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Abstract

The medical, public health and scientific communities are grappling with monumental imperatives 

to contain COVID-19, develop effective vaccines, identify efficacious treatments for the infection 

and its complications, and find biomarkers that detect patients at risk of severe disease. The focus 

of this communication is on a potential biomarker, short telomere length (TL), that might serve to 

identify patients more likely to die from the SARS-CoV-2 infection, regardless of age. The 

common thread linking these patients is lymphopenia, which largely reflects a decline in the 

numbers of CD4/CD8 T cells but not B cells. These findings are consistent with data that 

lymphocyte TL dynamics impose a limit on T cell proliferation. They suggest that T cell 

lymphopoiesis might stall in individuals with short TL who are infected with SARS-CoV-2.
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Introduction

The following topics are briefly covered in this communication: (a) major features 

suggesting that telomere length (TL) is short in leukocytes of persons at higher risk of dying 

from COVID-19; (b) principles of hematopoietic cell TL dynamics relevant to the immune 

response in the face of SARS-CoV-2 infection; (c) the advantage of having a longer 

leukocyte TL (LTL) to mount an immune response against SARS-CoV-2 infection; (d) 

ramifications stemming from the potential role of TL in COVID-19 outcome; and (e) 

contextualizing the pandemic from the standpoint of evolutionary forces shaping TL in 

humans.

Major features of COVID-19

The majority of individuals who died from COVID-19 are elderly, adults with cardiovascular 

disease (CVD) and diabetes, and men (1–3). In contrast, infants and children typically had a 

milder clinical course (4–6). At the population level, comparatively short telomeres in the 

elderly, persons with cardio-metabolic diseases and men (7) may be the common thread 

linking the worse COVID-19 outcomes
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This conclusion is supported by another finding: the association of severe lymphopenia with 

fatal outcomes of COVID-19 (8–10). Lymphopenia also characterizes severe acute 

respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), two other 

diseases caused by betacoronaviruses (11–15). As described below, short LTL might 

partially explain the COVID-19- associated lymphopenia, which primarily reflects a decline 

in the number and exhaustion of T lymphocytes (16).

Hematopoietic cell telomere length dynamics and its importance in the face 

COVID-19-associated lymphopenia

LTL is a highly heritable human trait (17, 18) that displays wide inter-individual variation 

(range 3–4 kilo base (kb) after adjustment for age) (19, 20) and reflects mean TLs across all 

hematopoietic cells (21). Within every person, these cells, including the hematopoietic stem 

cells (HSCs) that top the hematopoietic hierarchy, show age-dependent telomere shortening 

(22, 23). Although telomerase, the reverse transcriptase that maintains telomeres (24), is 

active in subsets of hematopoietic cells, in most hematopoietic cells, this activity is 

insufficient to prevent telomere shortening that ultimately leads to cellular senescence, 

which culminates in cessation of replication.

Figure 1 depicts a model of hematopoiesis in the bone marrow under ‘steady state’ 

conditions. Atop the hierarchy are a few HSCs with high proliferative capacity; they 

replicate approximately once a year (22, 23). At the bottom of the hierarchy, multitudes of 

cells committed to specific lineages replicate approximately daily, producing ~ 350 billion 

cells (erythrocytes and leukocytes) in adults (25). Numerous mitotic divisions occur as cells 

are formed from top to bottom of the hierarchy; consequently, TL is shorter in unipotent 

cells at the bottom than cells at the top. Typically, about three months might elapse between 

the replication of HSCs and the release of their fully differentiated progenies into the 

circulation (25). This hierarchal configuration of hematopoiesis, with its numerous unipotent 

cells with shorter telomeres at the bottom and progressively fewer cells with longer 

telomeres at the top, works efficiently to maintain homeostasis of blood cells not only young 

persons with long LTL but also older persons with a short LTL (26).

That said, hematopoiesis might stall in the face of a massive loss of circulating blood cells 

(non-steady state condition). When this happens, the fast-replicating unipotent cells at the 

bottom of the hierarchy (first responding cells) increase their replicative pace to offset the 

loss of circulating cells. Replication ‘waves’ propagated up the hierarchy likely occur in 

tandem with the increased demand for replication of the cells at the bottom. Replications at 

the top, albeit slow, ultimately serve to replete the ranks of more differentiated cells at the 

bottom. However, in response to massive loss of circulating cells, first responding cells will 

exhaust their TL-dependent replicative capacity and reach senescence more quickly in 

individuals with shorter LTL than those with longer LTL. This is because an individual’s 

LTL (short or long) reflects TL across all cells of her/his hematopoietic hierarchy. The slow 

‘refilling’ of the stockpile of replicating cells at the bottom of the hierarchy would therefore 

stall hematopoiesis among individuals with a shorter LTL. Simply put, the recovery pace 

from a massive loss of circulating cells would be inversely related to LTL.
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The kinetics of cell replication of the immune system are much more complex than the 

above model, which principally applies to cells, including lymphocytes, produced in the 

bone marrow. The development of lymphoid progenitors in the thymus during early life, 

maturation of lymphocytes and their production in secondary lymphoid organs add more 

layers of complexity to the model. We know little about the hierarchal configuration of 

human lymphopoiesis in lymphoid organs and in the circulation. But we do know that 

lymphopoiesis is tightly linked to TL and telomerase, whose activity varies in different 

lymphocyte lineages. Both B and T cells show telomerase activity, which elongates 

telomeres in memory B cells (27–29). In contrast, telomerase fails to maintain TL in T cells 

and consequently TL is shorter and activation-induced proliferation slower in memory T 

cells and in older persons (29–31). Therefore, inter-individual differences in TL and the 

propensity of their T cells to undergo senescence due to aging and in response of inherent 

factors (e.g. genetically determined TL) might play a critical role in severe lymphopenia- 

associated with COVID-19 and its often fatal outcome. Indeed, the lymphopenia associated 

with COVID-19 is marked by reduction in CD4/CD8 cells, but not B cells (16, 32) 

consistent with their different TL dynamics during development and activation, i.e., telomere 

elongation in B cells (27–29) and telomere shortening in T cells (29–31). Finally, in adults, 

TL is shorter by approximately one kb in lymphocytes than in granulocytes (33), potentially 

explaining with an exception (34), the absence of leukopenia (8–10, 32) in the majority of 

patients with COVID-19.

The advantage of having a longer LTL in the face of COVID-19 infection

The average LTL at birth (in the US) is ~9.5 kb (20). Thereafter, LTL shortens by ~2 kb by 

the 3rd decade (19, 20) and by ~3.5 kb by the 9th decade of life (20, 33). We know little 

about how much telomeres shorten per replication of hematopoietic cells in vivo. Estimates 

(~0.05–0.1 kb) rely on cultured cells (35, 36). Still, consider a child whose LTL is only one 

kb longer than that of an adult. Based on the loss of 0.1 kb per replication, all else being 

equal, the TL-dependent replicative capacity of the first responding cells is 210 larger for the 

child than the adult, meaning that the child has an enormous restorative advantage compared 

with the adult in the ability to respond to an acute and massive loss of circulating cells. 

Similarly, the average difference in LTL between adults with CVD vs. those without CVD is 

~ 0.3 kb (37, 38). The TL-dependent replicative capacity of the first responding cells in 

adults with CVD would thus be 23 smaller than in those without CVD.

At present, we little knowledge of the etiology of lymphopenia in patients with COVID-19, 

but prompt recovery of the immune response requires massive lymphopoiesis, which is TL-

dependent. The shorter telomeres of hematopoietic cells of the elderly, persons with cardio-

metabolic disease, and men might impede their lymphopoiesis, particularly CD4/CD8 

lymphopoiesis, in the face of COVID-19, increasing the risk of severe disease and a fatal 

outcome. In principle, all adults ranked in the lower part of the TL distribution, regardless of 

age, could be susceptible to severe COVID-19-associated drop in CD4/CD8 because their 

telomeres might be too short to sustain the speedy replicative response of these cells to acute 

and massive losses of lymphocytes.
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Ramifications

The potential exists to diagnose clinically useful biomarkers of risk based on the presumed 

LTL-COVID connection. Such biomarkers might help identifying persons at greater risk of 

severe COVID-19 in whom intensive management should be initiated sooner. Further, the 

potential connection between LTL and the severity of COVID-19 raises a host of questions 

vital to public and global health. For instance, LTL in African Americans is ~ 0.2 kb longer 

than that of Americans of European ancestry (39, 40), and in sub-Saharan Africans it is ~ 0.3 

kb longer than in African Americans (40). How can one reconcile the longer LTL of African 

Americans with their higher mortality rate from COVID-19 (41), assuming the finding holds 

after adjustment for age, sex, obesity and demographic settings? The incidence of essential 

hypertension is higher (42) and the activity of the renin-angiotensin-aldosterone (RAAS) 

lower (43) in African Americans than in Americans of European ancestry. As mortality from 

COVID-19 is presumably higher in patients with essential hypertension (1–3) and given that 

angiotensin converting enzyme-2, which facilitates the intracellular entry of SARS-CoV-2, is 

a component of RAAS (44, 45), different factors might influence the severity of COVID-19 

in individuals of different ancestries. In this light, preliminary data, which require validation, 

suggest disproportionally less cases of COVID-19 in sub-Saharan regions (46). Falciparum 

malaria – a disease that still kills numerous individuals, the majority of whom are sub-

Saharan children younger than five years of age (47) – causes massive hemolysis and often 

severe anemia in children (48, 49). Might co-infection of infants and children with 

COVID-19 and malaria have a synergistic effect that greatly increases children mortality 

because of heightened telomeric demands for both lymphopoiesis and erythropoiesis?

Evolutionary Context

Humans have been infected by zoonotic viruses, including betacoronaviruses, since the 

dawn of their evolution (50, 51). Ever since the development of agriculture and settlements 

(52, 53), they have also been exposed to Plasmodium falciparum, which causes the most 

lethal form of malaria. These infections unleashed powerful selective forces, explaining, for 

instance, the high prevalence of pleiotropic alleles that confer resistance to severe malaria 

among populations indigenous to malaria endemic regions. By increasing the turnover of 

lymphocytes and erythrocytes, betacoronaviruses, including SARS-CoV-2, Plasmodium 
falciparum, and other infectious and parasitic pathogens probably served to lengthen human 

telomeres through selection (Figure 2). Cancer, in contrast, has been a powerful evolutionary 

force to shorten telomeres in humans and other mammals (Figure 2) (7). Human migration, 

endemic infections, and other exposures likely caused TL to fluctuate above and below an 

optimal value that maintained the balance between these and other selective forces (54) that 

typically exert influence during the reproductive years. The majority of contemporary 

humans, however, largely experiences the lasting effects of such forces on TL in late 

adulthood and old age (55, 56). In this sense, the severe impact of COVID-19 on older 

individuals, persons with the cardio-metabolic syndrome, and men reaffirms the dictum: 

Nothing in biology makes sense except in the light of evolution (57).
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Figure 1. Replicative potential, replicative rate and telomere shortening across the hematopoietic 
hierarchy.
Larger cells denote more replicative capacity; darker cells denote faster replication. Cells 

atop the hierarchy replicate at a slow pace but have a high replicative capacity. Cells at the 

bottom replicate at a fast pace but have a lower replicative capacity. The length of telomeres 

(shown as the red caps at the end of the chromosomes) is progressively shorter towards the 

bottom due to the greater number of cell replications that occur moving down the hierarchy.
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Figure 2. Evolutionary forces that regulate optimal TL (Model).
Optimal TL is set by opposing factors that lengthen or shorten telomeres through natural 

selection. Displayed for illustration, are (compared to A) the effect of zoonotic viral 

diseases, e.g., betacoronaviruses, which increases the demand for lymphpoiesis (B), and 

falciparum malaria, which increases the demand for erythropoiesis (C). Longer telomeres 

(red caps at the ends of the chromosomes) increase the chance of surviving these diseases. 

Therefore, repeated exposures to such diseases (B and C) in succeeding generations would 

lengthen telomeres. Cancer (D) might be an evolutionary force to shorten telomeres, because 

longer telomeres entail increased replicative potential and a higher cancer risk. Other factors 

that increase demand for somatic repair through cell replication might lengthen telomeres.
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