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Abstract
A fundamental question in neuroscience concerns the relation between the spiking of individual
neurons and the aggregate electrical activity of neuronal ensembles as seen in local-field potentials
(LFPs). Because LFPs reflect both spiking activity and subthreshold events, this question is not
simply one of data aggregation. Recording from 20 neurosurgical patients, we directly examined
the relation between LFPs and neuronal spiking. Examining 2,030 neurons in widespread brain
regions, we found that firing rates were positively correlated with broadband (2 – 150 Hz) shifts in
the LFP power spectrum. In contrast, narrowband oscillations correlated both positively and
negatively with firing rates at different recording sites. Broadband power shifts were a more-
reliable predictor of neuronal spiking than narrowband power shifts. These findings suggest that
broadband LFP power provides valuable information concerning neuronal activity beyond that
contained in narrowband oscillations.

Keywords
Local field potentials; Broadband; Oscillations; Single-units; Humans; Epilepsy

A large and growing literature has documented the existence of oscillatory activity from
large neuronal ensembles in both humans and animals, and has shown that these brain
oscillations are related to a wide variety of behavioral and cognitive states (Kahana et al.,
2001; Buzsáki, 2004; Buzsáki, 2006; Crone et al., 2006; Jacobs and Kahana, 2009; Jerbi et
al., 2009). Elucidating the relation between large-scale neural patterns and the activities of
individual neurons is critical for gaining a deep understanding of the brain and how it
supports behavior (Kreiman, 2007). To this end, several studies of humans and animals have
examined the relation between large-scale recordings, such as local-field potentials (LFPs),
and the activities of individual neurons.

Recording from monkey visual cortex, Rasch et al. (2008) found that increases in gamma
activity (40–90 Hz) and decreases in delta and theta activity (1–10 Hz) in the LFP signal
were correlated with increased neuronal firing rates. Examining primary auditory cortex as
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human neurosurgical patients viewed brief movies, Mukamel et al. (2005) also observed that
increased gamma activity and decreased theta activity correlated with neuronal firing. The
positive correlation between gamma activity and neuronal spiking is a robust finding
reported in a variety of studies (Fries et al., 2001; Pesaran et al., 2002).

Reports of strong correlations between neuronal firing and narrowband activity (i.e.,
oscillations) have supported the view that oscillations reflect synchronized spike timing in
large neuronal ensembles (Singer and Gray, 1995; Logothetis, 2003; Fries et al., 2007). This
follows in part from the temporal-binding hypothesis (von der Malsburg, 1981), which
proposes that synchronized neural activity can solve the “binding problem” by linking
multiple neuronal signals (Köhler, 1947; Koffka, 1935; Kanisza, 1979; Pal and Pal, 1993).
However, several studies suggest that apparant correlations between spikes and gamma-band
LFP activity are actually due to broadband LFP patterns, rather than band-specific
oscillations (Mitzdorf, 1985; Juergens et al., 1999; Cruikshank et al., 2001; Kaur et al.,
2004; Kreiman et al., 2006; Chen et al., 2007; Miller et al., 2007b). Furthermore, task-
related modulations in human LFP activity have been observed throughout a broad
frequency range extending to ~150–200 Hz, showing that the human brain exhibits
broadband phenomena in addition to narrowband oscillations (Tanji et al., 2005; Lachaux et
al., 2005; Canolty et al., 2006). Other work suggests that broadband changes in LFP activity
are related to neuronal spiking (Miller et al., 2009; Milstein et al., 2009). However, no
previous work has directly compared neuronal spiking in humans with simultaneous
broadband LFP activity.

Here we examined the relation between LFPs and single-neuron activity in 20 neurosurgical
patients during a virtual-navigation task. We recorded action potentials from 2,030 neurons
from diverse brain regions including the neocortex and medial temporal lobe. Consistent
with previous studies, we found a population of narrowband-shift neurons, which varied
their firing in proportion to LFP power at specific frequency bands. Narrowband-shift
neurons were present throughout the brain, but were especially prevalent in the frontal
cortex and amygdala. In addition, we observed a larger population of broadband-shift
neurons, which varied their firing with the overall height of the LFP power spectrum at all
frequencies. Broadband-shift neurons appeared in all examined brain regions, but were
especially prevalent in the medial-temporal lobe. Broadband increases in LFP power were
almost exclusively positively correlated with single-neuron firing, providing a robust
estimate of neuronal firing. We propose that, when estimating local neuronal firing using
LFPs, researchers should examine broadband power in addition to power contained in
narrow frequency bands.

Methods
Electrophysiological recordings

We examined intracranial brain recordings from 20 neurosurgical patients undergoing
treatment for drug-resistant epilepsy. During each 25–60-minute recording session, patients
played a virtual-navigation game, Yellow Cab, in which they assume the role of a taxi driver
and chauffeur (virtual) passengers to their desired destinations. While playing this game,
patients learn the virtual environment’s layout (Newman et al., 2007) and display brain
oscillations at various frequencies related to learning and sensorimotor integration (Caplan
et al., 2003; Ekstrom et al., 2005).

Patients are implanted with 6–12 neurosurgical depth electrodes by clinical teams. Local
field potentials (LFPs) recorded from these electrodes are used to map the seizure focus and
identify functional brain regions for potential subsequent surgical resection. In addition,
extending from the tip of each depth electrode is a set of nine small microwires. (The ninth
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wire is the recording reference for the other eight.) Each microwire is 40 μm in diameter and
records from a small, local region of cortex. By recording from the microwires at 32 kHz,
we observe both high-frequency single-neuron spiking (Fried et al., 1999) and lower-
frequency LFPs (Mukamel et al., 2005; Jacobs et al., 2007). Using the WaveClus software
package (Quiroga et al., 2004), we identified the action potentials of 0–3 neurons per
microwire, for a total of 2,030 neurons across 20 subjects. Recordings were obtained in
widespread brain regions including the frontal cortex, posterior cortex (occipital and parietal
cortices), amygdala, hippocampus, and parahippocampal region (Witter, 2002). In order to
make the LFP data more computationally tractable, we downsampled our recordings to 2
kHz. We then applied a second-order Butterworth notch filter at 60 Hz to remove line noise.
We computed the smoothed firing rate for each timepoint by convolving each neuron’s spike
train with a Gaussian kernel (half-width = 500 ms). To prevent the low-frequency
components of the action-potential waveform from contaminating the LFP signal, we
replaced the data samples in the –2–8-ms window around each spike with a linear
interpolation of the underlying LFP signal (Jacobs et al., 2007). These recordings were
obtained for a previous study (Jacobs et al., 2007), but the analyses reported here are
completely novel.

LFP feature extraction
We measured oscillatory power in the LFP signal using Morlet wavelets (wave number = 4)
at 50 log-spaced frequencies between 2 and 150 Hz (2 × 100.0383x for x ∈ {0…49}). Because
oscillatory power at a given frequency is χ2 distributed (Percival and Walden, 1993; Henrie
and Shapley, 2005), we log-transformed the wavelet-calculated powers to make the
distributions more normal. To account for inter-electrode impedance differences, we
normalized the powers recorded at each electrode such that the mean power spectrum was
centered at 0 with a standard deviation of 1.

To analyze the relation between LFP spectral power and spiking activity, we next divided
each recording session into 500-ms epochs. This epoch length was chosen to provide a
reasonable balance between temporal resolution (which we sought to maximize) and
correlations across successive measurements (which we sought to minimize). To eliminate
the effect of non-biological noise on our analysis, we removed epochs with firing rates
above the 99th percentile. For computing summary statistics, we calculated the mean power
contained in following narrow frequency bands: delta (2–4 Hz), theta (4–8 Hz), alpha (8–12
Hz), beta (12–30 Hz), and gamma (30–150 Hz). In addition to measuring LFP power at
narrow frequency bands, we computed broadband power. Broadband power refers to LFP
voltage fluctuations that occur at a broad range of frequencies, consistent with the voltage
following a random-walk process (Annibaldi and Hopcraft, 2002), unlike true oscillations
limited to a narrow frequency range. To measure the broadband power for each individual
epoch, we fit a line to that epoch’s wavelet-calculated power spectrum via a robust
regression (Holland and Welsch, 1977). Robust regression fits the majority of data points
closely and is relatively unaffected by outliers; by contrast, a standard least-squares
regression would be more affected by datapoints that did not fall on the line. This is critical
for distinguishing broadband and narrowband effects because it minimizes the impact of
narrowband oscillations, which appear as local peaks in the LFP power spectrum, towards
the computed broadband power. We use the term broadband power to refer to the mean
height of the robust-regression–fitted line in each epoch.

Regression framework
Our primary objective was to examine how the firing rates of individual neurons related to
narrowband changes (i.e., oscillations) and broadband changes in the LFP. To quantify the
extent to which each of these patterns predicted neuronal firing, we used a series of least-
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squares regressions. For each neuron, we set up five bivariate simultaneous regressions of
the form

where R was a vector containing the estimated firing rate for each epoch, F was a vector
containing the average power in each epoch for one narrowband frequency (delta, theta,
alpha, beta, or gamma), and B was a vector containing broadband power. Prior to computing
the mean power in each narrow frequency band for each electrode, we z-transformed the
power distribution at each individual frequency to have a mean of 0 and a standard deviation
of 1. This step ensured that the individual frequencies in each band contributed equally,
despite the overall  shape of the power spectrum. The regression was performed five times
(once for each frequency band), and the regression coefficients, β0, βB, and βF were fit
separately each time. When the βB coeffcients from all five regressions were significantly
different from zero (see bootstrap procedure, below), and all had the same sign, we
designated the neuron as a broadband-shift neuron. This technique assured that, for
broadband-shift neurons, broadband power explained a significant portion of the firing-rate
variance beyond any one narrow frequency band alone.

We designated a neuron as a narrowband-shift neuron if exactly one βF was significantly
different from zero (see bootstrap procedure, below). In addition, a neuron was also labeled
as a narrowband-shift neuron if it had exactly two significant βF’s with the same sign in
neighboring frequency bands (e.g., βδ < 0 and βθ < 0). We added this second condition so
that our analysis was not biased against neurons whose firing rates were related to
oscillations that spanned the frequency-band boundaries. In this way, the firing rates of
narrowband-shift neurons were correlated with oscillations in one narrow frequency band.
Note that a single neuron could be tagged as both a broadband-shift neuron and a
narrowband-shift neuron. As a potential alternative to the bivariate regression framework
presented here, we also considered the use of a single simultaneous regression for each
neuron (using broadband power and each of the five frequency bands as regressors).
However, because the different frequency bands were highly co-linear, results using this
alternative approach were difficult to interpret.

Multiple comparisons
Our framework for classifying neurons as broadband- and narrowband-shift neurons relied
on the outcomes of several potentially correlated statistical tests. To address this issue we
used a bootstrap procedure to calculate a p threshold to use for each statistic. We computed
this threshold in a way that allowed us to set a single false-positive rate for the entire
procedure (i.e., across all five regressions). We used a time-shifting bootstrap to estimate the
probability of falsely labeling each neuron as a narrowband-shift neuron and as a broadband-
shift neuron. For each neuron, we generated 1,000 simulated firing rate vectors by circularly
shifting the values of the original vector by a random number of elements. For each time-
shifted vector, we re-ran the original regression analyses providing, for each neuron, 1,000
sets of bootstrap regression coefficients and p values. We used these bootstraps to
determine, for each neuron, two p thresholds—one for identifying narrowband-shift neurons
and one for identifying broadband-shift neurons—that gave a 5% false positive rate for each
designation. Although individual LFP recordings may exhibit differing correlations between
the powers at neighboring frequencies, our procedure ensured that each neuron’s false-
positive rate is fixed at 5% for each effect.
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Results
Using recordings of 2,030 neurons from 20 neurosurgical patients (Supp. Tab. S1) we
analyzed the relation between the firing rates of these neurons and simultaneous variations
in the local field potential (LFP). In particular, we determined how moment-to-moment
variations in two distinct aspects of LFP power related to simultaneous changes in the firing
rates of nearby neurons (Fig. S1). In addition to examining LFP oscillations in narrow
frequency ranges, as traditionally done in this type of work (Kahana, 2006; Fries et al.,
2007), we also analyzed a novel measure of broadband LFP activity. Broadband activity
refers to changes in the LFP power spectrum that simultaneously appear at all frequencies,
rather than being limited to a narrow frequency band. We measured broadband power using
a technique that measures the overall level of the LFP power spectrum while ignoring
narrowband oscillatory peaks (see Methods). This procedure ensures that whenever we
observed a neuron whose spiking was correlated with broadband power, this activity was
truly related to the overall level of the LFP power spectrum, rather than to oscillations at
specific bands. We ruled out that broadband LFP power shifts are a consequence of low-
frequency components of the spike waveform appearing in the LFP (see Supplemental
results). Before presenting aggregate statistics for the full dataset, we provide some sample
data to illustrate the major phenomena of interest.

Figure 1 illustrates the relation between broadband power shifts and spiking activity
recorded from an electrode in the amygdala of Patient 3. Panel a shows the normalized LFP
power spectrum (black lines) and the mean broadband LFP power (red lines) for each of
thirty consecutive 500-ms epochs. Panel b shows the neuron’s spiking (black tick marks)
and mean firing rate (blue lines) for these same epochs. Across these epochs, variations in
broadband power were strongly correlated with simultaneous variations in the neuron’s
firing rate (Pearson’s r = 0.92; p < 10−12). Note that both broadband power and neuronal
firing rate exhibited local maxima at 0.5 s, 4 s, 6.5 s, and 10 s, and both had local minima at
1.5 s and 5 s. Critically, variations in LFP power were not limited to particular narrow
frequency bands, but rather appeared as overall broadband shifts in the entire power
spectrum (brown lines in the panel a).

To determine whether this pattern was robust across the entire recording session, we
examined the mean broadband LFP power and the mean firing rate for each of the 3,477
half-second epochs we recorded for this neuron. Data from each epoch appear as a point in
Figure 2a, where the horizontal coordinate indicates the firing rate and the vertical
coordinate indicates the normalized broadband power. Across the entire recording session,
these points were clustered along the diagonal, indicating that neuronal firing rate was
positively correlated with LFP broadband power (Pearson’s r = 0.6; p < 10−10). Figure 2b
depicts this relation in a different manner, showing the mean LFP power spectra for each of
five groups of epochs where this neuron had different firing rates (different colors in panel
a). As this neuron’s firing rate increased, the LFP power spectrum exhibited a proportional
upward shift at all frequencies.

We next sought to identify all neurons in our dataset whose firing rates varied with
broadband power (as in the example above) or with narrowband power (as documented in
the previous literature). Because broadband power is influenced by each narrow frequency
band, disambiguating broadband and narrowband effects is critical for understanding the
relation between neuronal spiking and LFP activity. To identify neurons exhibiting each of
these patterns, we fit a bivariate linear regression model to the relation between firing rate
and measures of both broadband and narrowband LFP power. For each neuron, we
computed the firing rate for each 500-ms epoch and we also computed LFP power measured
at the same electrode at five narrow frequency bands: delta (2–4 Hz), theta (4–8 Hz), alpha
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(8–12 Hz), beta (12–30 Hz), and gamma (30–150 Hz), in addition to computing broadband
power (see Methods). For each neuron we then performed a set of bivariate regressions
where broadband power and the mean power in one narrow frequency band were
simultaneously used to predict the neuron’s instantaneous firing rate. The two β coefficients
estimated in each regression indicate the contributions of broadband activity and this
particular narrowband frequency band towards each neuron’s firing rate (see Methods).

Combining the results of all five regressions for each neuron, we designated a neuron as a
broadband-shift neuron when all five β coefficients for the broadband predictor were
significantly different from zero in the same direction. We designated a neuron as a
narrowband-shift neuron if, across the five regressions, either (a) one and only one
narrowband β coefficient was significantly different from zero or (b) exactly two
narrowband β coefficients at adjacent frequency bands (e.g. beta and gamma) were
significantly different from zero in the same direction. (An individual neuron could receive
both the broadband-shift and narrowband-shift designations.) We adjusted our significance
thresholds for each neuron to yield a 5% false-positive rate for each designation based on a
reshuffling procedure (see Methods).

Figure 3 illustrates power spectra for neurons whose spiking (positively or negatively)
correlated with narrowband LFP oscillations, neurons whose spiking correlated with
broadband LFP activity, and neurons whose spiking was simultaneously influenced by both
broadband and narrowband activity. Figure 3 also shows the proportion of neurons that fell
into each category. For neurons whose firing rates were correlated with broadband or
narrowband LFP patterns, the most prominent pattern in the dataset was that 34% of neurons
exhibited spiking that was positively correlated with broadband LFP activity (Fig. 3, right
column)—the prevalence of this phenomenon far exceeded the level expected by chance (p
< 10−6, binomial test). In addition to this broadband effect, 29.7% of all neurons varied their
spiking in relation to narrowband LFP oscillations (top and bottom rows).

The broadband and narrowband patterns were qualitatively different: The broadband shift
effect was remarkably unidirectional, with 92% of all broadband-shift neurons exhibiting
this effect in a positive direction. By contrast, among narrowband-shift neurons, only 66%
exhibited positive correlations. Both broadband and narrowband effects often appeared
simultaneously at the same recording sites; we found that 11.7% of neurons were classified
as both broadband- and narrowband-shift neurons (i.e., corner entries in Fig. 3). This
proportion is greater than would be expected if broadband and narrowband phenomena were
independent (χ2(1) = 5.3; p < 0.05).

We next sought to determine whether the phenomenon of positive broadband-shift neurons
was linked to any particular brain regions. We found positive broadband-shift neurons in all
observed brain regions (Fig. 4). To measure the prevalence of this pattern, we calculated the
proportions of positive broadband-shift neurons in each of the five brain regions we
examined (frontal and posterior cortices, parahippocampal region, amygdala, and
hippocampus). In each of these regions, we observed significantly more positive broadband-
shift neurons than expected by chance (binomial tests, p < 10−6 for each region). However,
the prevalence of this effect significantly varied between regions (χ2(4) = 34.01, p < 10−6).
In particular, the proportion of neurons exhibiting significant positive broadband shift
patterns was significantly greater in medial-temporal regions than in other regions (Fig. 5;
post-hoc χ2(1) = 241.56, p < 10−6).

The foregoing analyses focused on characterizing the broadband shift phenomenon and
distinguishing it from narrowband effects. We next sought to determine whether combining
our measure of broadband power with narrowband power can improve the prediction of
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firing rate. We performed a series of bivariate regressions with broadband power in
conjunction with narrowband power, using a different narrow band (delta, theta, alpha, beta,
or gamma) in each regression. Figure 6 shows that broadband and gamma-band power were
the two dominant LFP measures that positively correlated with firing rate. The proportions
of neurons exhibiting these two effects were comparable to one another and were both
significantly greater than the proportions of significant positive or negative correlations
observed at other frequency bands (χ2(1) > 65 and p < 10−10 for all comparisons). In
addition, we observed that in the delta, theta, and alpha bands, a greater number of neurons
showed negative correlations with firing rate than positive correlations, which is consistent
with recent literature (Mukamel et al., 2005). A notable feature of the broadband effects is
that they are predominantly unidirectional, with nearly all (92%) significant correlations
being in the positive direction. By contrast, for neurons showing significant gamma–firing-
rate correlations, only 63% showed positive correlations. Because the broadband effects
were significantly more unidirectional than narrowband gamma effects (χ2(1) = 171.4; p <
10−10), our results indicate that broadband power is a more-specific predictor of increased
neuronal spiking than narrowband oscillations.

To further illustrate the robust nature of the broadband phenomenon, we computed the
average power spectra across all 2,030 neurons in our dataset (Fig. 7a). Although only 37%
of the neurons included in this figure demonstrated significant firing rate-related broadband
shifts in their LFP power spectra (Fig. 7b), there is nevertheless a clear overall effect of
increasing power at all frequency bands with increased neuronal firing. However, repeating
this analysis after excluding all broadband-shift neurons (left and right columns of Fig. 3)
reveals an effect of increased gamma power with increased firing rate (Fig. 7c). Thus, the
population of non–broadband-shift neurons recovers the gamma–firing-rate relation
described in the prior literature (Mukamel et al., 2005).

Discussion
We examined the relation between the firing of individual neurons and simultaneous LFP
activity. In previous work, LFP recordings have typically been analyzed in terms of
narrowband oscillations, which indicate that nearby neurons are synchronously spiking at a
particular frequency (Buzsáki, 2006; Fries et al., 2007; Jensen et al., 2007). For many of the
neurons that we recorded, narrowband oscillations correlated significantly with firing rate,
especially in the gamma frequency band. We also analyzed LFP recordings using a measure
of broadband activity, which identifies fluctuations that simultaneously appear at all
frequencies. This analysis revealed that increases in the power of broadband LFP activity
positively correlated with the spiking of nearby neurons. (We verified that these broadband
increases in LFP power were not the result of the appearance of spike waveforms in our
recordings; see Supplemental results). We observed this broadband effect in multiple
patients and brain regions, and found that it was most prevalent in medial–temporal-lobe
structures. Our findings indicate that both narrowband and broadband components of the
LFP can be used to estimate the firing rates of nearby neurons, even though LFP recordings
do not actually display the waveforms of individual action potentials. Below we discuss
these findings in relation to the recent literature on narrowband and broadband LFP
phenomena.

Narrowband effects
A wide range of studies have examined the relation between narrowband LFP oscillations
and the firing of nearby neurons, identifying an array of patterns that often differ across
species, frequencies, brain regions, and behaviors. However, two common trends have
emerged. Generally in neocortex, the power of low-frequency (< ~10 Hz) oscillations are
negatively correlated with neuronal firing rates, while the power of high-frequency (> ~30

Manning et al. Page 7

J Neurosci. Author manuscript; available in PMC 2010 December 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Hz) oscillations are typically positively correlated with neuronal firing rates (Mukamel et
al., 2005; Rasch et al., 2008). These results comport well with the observation of task-related
increases in the amplitude of high-frequency activity and decreases in the amplitude of
lower-frequency activity (Crone et al., 1998a, b; Miller et al., 2007b). In the present study,
we recorded from distributed regions throughout the brains of neurosurgical patients and
found narrowband effects that were consistent with this literature. In particular, we found
that LFP oscillations at low frequencies (delta, theta, and alpha bands) were negatively
correlated with neuronal spiking, while high frequency LFP oscillations were most often
positively correlated with neuronal spiking (beta and gamma bands). However, we also
found a significant number of neurons whose firing rates were negatively correlated with
gamma oscillations (Fig. 6). Thus, there is considerable variability in the relation between
narrowband LFP oscillations and neuronal spiking across neurons.

Broadband effects
Our primary finding is that neuronal spiking is positively correlated with broadband LFP
power. Broadband changes in LFP power are qualitatively different from narrowband
changes: whereas narrowband power changes reflect modulations in oscillatory activity,
broadband power changes generally reflect modulations in the variance of the LFP time
series (Annibaldi and Hopcraft, 2002). Previous research has identified broadband power
changes in brain regions that are thought to be involved with particular behaviors. One
example is a study by Miller et al. (2007b), which showed that finger and tongue movements
are accompanied by highly localized broadband LFP power increases in human motor cortex
(also see Miller et al., 2008, 2009). These studies show that broadband LFP shifts can be
difficult to identify in practice because they often occur simultaneously with power
decreases at alpha and theta frequencies (e.g. see Figs. 1 and 2 of Miller et al., 2007b).
Furthermore, oscillatory correlates of spatial and verbal memory processes are not always
specific to a given frequency band, but rather appear at a very broad range of frequencies,
consistent with a broadband effect (Ekstrom et al., 2007; Sederberg et al., 2007). Although
few other studies have discussed their findings in terms of broadband patterns, a close
inspection of the data from several studies reveals examples of behavior-related broadband
LFP patterns. For example Edwards et al. (2005) report that unexpected auditory stimuli
were followed by LFP changes in left-frontal and temporal cortex that appear to be
broadband in nature (Fig. 3 of Edwards et al., 2005). Furthermore, the data reported by
Lachaux et al. (2005) are consistent with the presence of positive broadband power shifts in
the fusiform gyrus during face viewing (top panel of Fig. 2; also Fig. 5, Patient 3 in Lachaux
et al., 2005). A third example can be found in Belitski et al. (2008), which examined LFP
power spectra from macaque visual cortex during movie watching. Figure 2a in their
manuscript shows a positive broadband shift in the LFP power spectrum during movies,
relative to a baseline period. Finally, Ball et al. (2008) show data suggesting that broadband
patterns can be observed non-invasively using scalp electroencephalography (EEG). For
example, they show recordings from an electrode above motor cortex that exhibits a
broadband power increase (coupled with a low-frequency narrowband decrease) after
movement (Fig. 1a in Ball et al., 2008). While each of these studies imply that broadband
power indicates when a particular brain region is active, ours is the first to show that
increases in broadband activity directly relate to simultaneous increases in neuronal spiking.

Given our finding that neuronal spiking is correlated with broadband power, one may
wonder why many studies report task-related high-frequency (gamma) modulation rather
than reporting broadband effects (e.g. Lachaux et al., 2005; Belitski et al., 2008; Ball et al.,
2008). As described by Miller et al. (2007b), task-related spectral changes often appear as
simultaneous low-frequency decreases coupled with broadband increases in power. Due to
these low-frequency decreases, in practice, broadband power increases are often most visible
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in the gamma band. Thus many of the gamma responses reported in the literature may
actually be the result of broadband power increases coupled with low-frequency narrowband
power decreases.

An important feature of our methodology is the robust, non-linear regression (Holland and
Welsch, 1977) technique we used for distinguishing simultaneous changes in broadband and
narrowband LFP activity. Because this regression is resistant to outliers, its estimate of
broadband power is only minimally affected by the presence or absence of narrowband
oscillations, which appear as narrowband peaks in the power spectrum. By contrast, linear
methods might interpret the appearance of large narrowband oscillations as increased
broadband power. This issue can be important, because broadband and narrowband changes
often occur simultaneously and in opposite directions (Miller et al., 2007b, 2009; Ball et al.,
2008), which can make these effects difficult to tease apart.

Broader Implications
A particularly exciting implication of this study is that increases (Miller et al., 2007b) and
decreases (Lachaux et al., 2008) in broadband power, which can be observed from both
invasive (Edwards et al., 2005; Lachaux et al., 2005; Ekstrom et al., 2007; Sederberg et al.,
2007; Miller et al., 2007b, 2009) and non-invasive (Ball et al., 2008) recordings, may be
used as a proxy for neuronal spiking. This is especially important for researchers using
macroelectrode recordings to study the neural basis of human behavior, because such
recordings cannot resolve single-neuron spiking, but can record these broadband shifts. To
the extent that the broadband effects observed here generalize to activity recorded at broader
spatial scales, one could use broadband activity to measure correlates of neuronal spiking in
scalp recorded EEG and MEG signals, or even to modulate neuronal spiking using realtime
feedback methods (Lachaux et al., 2007; Miller et al., 2007a). In this way, the broadband
power measure proposed here may lead to new discoveries concerning how neuronal
activity underlies complex human behavior and cognition.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. LFP power and neuronal firing time series
Each box details the activity in one 500-ms epoch. a. This panel illustrates how various
features of the LFP change over time. In each epoch, the black lines indicate the overall LFP
power spectrum, brown lines indicate robust-fit lines, and the horizontal red lines indicate
mean broadband powers. b. This panel illustrates changes in neuronal firing rate concurrent
with changes in the LFP power spectrum. Black vertical ticks represent the times when
individual spikes occurred, dark blue lines indicates the smoothed firing rate (see Methods),
and horizontal blue lines indicate mean firing rates in each epoch. Mean broadband power is
shown in panel b (horizontal red lines) on a different scale (indicated at right).
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Figure 2. A representative neuron exhibiting a positive correlation between firing rate and
broadband LFP power
a. Broadband power and firing rate for the neuron analyzed in Figure 1. Each 500-ms epoch
of the recording session is represented by one colored dot. The color of each dot represents
its relative firing rate. Warm colors depict epochs with high firing rates, and cool colors
indicate epochs with low firing rates. The dashed black line shows an ordinary least squares
regression to these data. b. Average LFP power spectra for epochs with different firing rates.
The same color scheme is used in both panels. As firing rate increases, the power spectrum
exhibits a positive shift at all observed frequencies. The thickness of each line represents ± 1
SEM.

Manning et al. Page 14

J Neurosci. Author manuscript; available in PMC 2010 December 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Categories of observed neurons
Each box corresponds to one of the nine possible categories into which our regression
framework assigned each neuron in our dataset. The right and left columns correspond to
significant positive and negative broadband shifts, respectively. The top and bottom rows
correspond to significant positive and negative narrowband shifts, respectively. The middle
column and middle row correspond to neurons that did not show significant broadband and
narrowband shifts, respectively. The proportion of neurons placed into each category is
indicated in the upper-right corner of each box. Proportions that were significantly greater
than the estimated false positive rate for each category (see text) are filled in black. Each
box contains power spectra (in the same format as Fig. 2b) of an example neuron from the
corresponding category. The brain region of each example neuron is indicated in the lower-
left corner of each box.

Manning et al. Page 15

J Neurosci. Author manuscript; available in PMC 2010 December 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Broadband-shift neurons throughout the brain
Each row shows two example neurons from a single brain region. Within each row, each
plot illustrates the power spectra from an example neuron, in the same format as Figure 2b.
(Each of these neurons were categorized as positive broadband-shift neurons, corresponding
to the middle-right box of Fig. 3.)
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Figure 5. Percentage of positive broadband-shift neurons observed in each brain region
Dark gray bars correspond to neocortical regions: frontal cortex (Fr) and posterior cortex
(Cx). Light gray bars correspond to medial temporal lobe structures: amygdala (Amyg),
hippocampus (Hippo), and parahippocampal region (Par). Positive broadband-shift neurons
were more concentrated in the medial temporal lobe than in the neocortex. The dotted
horizontal black line marks the false-detection rate for positive broadband-shift neurons.
Error bars indicate 95% confidence intervals based on the binomial distribution.
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Figure 6. LFP components that predict firing rate
Dark gray bars indicate the percentage of neurons in each region that exhibited positive
correlations between firing rate and a particular LFP feature; light gray bars show the
percentage of neurons in each region that exhibited negative correlations. The bars on the
left indicate the proportions of neurons whose firing rates were correlated with power in
each narrow frequency band: delta (2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30
Hz), and gamma (30–100 Hz). Each neuron may be counted in at most one direction (i.e.,
either positive or negative) per narrow frequency band. The bars on the right indicate the
proportions of neurons whose firing rates were correlated with broadband power (i.e.,
broadband-shift neurons).
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Figure 7. Average power spectra for different subsets of neurons
a. Average power spectra for all 2,030 neurons in our dataset. The power spectra are
normalized by subtracting the mean of the lowest firing rate power spectrum (dark blue)
from all five curves in each panel. The thickness of each line represents ±1 SEM. As in
Figure 2, cooler colors correspond to lower firing rates, while warmer colors correspond to
higher relative firing rates. Each neuron contributes exactly once to each curve, at each
frequency. b. Average power spectra for the 759 broadband-shift neurons. c. Average power
spectra for the 1,271 neurons that did not exhibit the broadband-shift effect.
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