at approximately 0.012 Hz. This frequency is close to 

the zeroing SWC frequency 0.01 Hz (Figure 5), thus its strength is highly reduced. 

Contrastingly, the strength is higher in ASWC because the zeroing frequency 0.02 Hz is not 

that close to 0.012 Hz as compared to SWC.

Discussion

Several concerns were raised when the first model tracking dynamic connectivity using 

covariance was first made public (Leonardi and Van De Ville, 2015). One controversial 

assertion was the choice of a window length 1/f0 according with the lowest frequency f0 of 

the BOLD signal. Given that typical low frequency cutoff is 0.01 Hz, the covariance 

equation leads to a window length of 100 sec (Leonardi and Van De Ville, 2015). As 

demonstrated by our simulations, a long window length such as 100 sec diminishes the 

ability of accurately resolving the functional connectivity dynamics because of the 

smoothing nature of performing a correlation over a long period of time. The ASWC method 

proposed in this work exhibited better performance over SWC at both dFNC extremes: very 

slow (quasi-static) and relatively fast temporal fluctuations of connectivity. The cost for 

ASWC involves an additional processing step necessary to perform the averaging in ASWC 

as compared to SWC, while the pay-out for this trivial averaging step is a significant 

improvement in performance.

In addition to proposing a new technique, we have characterized and compared ASWC 

against SWC through this work. The first model analyzed corresponded to a non-varying 

correlation or a static case. This represents the most extreme case of zero fluctuations, or 

frequency zero. The presence of artifacts in the form of spurious fluctuations was the main 

concern in this static case. Analytical methods predicted artifact reduction in ASWC beyond 

that obtained with SWC. Real data simulations in Figure 8 corroborate the prediction since 

fluctuations were weaker in ASWC when no change in dFNC state was estimated. The 

condition in this case was that averaging length needed tuning using gASWC = 1/2f0 reducing 

artifacts for any time-course frequency f > f0. Notably, in this static connectivity case time 

signals can exhibit any frequency while their correlation is constant. Figure 1 shows that 

complete artifact obliteration is achievable for a single constant sinusoidal signal at f0. The 

analysis for frequencies above f0 revealed a better performance of ASWC over SWC. The 

simulation in Figure 3 reveals an artifact magnitude of more than 1000 times larger in SWC 

compared to ASWC for some frequencies. However, achieving the better performance was 

dependent on appropriate tuning of the ASWC window length. After analyzing the influence 

of time signals frequency, it was determined in (6) the correct tuning to be hASWC = 0.4441/

f0. This value if about 44.4% times the tuning suggested in SWC, i.e. hSWC = 1/f0 (Leonardi 

and Van De Ville, 2015). While the true rewards of a shorter window length in ASWC are 

not fully observable in the static case, there are obvious advantages in non-static cases which 

we discuss next.

The sharp transition model described sudden changes in connectivity. In this case, the 

averaging length plays a lesser role. The sharpness resolution is mainly determined by the 
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window length. Since hASWC is less than half hSWC the model roughly predicts twice the 

ability of resolving sudden changes in connectivity. Simulations in Figure 4 show how 

doubling the window length, but not the averaging length, doubled the smoothing of the 

imposed sudden connectivity change. This model does not only describe an idealized 

situation, but it could also characterize time intervals of quasi static dynamic connectivity. 

These quasi static intervals were suggested since the dawn of dynamic connectivity to 

explain why clustering methods might be able to detect intervals featuring a single dFNC 

state (Allen et al., 2014). With respect to our current discussion, the quasi-static case 

displayed on the second row of Figure 8 was better described by ASWC with better 

definition of the transition interval and flatter slopes on the quasi static extremes. Although 

the real connectivity is unknown for real data, stronger fluctuations were observed in 

towards left and right sides of the SWC estimation. Since larger artifact fluctuations are 

expected in SWC for the static connectivity case depicted in Figure 3, we can suspect that 

SWC lobes not present in ASWC are anything but artifacts.

The most complete description of SWC and ASWC presented in this work was the moving 

average model (MA model). In this model, we divided the signal in an estimation term and 

an artifact term. The main interest is to allow for the estimation term to be stronger than the 

artifact term. In both SWC and ASWC, the estimation terms are described by a moving 

average system. Moving average systems exhibit a well-known frequency response which 

allows making further prediction for SWC and ASWC. The frequencies in the MA model 

refer to how fast the correlation between two time signals changes, as opposed to the 

frequency of time signals that were characterized in the static connectivity model. SWC is 

limited in frequency by the window length which should be tuned to hSWC = 1/f0, while 

ASWC depends on the averaging length tuned at gASWC = 1/2f0. In simple terms, the MA 

model indicates that ASWC will resolve faster transients than SWC because the correlation 

frequency spectrum allows it. Notice that at tuning hSWC/gASWC = 2, ASWC allows for 

about two times higher frequencies than SWC. Real data and wide band simulations agree 

with this prediction. Figure 7 shows how the simulated ground truth is obliterated in tuned 

SWC because the correlation fluctuated with a frequency of exactly 1/hSWC. The 

fluctuations in this case were related only to the artifact terms of the MA model. Since it is 

tuned differently, ASWC was able to track the relatively fast simulated changes that SWC 

could not resolve. The real data example in Figure 8, shows how the connectivity frequency 

at 0.012 Hz is weaker in SWC compared to ASWC because of its proximity to the zeroing 

SWC frequency tuned at 0.01 Hz. However, ASWC tuning permit frequencies up to 0.02 Hz 

(see Figure 5) resulting in a better estimation.

Limitations

As is the case with other similar studies (Leonardi and Van De Ville, 2015; Zalesky and 

Breakspear, 2015), the current work does not promise to eliminate all artifact fluctuations, 

but focuses on reducing their magnitude. Other effects due to hemodynamic response, 

sluggishness, and noise (Hutchison et al., 2013; Lehmann et al., 2017) are not considered in 

this work. However, ASWC might reduce some of these nuisance effects due to the filtering 

properties of the MA (Oppenheim and Schafer, 1989).
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The improved performance of ASWC over SWC was initially tested through simulations 

since a ground truth exists for simulated data. A similar attempt to use real data confirmed 

similar trends as those obtained from simulations. Whether the estimated fluctuations in real 

data fully represent neuronal activations or are the result of signal nuisances still remains to 

be confirmed and is a question beyond the topic of this work. However, we might hope that 

reducing window length artifacts of dFC signals can allow future research in determining 

ways of cleaning the signal from other nuisances.

Conclusion

Including an averaging step in the processing of SWC (ASWC) provided a method of 

reducing artifact fluctuations due to windowing as compared to raw SWC. This reduction in 

artifacts enhances the ability of the ASWC method to track real dFC fluctuations as 

compared to the raw SWC method. In contrast to SWC, which requires only setting the 

window length, there are two parameters to define in ASWC, the window length hASWC and 

the averaging length gASWC. The optimal design parameters for ASWC can be written as

a. Select a design lowest allowed frequency f0 for the time signals to be correlated.

b. Set hASWC = 0.4441/f0 to implement ASWC as a second order high-pass filter 

with cut-off at f0.

c. Set gASWC = 1/2f0 to maximize the reduction of artifacts at f0 and for higher 

frequencies f > f0.

Assuming a cut-off at f0= 0.01 Hz, the configuration values are hASWC = 44.41 sec and 

gASWC = 50 sec. Although 50 sec seems like a large averaging because gASWC+ hASWC 94 

sec, this work showed that temporal resolution depends less on the sum gASWC + hASWC and 

is more heavily influenced by the individual lengths gASWC and hASWC. The important point 

was to reduce window and averaging lengths (or a combination) for a frequency spectrum 

that allowed resolving higher frequencies. In summary, an optimally configured ASWC 

suggests several advantages over the optimal SWC configuration with the recommended 

length hSWC = 100 sec:

1. A smaller optimal window length hASWC = 44.41 sec allows for better tracking 

of temporal dFC fluctuations (Figure 6)

2. The ASWC configuration with (hASWC = 44.41 sec and gASWC = 50 sec) 

behaves similar to a Butterworth filter at 0.01 Hz thus aiding in removing 

nuisance frequencies (Figure 2)

3. Overall, ASWC exhibits less artifact fluctuations when considering a wide range 

of frequencies of interest at very low frequencies (quasi-static). See Figure 3 for 

temporal signals frequency.

4. ASWC presents a correlation frequency spectrum that allows resolving higher 

frequencies than SWC. See Figure 5 for a comparison of frequency spectrums. 

See Figure 6 and Figure 7 for simulation results on correlation frequency.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Averaging of the Cosine Model for a simulated correlation of 0.2.
a) The two cosines at the upper left plot were generated assuming a TR = 1 sec, a frequency 

of f = 0.025 Hz and a phase difference given by θ = arccos 0.2. b) Sliding window 

correlations (SWCs) were estimated at all possible shifts of one TR and for SWC lengths 

from 2 to 120 sec. For a given window length, the SWC value depends on the time shift. 

SWCs for all time shifts are plotted on the upper right figure using small black dots. In this 

example, following the recommended SWC length (Leonardi and Van De Ville, 2015) will 

result in fmin= 0.025 Hz and hmin ≥ 1/fmin = 40 sec. However, this figure shows that artifacts 

are still strong around h = {50,70, ⋯}. c) The bottom left plot shows the effect of averaging 

for the window length h = 50 sec. Spurious variability of SWCs disappear at the averaging 

length g =1/2f = 20 sec. d) Bottom right plot shows the resulting SWC value (black line) as a 

function of h at averaging length g = 20 sec. The SWC values are independent of the time 

shift selected. For comparison, the asymptotic averaging result g → ∞ obtained in Equation 

(5) is displayed in red. The two average settings g = 1/2f and g → ∞ lead to the same result.
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Figure 2. Asymptotic Response of Averaged SWCs.
a) The left top plot displays the shape of asymptote (5) described by (1 − sinc2 x) for the 

factor x = fh, where f is the frequency and h is the window length. b) The right top plot 

illustrates the deleterious effects (perfect covariance estimation, i.e. Cxy = 1, is indicated by 

white areas) predicted by (5) on covariance estimation for a range of values of f and h. This 

result indicates that low frequencies and low window lengths (dark red areas) must be 

avoided since they result in the largest deviation from ground truth. c) The bottom left panel 

features a 15 min simulation using two identical cosines (i.e. for Cxy = 1) for the same 

window length of 40 sec but varying frequency. Since h = 40 sec the cutoff frequency 

estimated by (6) is 0.011 Hz which is indicated by the circle drawn in the plot. The plot also 

shows how the filter compares to second order Butterworth filters using cutoffs of 0.01 Hz 

and 0.025 Hz. d) The bottom right plot shows the root mean square error (RMSE) (averaged 

over 15 min) after setting h = 40 sec for different frequencies and averaging lengths. The 

largest observed RMSE was 1.27, but fitting the color range to this value left obscured other 

smaller errors; hence this plot was instead scaled to the [0, 0.5] range. The figure clearly 

shows the cut-off 0.5 at 0.011 Hz, an observation that does not change with the averaging 

length. However, averaging lengths below the tuning period (20 sec) show larger RMSE than 

those above the tuning period..
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Figure 3. Comparing larger SWC length versus averaging using the same number of samples.
The simulation in this plot was performed with a TR = 1 sec and estimations were taken 

over 5 min. In the first panel (a), a window length of hSWC = 100 sec was selected and the 

result was not averaged. A fifth-order high-pass Butterworth filter with cut-off 0.01Hz was 

applied to remove low frequencies of no interest. We can see the existence of spurious 

SWCs at frequencies not tuned to 1/100 Hz. In panel b), time points were redistributed to 

have a window length of hASWC = 44 sec and an averaging length of gASWC = 50 sec. No 

filter was applied; the simulation used the natural filtering of ASWC described in Figure 2c, 

but re-adjusted to fit the 0.01 Hz cut-off. In c), the ratio of standard deviations σSWC/σASWC 

has been plot in a logarithmic scale showing that SWC exhibit higher artifact power than 

ASWC at frequencies higher than the cut-off 0.01 Hz.
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Figure 4. This plot shows a sharp correlation transition from 0.5 to −0.5.
a) The two cosines (f =0.025 Hz) suffer a phase change at time t=0 defining four different 

phases distributed among the two cosines. The phases were selected to simulate the 

configured correlations: cosine in blue shifted phase from π/4 to – π/4 radians, the red 

cosine from (π/4 – 0.5) to (− π/4 + 0.5) radians. b) Performing a tuned SWC with h = 40 sec 

shows the effect of the phase transition resulting in sinusoidal like artifacts. The effect of 

averaging g = 1/2f = 20 sec reduces the artifacts, but neither the phase transition nor the 

weighted averaging trend are removed as predicted in (7) and (8). C) In this plot we doubled 

the averaging length g =40 sec resulting in little change with respect to the original setup. d) 

Larger differences are observed when doubling the window length (h = 80 sec). As predicted 

in (8), changes in the window length will have a larger effect than changes in the averaging 

length.
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Figure 5. Frequency response of the non-artifact terms for SWC (10) and ASWC (12).
The two plots were built for the corresponding nominal values a) for SWC hSWC = 100 sec 

the first zeroed frequency corresponding to 0.01 Hz. Correlation variations with this 

frequency cannot be resolved. b) For ASWC hASWC = 44 sec and gASWC = 50 sec, the first 

zero frequency is determined by the largest parameter between hASWC and gASWC which in 

this case is gASWC = 50 sec. The frequency 0.01 Hz is not zeroed and within the first lobe 

resulting in a better frequency resolution. At the same time ASWC exhibit a higher 

suppression of side lobes.
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Figure 6. This plot shows the mean square error (MSE) for the ASWC and SWC methods while 
tracking simulated connectivity dynamics.
Four different connectivity dynamics were simulated as representing the ground truth. Time 

courses were simulated using a cosine summation with randomly selected phases and with 

phase differences at each time point designed to track the ground truth dynamics. One 

hundred iterations (each iteration with a different set of random phases) were performed and 

the MSE displayed for each case. On each ASWC vs. SWC plot, a line divides the plotting 

area in sections where one method has better performance than the other one.
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Figure 7. This plot displays one iteration of the simulation from Figure 6.
Connectivity estimations for ASWC are displayed by the broken lines in black. Continuous 

lines in orange represent the SWC estimation. The blue lines represent the ground truth and 

can be differentiated from the SWC line because they are completely smooth.

Vergara et al. Page 27

Hum Brain Mapp. Author manuscript; available in PMC 2020 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. This plot shows several examples from real data.
This set of examples closely resembles the simulations in Figure 6 and Figure 7. Although 

there is no ground truth, we can estimate quasi-static, quasi sharp transitions and fluctuating 

dFNC using the dynamic state membership functions of each case. Centroid matrices for the 

six dynamic states are displayed. To better illustrate the centroids, brain areas were 

organized into eight domains subcortical (SBC), cerebellum (CER), auditory (AUD), 

sensorimotor (SEN), visual (VIS), salience (SAL), default mode network (DMN), executive 

control network (ECN) and precuneus (PRE). Six brain areas are used: insula, middle 

occipital gyrus (MOG), inferior frontal gyrus (IFG), postcentral gyrus, posterior cingulate 

cortex (PCC) and lingual gyrus/cerebellar vermis. Displayed coordinates are in MNI space. 

Brain areas and dynamic states were extracted from previous work (Vergara et al., 2018). 

Each row uses data from a different subject where the corresponding pattern was observed. 

Both SWC and ASWC were tuned to nominal values based on a lower limit frequency of 

0.01 Hz. On the static case, ASWC exhibit weaker fluctuations as expected from an 

appropriate estimation of static connectivity. The single transition case was better defined by 

ASWC where a smoother and shaper slope was estimated. In the fluctuating dFNC case, 

ASWC shows a stronger signal than in SWC.
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